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Supersymmetric (SUSY) optical structures provide a versatile platform to manipulate the scattering and
localization properties of light, with potential applications to mode conversion, spatial multiplexing and
invisible devices. Here we show that SUSY can be exploited to realize broadband transparent intersections
between guiding structures in optical networks for both continuous and discretized light. These include
transparent crossing of high-contrast-index waveguides and directional couplers, as well as crossing of guiding
channels in coupled resonator lattices. c© 2018 Optical Society of America
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The synthesis of optical structures with desired scat-
tering properties is of major importance for a wide va-
riety of applications. In the past decade, novel powerful
tools of inverse scattering, such as those based on con-
formal mapping and transformation optics (TO) [1, 2],
have been introduced, leading to the design and real-
ization of novel devices such as invisible cloaks, illusion
objects, field concentrators, and perfect ’black hole’ ab-
sorbers [3–7]. Recently, a synthesis method based on the
optical analogue of supersymmetry (SUSY) has been in-
troduced [8–10]. SUSY optical structures display sev-
eral interesting properties with potential applications to
global phase matching, efficient mode conversion and
fully-integrated spatial multiplexing [8,11]. SUSY optical
structures also enable to realize transparent defects and
interfaces [12–14]. As compared to TO methods, SUSY
shows less stringent requirements of material parame-
ters [8, 9] and can be applied to discretized light in cou-
pled waveguide or resonator structures as well [11,12,15].
In this Letter the potentialities of optical SUSY for the
design of transparent intersections in integrated opti-
cal networks are disclosed. The ability to efficiently in-
tersect high index contrast optical waveguides with lit-
tle or no signal deterioration is crucial in construct-
ing high-density integrated optical circuits. Owing to
waveguide crossing, an optical signal typically expe-
riences scattering, both into radiation modes and to
guided modes, generating a detrimental back-reflected
wave and crosstalk. Several methods have been proposed
and demonstrated to reduce back-reflection and crosstalk
at the intersections between two dielectric waveguides,
including multimode interference structures [16,17], res-
onant coupling [18], elliptical or parabolic mode ex-
panders [19–21], graded-index (GRIN) waveguides [22],
and guiding top layers [23], to mention a few. SUSY pro-
vides a natural platform to synthesize transparent cross-
ing of optical components. Here we show that broadband
transparent intersections are possible for high index con-
trast waveguides, as well as for more complex optical
components such as directional couplers. Back-reflection-
free crossing is also shown to occur for discretized light

at the intersection of guiding channels in lattices of cou-
pled resonators. We consider light propagation in a two-
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Fig. 1. (Color online) Schematic of orthogonal intersection
between two guiding structures S1 and S2 in (a) a continuous
2D dielectric medium, and (b) in a square lattice of coupled
resonators with defects.

dimensional (2D) dielectric medium with a refractive in-
dex distribution n(x, y) =

√

ǫr(x, y), that describes the
intersection of two guiding structures. We focus our anal-
ysis to TE-polarized waves (Ex = Ey = Hz = 0), which
is more suited for the application of SUSY in a purely
dielectric medium [9]. For a TE wave, the Ez component
of the electric field satisfies the Helmholtz equation

∂2Ez

∂x2
+

∂2Ez

∂y2
+ β2n2(x, y)Ex = 0 (1)

where x and y are the spatial coordinates, normalized to
a characteristic spatial length a (defining e.g. the typ-
ical width of waveguides), β = (ωa/c0) = 2πa/λ, and
ω = 2πc0/λ is the frequency of the electromagnetic wave
with (vacuum) wavelength λ. For an arbitrary distribu-
tion of the refractive index, SUSY can not be applied in
a simple way, though SUSY extensions to the Helmholtz
equation, based on Moutard transformation, have been
suggested [24]. However, for a refractive index distribu-
tion of the form n2(x, y) = n2

0+∆ǫrx(x)+∆ǫry(y), sepa-
ration of variables is possible, and standard SUSY of the
1D Schrödinger equation can be exploited to engineer
the scattering properties of Eq.(1). In the previous ex-
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pression of n2(x, y), n0 is a reference (substrate) refrac-
tive index, whereas ∆ǫrx(x) and ∆ǫry(y) describe the
dielectric profiles of the two guiding structures S1 and
S2, respectively, that intersect each other at 90o, with
∆ǫrx(x),∆ǫry(y) → 0 as x, y → ±∞; see Fig.1(a). After
setting Ez(x, y) = Ezx(x)Ezy(y), Eq.(1) splits into the
two stationary 1D Schrödinger-type equations
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Fig. 2. (Color online) (a) Permittivity profile ∆ǫrx of SUSY
waveguide (left panel) and numerically-computed transmis-
sion spectra of the various TE-polarized modes (right panel).
T = 1 is exactly achieved at the normalized frequencies
a/λ = (1/2π)

√

l(l + 1)/∆. (b) Same as (a), but for a waveg-
uide with a super-Gaussian index profile of order m = 6. (c)
Permittivity profiles (left panel) and corresponding transmis-
sion spectra (right panel) of the fundamental TE0 mode for
a super-Gaussian profile at increasing order m = 1, 2, 3, 4, 5
and 6. The dotted curves refer to the SUSY waveguide in (a).

dEzx

dx2
+ β2∆ǫrx(x)Ezx = −γxEzx (2)

dEzy

dy2
+ β2∆ǫry(y)Ezy = −γyEzy , (3)

where γx,y are the separation constants, with β2n2
0 =

γx + γy. Owing to the factorization of Ez , cross-talk
(i.e. light scattering into guide S1) is fully suppressed,
regardless of the shapes of ∆ǫrx,ry, and the only scatte-
ring process that makes the crossing not transparent is
back-reflection. If β2∆ǫrx(x) is a reflectionless potential,
the guiding structure S1 is transparent and any arbi-

trary field distribution propagating in the guide S2 is
not reflected at the intersection of guide S1. More pre-
cisely, let uy(y) be a guided mode of S2 with eigen-
value γy = γy0. Then, far from the crossing region,
the solution to Eq.(1) can be written as Ez(x, y) ∼
uy(y)[exp(i

√
γx0x) + r exp(−i

√
γx0x)] as x → −∞, and

Ez(x, y) ∼ uy(y)t exp(i
√
γx0x) as x → ∞, where r and t

are the reflection and transmission coefficients of the po-
tential β2∆ǫrx(x) for the Schrödinger equation (2) with
γx ≡ γx0 = β2n2

0 − γy0. Note that, since the poten-
tial β2∆ǫrx(x) depends on the wavelength via β, strictly
speaking a reflectionless potential -and thus exact trans-
parent crossing- can be obtained at a prescribed wave-
length. Nevertheless, numerical results show that the

transmittance T = |t|2 remains close to one in a broad
wavelength range. As a first example, let us consider
the crossing of two equal waveguides S1 and S2 with
GRIN profiles belonging to the simplest family of re-
flectionless potentials obtained by first-order SUSY of
a homogeneous medium, namely ∆ǫrx(x) = ∆sech2(x)
and ∆ǫry = ∆ǫrx. Note that np =

√

∆+ n2
0
determines

the peak index change of the GRIN guide. The poten-
tial is strictly reflectionless when β2∆ = l(l + 1), with
l = 1, 2, 3, ... [25]. Figure 2(a) shows the transmittance
T versus the normalized frequency β/(2π) = a/λ of the
various TE-polarized guided modes for parameter values
taken from Ref. [18], i.e. n0 = 1 (air) and np = 3.4
(GaAs), neglecting for the sake of simplicity the depen-
dence of np on wavelength. The transmittance T has
been numerically computed by a standard transfer ma-
trix method from the 1D Schrödinger equation (2), after
computation of the propagation constants γy0 of the var-
ious guided modes from Eq.(3). Figure 2 clearly shows
that high transmittance (> 99%) over a broad spectral
range is observed for all guided modes of the structure.
This is a very distinct and improved result as compared
to e.g. the resonant tunneling method [18], where high
transmittance and low crosstalk is obtained in a much
narrower spectral region (see Fig.5 of Ref. [18]). GRIN
profiles such as those required to realize SUSY trans-
parent crossing can be implemented in structured slab
waveguides with subwavelength holes etched in a waveg-
uide [26]. Using this technique, a refractive index rang-
ing from the bulk value of the dielectric host medium to
near unity is achievable [26,27]. Alternatively, GRIN dis-
tributions can be implemented by controlling the thick-
ness of the guiding layer of a slab waveguide [28]. De-
viations of the GRIN profile from the reflectionless one
causes a degradation of the transmittance. Figure 2(b)
shows, as an example, the behavior of the transmit-
tance T computed for a super-Gaussian index profile
∆ǫrx = ∆exp(−x2m) with m = 6, i.e. corresponding to
a nearly step-index guide. As the super-Gaussian order
m is decreased and the potential shape of reflectionless
type is approximated, a clear improvement of the trans-
mittance is observed, see Fig.2(c). The figure indicates
that deviations from the exact SUSY profile due to fab-
rication imperfections can be partially tolerated; for ex-
ample, for a Gaussian (m = 1) rather than sech2 profile a
broadband transmittance larger than 98.5% is observed.
The sech2-like index profile is strictly transparent solely
for TE-polarized waves, because a dielectric profile that
is transparent to TE waves it is not for TM waves [9].
Nevertheless, numerical results based on 2D FDTD sim-
ulations of Maxwell’s equations show that the sech2-like
index profile obtained by SUSY for TE-polarized modes
yields negligible back reflection and crosstalk for TM
waves as well; see as an example Fig.3.
An interesting property of SUSY is that almost transpar-
ent crossing over a broad frequency range can be realized
for more complex structures than simple waveguides. For
example, transparent crossing of two optical directional
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couplers, or of an optical directional coupler and a waveg-
uide, can be designed. A transparent optical directional
coupler with a desired coupling length can be synthe-
sized by application of a double SUSY, starting from a
homogeneous medium. Its profile is given by

∆ǫrx(x) = ∆
σ2 + sech2(x)sinh2(σx)

[tanh(x)sinh(σx) − σcosh(σx)]2
(4)

which is reflectionless for ∆β2 = 2(σ2−1). In Eq.(4), the
parameter σ > 1 determines the coupling length between
the guides of the coupler, which is given by L = π/[(σ2−
1)]. As an example, Fig.4(a) shows the transmittance
of the coupler supermodes at the intersection for ∆ =
3.941 and σ = 1.2. For comparison, the transmittance of
directional couplers with a double-well super-Gaussian
profile is depicted in Figs.4(b) and (c), showing a strong
oscillating behavior with large back-reflectance for nearly
step-index profile.
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Fig. 3. (Color online) 2D FDTD propagation of a TM-
polarized wave packet at the crossing of two waveguides with
a sech2-like index profile [left panel of Fig.2(a)]. The carrier
wavelength of the incident wave packet is λ/a = 10. The up-
per plots show two snapshots of Hz(x, y) (in arbitrary units)
before (left panel) and after (right panel) the crossing. Arrows
indicate the direction of propagation, whereas the straight
dashed lines schematically depict the guiding regions. The
lower plot shows the behavior of Hz versus time, normalized
to the optical period of oscillation, at the two points A (solid
curve) and B (dashed curve). The signal in B corresponds
to the crosstalk wave, whereas the delayed signal in A corre-
sponds to the back-reflected wave.

SUSY can also offer the possibility to design trans-
parent intersections for discretized light [12, 15]. Let us
consider, as an example, a square lattice of coupled res-
onators [29] with the same resonance frequency ωR and
with non-uniform hopping rates, as schematically shown
in Fig.1(b). Indicating by cn,m the field amplitude in the
resonator at lattice site (n,m), with horizontal and verti-
cal indices n and m, in the geometric setting of Fig.1(b)
the following coupled-mode equations hold [29]

i
dcn,m
dt

= ωRcn,m + Vncn−1,m + Vn+1cn+1,m

+ Wmcn,m−1 +Wm+1cn,m+1 (5)

where Vn is the hopping rate between resonators at site
(n,m) and (n − 1,m), whereas Wm is the hopping rate
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Fig. 4. (Color online) (a) Transmission spectrum (right
panel) of the supermodes for the intersection of two SUSY-
synthesized directional couplers [Eq.(4)]. Left panel: per-
mittivity profile of the SUSY coupler (n0 = 1, σ = 1.2,
∆ = 3.941). (b), (c): Same as (a), but for a directional coupler
made of two super-Gaussian guides of mode order m = 1 [in
(b)] and m = 6 [in (c)]. The dotted curves in the left panels
show the SUSY reference permittivity profile of (a).

between resonators at site (n,m−1) and (n,m). We typ-
ically assume that inhomogeneities in the hopping rates
are localized near n = 0 and m = 0, i.e. Vn,Wn → κ
as n → ∞, where κ si the hopping rate of the homoge-
neous lattice. Like for the continuous Helmholtz equa-
tion (1), for the chosen functional dependence of hop-
ping rates Eq.(5) is separable, i.e. cn,m(t) = Fn(t)Gm(t),
leading to two 1D discrete Schrödinger equations for Fn

and Gn. In particular, the defects of Vn and Wm near
n = 0 and m = 0 can sustain bound propagative modes
along the n and m directions, similar to the guided
channels S1 and S2 in Fig.1(a). Interestingly, applica-
tion of SUSY to the discrete Schrödinger equations for
Fn and Gm can be exploited to design reflectionless de-
fects [12]. For example, by assuming Vn = κYn(N, σ1, α1)
and Wm = κYm(M,σ2, α2), where Yn(N, σ, α) =

√

cosh[σ(n− α)]cosh[σ(n− α− 2N − 1)]

cosh[σ(n− α−N)]cosh[σ(n− α−N − 1)]
(6)

and σ, α are arbitrary real parameters, one obtains
transparent crossing of two guides along the n and m
axes, sustaining 2N and 2M propagative modes along
the two directions. Since the hopping rate is determined
by evanescent tunneling of photons between resonators,
hopping rate tailoring can be readily obtained by a judi-
cious control of the resonator distances. Transparency
of a special class of defects of the kind described by
Eq.(6) has been recently proposed and demonstrated in
1D lattices in Refs. [30, 31]. An example of transparent
intersection is shown in Fig.5. Figure 5(a) shows the re-
flectionless propagation of a Gaussian wave packet along
one of the two SUSY-synthesized defect waveguides for
Vn = Wn = κYn(2, 0.6, 3.5), corresponding to multimode
waveguides sustaining 4 modes. Broadening of the trans-
mitted wave packet is visible, which is due to both mul-
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Fig. 5. (Color online) Scattering of a Gaussian wave packet
at the crossing between two guides in a square lattice of
resonators. (a) Upper panel: behavior of the hopping rate
Vn = Wn, normalized to the asymptotic value κ, as given
by Eq.(6), corresponding to transparent crossing. Lower pan-
els: two snapshots of |cn,m|2 (in arbitrary units) before (left
panel) and after (right panel) the crossing. Arrows indicate
the direction of propagation, whereas the straight dashed
lines schematically depict the defective (guiding) regions. (b)
Same as (a), but for a modified hopping rate Vn = Wn,
leading to non-transparent intersection. Results are obtained
by numerical simulations of Eq.(5) with the initial condition
cn,m(0) ∝ exp[−iπn/2− (n+ 15)2/25 −m2/4].

timode excitation and mode dispersion of the guide. For
comparison, in Fig.5(b) the scattering of the same Gaus-
sian wave packet is depicted for a different choice of the
defects, clearly showing strong back reflection.
To conclude, broadband transparent intersections be-

tween guiding structures in optical networks can be syn-
thesized by application of SUSY. The present analysis is
expected to be of interest in the design of high-density
on-chip optical components, and can stimulate further
studies. For example, with the application of SUSY to
guiding structures with gain and loss, described by non-
Hermitian Hamiltonians, one could design transparent
intersection of active waveguides, i.e. optical amplifiers.
Moreover, extensions of SUSY to the 2D Helmholtz equa-
tion in the non-separable case, based on Moutard trans-
form [24], could provide further design tools.
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