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Abstract –In the past decade, the concept of parity-time (PT ) symmetry, originally introduced
in non-Hermitian extensions of quantum mechanical theories, has come into thinking of photonics,
providing a fertile ground for studying, observing, and utilizing some of the peculiar aspects of PT
symmetry in optics. Together with related concepts of non-Hermitian physics of open quantum
systems, such as non-Hermitian degeneracies (exceptional points) and spectral singularities, PT
symmetry represents one among the most fruitful ideas introduced in optics in the past few years.
Judicious tailoring of optical gain and loss in integrated photonic structures has emerged as a new
paradigm in shaping the flow of light in unprecedented ways, with major applications encompassing
laser science and technology, optical sensing, and optical material engineering. In this perspective,
I review some of the main achievements and emerging areas of PT -symmetric and non-Hermtian
photonics, and provide an outline of challenges and directions for future research in one of the
fastest growing research area of photonics.

Introduction. – The search for new synthetic mate-
rials with desired optical properties and functionalities has
been one of the main driving forces of research in optics
and photonics in the last few decades. Major examples of
emerging synthetic optical media include photonic crys-
tals and photonic crystal fibers, left-handed metamate-
rials, metal-dielectric (plasmonic) materials, epsilon-near-
to-zero materials, metasurfaces, materials with topological
and chiral properties, etc. A recent class of synthetic op-
tical materials is that inspired by the concepts of parity
(P) and time reversal (T ) symmetries. In non-relativistic
quantum mechanics, parity-time symmetry has attracted
an increasing attention since Carl Bender and collabora-
tors suggested an hypothetical non-Hermitian extension
of quantum mechanics [1–4], in which the postulate of
Hermiticity of the underlying Hamiltonian is replaced by
PT symmetric invariance. In the so-called unbroken PT
phase, the Hamiltonian shows an entirely real energy spec-
trum in spite of being non-Hermitian. More general con-
ditions for a non-Hermitian Hamiltonian to show an en-
tirely real energy spectrum were also discussed later on
[5]. While at a foundational level non-Hermitian exten-

sions of quantum mechanics may pose some problems
(for example superluminality [6]) and remain controver-
sial, effective non-Hermitian models are found in a wide
variety of classical and quantum systems, for example in
open quantum systems [7, 8], and the appearance of gen-
uine non-Hermitian effects, such as those related to ex-
ceptional points (EPs) [9, 10], are of broad physical rele-
vance in quantum and classical physics. While in this work
I will focus my attention to optics, one should mention
that the concepts of PT symmetry and exceptional points
have found a considerable interest in several other areas of
physics, such as in electronic and microwave systems, me-
chanics, acoustics, atom optics and optomechanics. Ear-
lier works on PT symmetry in optics were conceived to
physical implement scattering processes and phase transi-
tions in PT -symmetric systems [11–17]. However, it was
subsequently realized that PT symmetry can provide a
fertile and technologically accessible tool to mold the flow
of light in unprecedented ways with a wealth of promising
applications. Earlier studies showed, for example, that
asymmetric transport, anomalous diffraction and unidi-
rectional invisibility can be realized in complex crystals at
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the PT symmetry breaking transition, where lattice bands
start to merge [13, 18–26]. Invisibility, cloaking, non-
Hermitian metamaterials and metasurfaces, based on PT
symmetry concepts, were subsequently suggested [26–30].
PT symmetry has inspired the idea of a laser-absorber de-
vice [31–33], i.e. the rather counterintuitive possibility to
realize an optical device that simultaneously behaves like
a laser (i.e. it is able to emit coherent light waves) and as
a coherent absorber (i.e. it can fully annihilate coherent
light waves incident onto it). Since then, applications of
PT symmetry to laser science and technology, especially in
integrated semiconductor laser devices, has seen a series or
major achievements [34–45], such as single mode selection
and laser stabilization [36–38,40–42,44], polarization mode
conversion [45], and light structuring and transport [39,43]
to mention a few. Other emerging areas of research are
those related to EPs, i.e. non-Hermitian degeneracies cor-
responding to the simultaneous coalescence of eigenener-
gies and corresponding eigenvectors. EPs show an intrigu-
ing chiral behavior arising from asymmetric breakdown of
the adiabatic theorem [46–48] and find application in op-
tical sensing [49–52]. Another important emerging area is
the one on non-Hermitian topological lasers [53–55]. May
be the great success of PT optics and non-Hermitian pho-
tonics comes from the combined effect of a relatively sim-
ple theory with a rich physics behind, and the relative ease
of fabrication complexity as compared to other synthetic
materials (like photonic crystals and left-handed metama-
terials). As a matter of fact, in few years PT -optics has
turned from a simple theoretical curiosity into an impor-
tant area of research in integrated photonics. Is everything
in the field of PT -optics and non-Hermitian photonics en-
tirely new? One should acknowledge that some concepts
of non-Hermitian physics and their implications in optics
and laser science were partially known since many years.
For example, the implications in optics of non-Hermitian
degeneracies are know since quite a long time [10], albeit
they were not fully exploited in some interesting applica-
tions. Non-orthogonality of eigenmodes in laser theory,
noticeably in unstable resonators described by a highly
non-Hermitian Hamiltonian, is known to increase quan-
tum noise by the so-called excess noise (or Petermann) fac-
tor [56–58] (the relation between PT symmetry and excess
noise factor in a simple model is discussed in [59]). Non-
normal dynamics in certain non-Hermitian laser models
is known to give rise to transient growth, excitability and
turbulence laser behavior [60–62]. Finally, loss engineering
in semiconductor lasers was suggested and demonstrated
in the early days of semiconductor lasers to force single-
mode operation (see the recent comment [63]). However,
we can undoubtedly say that concepts like PT symme-
try and non-Hermitian degeneracies are providing a major
twist in the field of non-Hermitian photonics, with many
of their potential applications yet to be explored.

In this perspective I briefly review some of the simplest
concepts underlying PT -optics and non-Hermitian pho-
tonics, present a few emergent developments and appli-
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Fig. 1: (a) Schematic of a PT -symmetric sinusoidal potential.
(b) Realization of the potential in a silicon waveguide based on
combined index and loss gratings. Near the symmetry breaking
point the crystal in unidirectionally invisible: waves propagat-
ing from left to right are not scattered off by the potential,
while waves propagating from right to left are.

cations in the field, and provide an outline of challenges
and directions for future research. A huge number of pa-
pers have been published in this broad field in the past
few years, and some reviews facing several aspects of PT
symmetry in optics and beyond optics have been recently
published [64–69], to which we refer the reader.

Simple concepts in PT -symmetric optics. – The
simplest optical model that describes PT symmetry in
optics, originally introduced in Ref. [13], is provided by
the optical Schrödinger equation [14], which describes
rather generally paraxial wave propagation of light waves
at wavelength λ in an inhomogeneous dielectric medium
with a z-independent transverse refractive index distribu-
tion n(x), that slightly deviates from a reference (sub-
strate) index ns. The evolution of the electric field enve-
lope ψ(x, z) along the paraxial distance z reads [13,14]

ih̄∂zψ = −(h̄2)/(2ns)∂
2
xψ + V (x)ψ ≡ Hψ (1)

where h̄ ≡ λ/(2π) and V (x) ' ns − n(x) as a definition
of the optical potential. Clearly, Eq.(1) is formally equiv-
alent to the Schrödinger equation for a spineless quantum
particle of mass m = ns in a potential V (x), where the
spatial evolution of the electric field along the paraxial dis-
tance z emulates the temporal evolution of the quantum
mechanical wave function. A non-Hermitian Hamiltonian
H corresponds to a complex potential V (x), i.e. to a com-
plex refractive index distribution n(x). As is well known,
the imaginary part of the refractive index corresponds to
optical gain or loss of the dielectric medium. H is said to
be PT symmetric if it commutes with the PT operator,
i.e. [H,PT ] = 0 [1, 3]. For Eq.(1), PT symmetry im-
plies V (−x) = V ∗(x), i.e. the real (imaginary) part of the
potential should be an even (odd) function under space re-
flection x→ −x. This means that a PT symmetric optical
potential requires a balanced distribution of gain and loss
in the medium. Since PT is not a linear operator, it is not
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Fig. 2: (a) Schematic of a PT -symmetric double-well po-
tential. Insets: optical realization based on coupled optical
waveguides (left) and coupled microring resonators (right) with
balanced gain/loss. (b) Behavior of the energy spectrum of the
Hamiltonian (2) versus the gain/loss parameter σ. The sym-
metry breaking point at σ = κ corresponds to an exceptional
point, with coalescence of both eigenvalues and eigenfunctions
of the matrix H. (c) Schematic of light propagation in a PT -
symmetric optical directional coupler above (left panel) and
below (right panel) the symmetry breaking point.

ensured that the two operators PT and H share a com-
mon set of eigenfunctions and eigenvalues, even though
they commute. If they share the same set of eigenfunc-
tions, we say that the PT symmetry is unbroken and the
energy spectrum of H is entirely real. Conversely, if the
set of eigenfunctions of the two operators do not coincide,
the PT symmetry is broken. In this case the energy spec-
trum ofH is complex and energies are either real or appear
in complex conjugate pairs. Generally, as the strength of
the non-Hermitian part of the potential increases, a phase
transition, from unbroken to broken PT phases, is ob-
served. Let V (x) = VR(x) + iσVI(x), where VR and σVI
are the real (index) and imaginary (gain/loss) parts of the
complex potential, and σ a dimensionless parameter that
measures the strength of the non-Hermitian part of the po-
tential (σ = 0 in the Hermitian limit). As a general rule of
thumb, there is a critical value σ = σc ≥ 0 such that the

PT phase is unbroken for σ ≤ σc and broken for σ > σc.
A special behavior is found at the phase transition point
σ = σc, where the Hamiltonian H becomes defective ow-
ing to the appearance of EPs [8, 9] (for finite dimensional
systems) or spectral singularities [17, 70, 71] (for infinite
dimensional systems), i.e. the set of proper and improper
eigenfunctions of H ceases to be a complete set. Let us
discuss two main examples that found interesting appli-
cations in optics. The first one is the complex sinusoidal
(periodic) potential V (x) = V0[cos(kx)+iσ sin(kx)], which
describes light scattering in a mixed index and gain/loss
grating [13,18,19,22,72]; see Fig.1(a). In this case σc = 1
and light scattering near the symmetry breaking point
turns out to be unidirectional [18, 19]. This means that
a wave propagating in one direction does not see any scat-
tering potential, i.e. it freely propagates, while it is scat-
tered off by the sinusoidal potential in the opposite direc-
tion [Fig.1(b)]. Probing the motion by an external force
results, for example, in unidirectional Bloch oscillations
[18,23,73,74]. The second example is a double-well poten-
tial, with gain in one well and loss in the other one [75],
which can be realized by two coupled optical waveguides (a
PT -symmetric directional coupler) or two ring resonators,
one active and the other lossy [Fig.2(a)]. Using coupled-
mode theory, the Hamiltonian of the PT coupler is simply
described by the 2× 2 Hamiltonian

H =

(
−iσ κ
κ iσ

)
(2)

where κ is the coupling constant and σ the balanced
gain/loss parameter in the two waveguides/rings. The
eigenenergies ofH are given by E = ±

√
κ2 − σ2, which are

entirely real and distinct for σ < σc with σc ≡ κ. At the
symmetry breaking transition point σ = σc = κ, the two
eigenvalues along with their corresponding eigenfunctions
coalesce and an EP point arises. Finally, in the broken
PT phase two pairs of complex conjugate eigenenergies
are found [Fig.2(b)]. While for σ < σc light oscillates be-
tween the two waveguides (Rabi-like oscillations), at and
above the symmetry breaking transition a secular ampli-
fication of light in the waveguide with gain is observed
[Fig.2(c)]. The PT coupler enabled the first observation
in optics of PT symmetry breaking transition [15,16].

Beyond the paraxial and scalar theory, PT symme-
try can be introduced for vectorial e.m. fields in gen-
eral optical media within full Maxwell′s equations [27]. In
this framework, complex-coordinate transformation optics
may be exploited for systematic generation, design, and
modeling of a rather broad class of PT -symmetric meta-
materials for a variety of applications [28–30].

Some applications of PT -symmetry in optics. –
Here I provide a few examples, among many others, where
PT symmetry finds applications in photonics.

1. Unidirectional invisibility in PT complex crystals.
As briefly mentioned above, light scattering in a complex
periodic potential is asymmetric, and can completely van-
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Fig. 3: (a) Schematic of a PT -symmetric laser-absorber in
a distributed-feedback structure with balanced gain and loss
regions [31]. (b) Realization of a laser-absorber device based
on a a III-V semiconductor platform [33].

ish near the PT symmetry breaking transition for light
propagation in one direction. Such an effect thus cor-
responds to unidirectional invisibility of the scattering
medium [21, 22]. Within coupled-mode theory of shallow
grating structures, such as effect was earlier predicted in
Ref. [76]. From the experimental side, researchers have
demonstrated unidirectional invisibility in complex crys-
tals based on silicon waveguides [24] and in the temporal
domain using a mesh of coupled fiber rings [23]. In the
experimental setting of Ref. [24], the real index and the
imaginary loss modulations are spatially separated and
can be controlled individually [Fig.1(b)]. The real index
modulation is realized by either modulation of the waveg-
uide width or by depositing additional dielectric materials
(such as Ge or Si) on top of the waveguide. The phase-
shifted loss grating is implemented by placing combined
dielectric-metal multilayered structures (such as a bilayer
structure of Ge/Cr) on top of the waveguide.

2. Laser-absorber devices. At the onset of lasing, in
a simple one-dimensional semiclassical analysis laser os-
cillation, produced by an active medium inside an cavity
of length L occupying the spatial region −L/2 < x <
L/2, can be described by linear Mawxell′s equations with
a complex relative dielectric constant ε = ε(x), where
ε(x) = 1 outside the cavity, i.e. for |x| > L/2. The real
and imaginary parts of the dielectric constants describe
feedback provided by the mirrors and light amplification
in the gain medium, respectively. If we write the electric
field at frequency ω as E(x, t) = E(x) exp(−iωt)+c.c., the
spatial component E(x) of the field satisfies the Helmholtz
equation

d2E

dx2
+ ε(x)

(
ω

c0

)2

E = 0 (3)

where c0 is the speed of light in vacuum. For a laser
with optical gain tuned at threshold, Eq.(3) admits of sta-
tionary outgoing wave solutions, i.e. solutions with the
asymptotic form E(x) = E1 exp(ikx) for x > L/2 and
E(x) = E2 exp(−ikx) for x < −L/2, where k = ω/c0 and
E1, E2 are the amplitudes of the fields escaping from the
cavity on the right and left sides, respectively. Clearly,
E∗(x) satisfies Eq.(3) provided that ε(x) is replaced by
ε∗(x), i.e. optical gain is replaced by the same amount
and spatial distribution of optical loss. Complex conjuga-
tion corresponds to time reversal T , i.e. outgoing waves

(a)
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Fig. 4: Unidirectional laser emission in a microring based on a
PT -symmetric grating. (a) In a microring two traveling wave
modes, propagating clockwise (cw) or counterclockwise (ccw)
with amplitudes E1 and E2, are degenerate and can compete
via nonlinear laser dynamics. Depending on parameter con-
ditions, unidirectionally bistable, bidirectional or oscillatory
emission in the two modes can be observed. The use of a
complex index/loss grating in a PT symmetric configuration
(bottom panel) forces stable laser emission in one of the two
traveling-wave modes. (b) The use of an additional grating can
decouple light from the top of the microring in the form of a
vortex laser beam carrying orbital angular momentum [43].

are transformed into incoming waves: this means that the
time reversal of a laser, obtained by replacing the opti-
cal gain with the same amount of optical loss, realizes
a perfect coherent absorber [77–79]. If we assume that
ε∗(x) = ε(−x), i.e. if the laser system is PT symmetric, it
readily follows that there should simultaneously exist, at
the same real frequency ω, a solution corresponding to out-
going waves and another one corresponding to incoming
waves [31]. These are related one another by a space-time
symmetry. In other words, a laser at threshold satisfy-
ing PT symmetry behaves as a coherent perfect absorber
as well (frequency pulling effects might however induce a
slight shift of frequency ω of lasing and absorbed waves).
This is a rather counterintuitive effect, since it seems con-
tradictory that an optical medium can amplify and fully
absorb light simultaneously. As a matter of fact, time re-
versal symmetry ensures that an arbitrary lasing system,
that could even emit irregular or chaotic light, has its own
coherent perfect absorber [80]. An example of PT sym-
metric laser-absorber device, based on distributed optical
feedback, was proposed in Ref. [31] [Fig.3(a)]. The exper-
imental demonstration of a laser-absorber device has been
recently reported in Ref. [33] using an active waveguide on
a III-V semiconductor platform, with periodically placed
bilayer Cr/Ge as the loss elements [Fig.3(b)]. The laser-
absorber device provides a suitable platform for interfero-
metric control of loss and amplification of light, with great
potential to advance on-chip photonic modulation tech-
nologies.

3. Single-mode laser emission and structured light. PT
symmetry has inspired several methods of mode selec-
tion in integrated semiconductor lasers [35–41, 43, 44]. In

p-4



Parity-Time Symmetry meets Photonics ...

particular, in a microring laser stable unidirectional laser
emission can be forced by using a complex grating near
the symmetry breaking point [Fig.4(a)]. This provides a
rather unique means to obtain unidirectional oscillation
without resorting to non-reciprocal elements, such as op-
tical diodes, which is impossible in the micro/nano scale.
The complex grating does not break time reversal symme-
try, however the asymmetric feedback between clockwise
and counter-clockwise modes induces laser dynamics to
suppress one of the two circuiting modes. The method is
robust against nonlinear instabilities that are known to set
in in semiconductor lasers with slow carrier dynamics and
a large linewidth enhancement factor [44]. An interesting
application of unidirectional laser operation in a microring
of few micrometer size is the ability to generate on an in-
tegrated optics platform structured light carrying orbital
angular momentum (an optical vortex), which has been
suggested and demonstrated in Ref. [43]; see Fig.4(b).

4. Optical sensing and chirality with exceptional points.
PT symmetry breaking in a finite dimensional system is
usually related to the appearance of EPs [9, 10], as il-
lustrated in Fig.2(b). These are unique non-Hermitian
degeneracies which show some intriguing properties that
can be exploited in photonics. One key difference be-
tween exceptional points and Hermitian degeneracies is
their sensitivity to perturbations. In a system operat-
ing around an Hermitian degeneracy, the resulting eigen-
value splitting is proportional to the perturbation strength
ε. Conversely, in a non-Hermitian system with a N -th
order exceptional point, i.e. at which N eigenenergies
and corresponding eigenvectors coalesce, the splitting in-
duced by the perturbation scales as ∼ ε1/N [49]. This
results in an enhanced sensitivity of frequency splitting
for a given strength of perturbations. Recent experiments
have demonstrated high-sensitivity optical sensing using
engineered high-quality optical microcavities that oper-
ate near an exceptional point [51, 52]. A target nanoscale
object that enters the evanescent field of the cavity per-
turbs the system from its exceptional point, leading to
frequency splitting with enhanced sensitivity. Another
interesting property of exceptional point is chirality and
asymmetric breakdown of the adiabatic theorem observed
when an exceptional point is encircled. Let us consider a
non-Hermitian Hamiltonian, like the one given by Eq.(2),
dependent on two real parameters. The parameters are
slowly varied in time, describing a closed path in phase
space. An interesting case is the one where the path en-
circles an exceptional point. In this case, for extremely
slow motion, the system, initially prepared in an instan-
taneous eigenstate, evolves adiabatically remaining in the
instantaneous eigenstate of the Hamiltonian. Owing to
the topological nature of the branch point, after one cycle
a state-flip is obtained [81]. If the motion is reversed, the
system returns to its initial state. However, breakdown
of adiabaticity can be observed in one circulation direc-
tion, but not in the opposite one, whenever the excep-
tional point is dynamically encircled not quasi statically

[82, 83]. This introduces a chirality in the system, which
has been observed in recent experiments [46,47]. Chirality
and asymmetric breakdown of the adiabatic theorem, ob-
served when dynamically encircling an exceptional point,
are rather general effects of non-Hermitian dynamics that
do not necessarily require to encircle an EP. Chirality can
be explained in terms of asymmetric transition rates for
positive- or negative-frequency components of the time-
varying part of the Hamiltonian [48]. Interestingly, the
concept of Floquet EPs and dynamically-induced chiral-
ity, i.e. the creation of EPs by time-periodic modulation
of a non-Hermitian Hamiltonian, has been recently intro-
duced in Ref. [84], opening up possibilities to engineer EPs
by periodic drivings.

Non-Hermitian photonics. – PT symmetry rep-
resents an important concept in recent developments of
non-Hermitian photonics. However, a broader class of ef-
fects arising from loss and/or gain engineering of optical
media can be observed without resorting to PT symmetry.
Here I provide for the sake of illustration a few examples
of recent advances in non-Hermitian photonics based on
non-PT -symmetric media.

1. Kramers-Kronig optical media. Kramers-Kronig op-
tical media represent a recent class of synthetic optical
media with tailored index and loss/gain regions, which
have been introduced by S.A.R. Horsely and coworkers in
Ref. [85]. In such media, PT symmetry is replaced by the
property that the real and imaginary parts of the dielectric
permittivity are related one another by spatial Kramers-
Kronig relations (Hilbert transform). A fascinating prop-
erty of such media is that they are one-way or bidirection-
ally reflectionless, whatever the angle of incidence. Such a
property, besides extending our comprehension of the fun-
damental phenomenon of reflection, may offer new ways
for the design of antireflection surfaces and thin materials
with efficient light absorption [86, 87]. Ongoing research
in this area can be found in Refs. [88–94].

2. Imaginary gauge fields. Gauge fields play an impor-
tant role in topological photonics [95–97]. In tight-binding
lattice models, i.e. within coupled-mode theory formalism,
synthetic gauge fields are introduced by proper control of
the phase φ of the coupling constants (Peierls′ phase) be-
tween micro resonators or waveguides [96–98]. In Hermi-
tian models, the Peierls′ phase is real. However, in 1996
Hatano and Nelson introduced the idea of an imaginary
gauge field to study non-Hermitian delocalization transi-
tion in the Anderson model [99]. They considered the
one-dimensional tight-binding lattice Hamiltonian

H =
∑
n

[
κ exp(iφ)ĉ†ncn+1 + κ exp(−iφ)ĉ†n+1ĉn + Vnĉ

†
nĉn

]
(4)

where κ is the hopping rate between adjacent sites, Vn
is the site energy that accounts for possible disorder in
the lattice, and φ = ih is the imaginary gauge phase.
The Hamiltonian H is clearly non-Hermitian owing to
the imaginary gauge field. An important property of
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Fig. 5: (a) Chain of coupled microring resonators with a syn-
thetic imaginary gauge field realized using auxiliary rings in
antiresonance with gain and loss [39]. The energy dispersion
relation of the non-Hermitian lattice ensures unidirectional ro-
bust light transport, insensitive to disorder. (b) Topological
laser array based on a Su-Schrieffer-Heeger microring chain
with an imaginary gauge field [55].

the Hatano-Nelson Hamiltonian is to enable a directional
transport along the lattice, which is robust against disor-
der in the chain [39, 100]; see Fig.5(a). This is related to
the delocalization transition of eigenvectors induced by the
imaginary gauge field [99]. A synthetic imaginary gauge
field for photons can be realized using coupled microring
resonators, with auxiliary anti-resonant rings with optical
loss and gain, as shown in Fig.5(a) [39]. Besides of real-
izing robust photonic transport [39, 100], in optics imagi-
nary gauge fields can be useful for the design of topological
lasers, as suggested in [55]. In [55], a Su-Schrieffer-Heeger
chain with imaginary gauge field is realized by a chain of
coupled microring resonators [Fig.5(b)]. The imaginary
gauge field stretches all supermodes of the laser array at
one edge of the chain, whereas the topologically-protected
edge state of the Su-Schrieffer-Heeger lattice becomes de-
localized in the chain. In this way, stable laser emis-
sion can be realized in a single supermode of the lattice
[Fig.5(b)].

3. Supersymmetric non-Hermitian photonics. Other
kind of symmetries, known in quantum physics, can find
applications in photonics. A noticeable example is pro-
vided by supersymmetric quantum mechanics, which can
be extended to non-Hermitian Hamiltonians. For exam-
ple, invisibility of discretized light propagation in waveg-
uide lattices with gain and loss regions in a non-PT -
symmetric configuration, synthesized by supersymmetric
quantum mechanics, has been suggested in Ref. [101],
whereas supermode selection in laser arrays based on su-
persymmetry has been proposed in [102].

Emerging areas. – PT optics is a rapidly growing
field with several ramifications and developments. I would
like just to mention a few emerging areas of research.

PT -symmetry in nonlinear optical systems. Nonlinear
systems in PT symmetric configurations are attracting
a considerable attention. A wide variety of novel effects,
which have no counterparts in traditional dissipative sys-
tems, are found in nonlinear PT symmetric models, such
as stabilization of nonlinear states above the symmetry
breaking point, symmetry breaking of nonlinear modes,
and peculiar soliton dynamics. Recent reviews on non-
linear PT -symmetric systems, also beyond optics, can be
found in [66,67].

PT -symmetry in plasmonic and metamaterial struc-
tures. The concept of PT symmetry in dielectric opti-
cal media has inspired new design criteria in other optical
media such as in plasmonic, metamaterial and epsilon-
near-to-zero structures. Ongoing research in this area can
be found in [26–30, 103–105]. Since the technological re-
alization of such structures is more challenging than PT -
symmetric dielectric media, experiments and device appli-
cations in this area are still to come.

Topological non-Hermitian photonics. The meeting be-
tween topological photonics and non-Hermitian photonics
is a promising research area which is expected to provide
major advances in both theoretical and applied aspects of
non-Hermitian photonics [106–113]. The ideas of topol-
ogy have found tremendous success in Hermitian photonic
systems. However, even richer properties are expected to
arise when dealing with non-Hermitian systems. To what
extent concepts of topological matter, elaborated within
Hermitian models, can be extended and find application in
non-Hermitian systems remains a rather unexplored and
fascinating area of research. Recent works have shown,
for example, formation of non-Hermitian topological edge
states and interface states via quantum phase transitions
[107–109, 111], topological lasing in non-Hermitian pho-
tonic structures [53–55], and formation of Fermi arc and
polarization half charge via EPs in photonic crystal struc-
tures [113].

Conclusions. – The concept of PT symmetry en-
tered into optics about one decade ago [11–13], when some
authors realized that light scattering in certain optical
structures with balanced optical gain and loss can pro-
vide a physical realization of PT -symmetric Hamiltonians
introduced by Carl Bender in the framework of a non-
Hermitian extension of quantum mechanics [1]. Rather
surprising, such a concept has proven to be very fruitful
in several area of photonics, with a wealth of applications
ranging from laser technology to optical sensing and ma-
terial engineering. Together with other concepts borrowed
from the physics of non-Hermitian systems, such as EPs,
PT symmetry has provided great inspiration in the design
of new synthetic optical media with unprecedented func-
tionalities compatible with current semiconductor tech-
nologies. As a matter of fact, non-Hermitian photonics is a
fastest growing field of research with several ramifications
and applications yet to come. Non-Hermitian topological
photonics, PT symmetry in metamaterials, metasurfaces
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and plasmonic systems, and PT -symmetric optomechan-
ics are a few emerging research areas which promise major
advances in the science and technology of light.
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