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Introduction

In the framework of a research project currently in progress in con-
junction between the Technical University of Milan and the Uni-
versity of Pavia, attention has been paid to the reliability of
simplified approaches for the design of steel storage pallet racks.
These approaches are the focus of a two-part paper, the second part
of which is the present paper. Part I, “Elastic Buckling Analysis,”
(Bernuzzi et al. 2015a) appraises the critical load multiplier for the
sway buckling mode, αcr, which governs the choice of the analysis
method and the stability verification checks for static design. Fur-
thermore, αcr is of fundamental importance for seismic design, and
its prediction through Horne’s equation (Horne 1975) is proposed.
As to the European approach {FEM 10.2.08 (Federation Européenne
de Manutention 2010); prEN 16681 [European Committee for
Standardization (CEN) 2013]; and EN 1998-1 (CEN 2004)}, the
requirement to account for second-order effects is in fact associated
with the maximum value of the interstory drift sensitivity coeffi-
cient θ, which corresponds to 1=αcr, where θ is defined as

θ ¼ Ptotdr
V tothLL

ð1Þ

where Ptot = total gravity load at and above the considered story in
the seismic design situation, which corresponds to VEd in Eq. (5) of
the companion paper; dr = design interstory drift evaluated as the
difference of the average lateral displacements at the top and bot-
tom of the story under consideration and is calculated by means of
linear elastic first-order elastic analysis, corresponding to δU − δL;
V tot = total seismic story shear, corresponding to the products be-
tween the frame imperfection angle ϕ and vertical loads; andHLL =
interstory height. On the basis of the θ value, lateral force (LFMA),
modal response spectrum analysis (MRSA), or large displacement
method of analysis (LDMA) can be adopted for seismic design.

For the assessment of the fundamental period of vibration,
two simplified approaches are considered: Rayleigh’s method
(Chopra 2011; Clough and Penzien 1995) and an analytical
base-displacement method proposed for semicontinuous racks
[Rack Manufacturers Institute (RMI) 2012; FEMA 2005). Both
approaches have been applied to the same set of racks previously
presented in the companion paper (Bernuzzi et al. 2015a), to which
reference can be made for all the input data related to the geometry
of the racks and key components and the degree of flexural stiffness
of both beam-to-column and base-plate joints. Fig. 1 presents the
layout of the executed analysis and explains the symbols used in
this paper to describe the main results. The outcomes of the present
study allow a direct appraisal of the degree of accuracy of these
methods. Improvements of the considered simplified approaches
are proposed to both increase their level of reliability and also
clearly define their limitations in terms of degree of accuracy when
applied to racks. Finally, for research reproduction purposes, the
“Appendix” summarizes all of the computation phases associated
with the simplified approaches on a two-bay and four-load level
pallet rack. The mechanical and geometrical data of the members
and joints are reported together with the main output results related
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to the use of both six- and seven-degrees of freedom (DOFs) finite-
element (FE) beam formulations.

Remarks on Rack Modeling for Seismic Design

As shown with reference to static design (Teh et al. 2004; Bernuzzi
et al. 2014a, b, 2015b), the Wagner’s effect term and shear center
eccentricity are expected to significantly influence the dynamic
behavior of racks. As a consequence, they cannot be neglected
in seismic design. From well-established equations of motion
(Chopra 2011; Clough and Penzien 1995), the free vibration behav-
ior of an elastic multi-DOF system (no damping) undergoing small
deformations and displacements (modal analysis) is governed by
the system

½K�E − ω2½M�fAg ¼ 0 ð2aÞ
where ½K�E and ½M� represent the stiffness and mass matrices,
respectively; and ω = natural frequency of vibrations.

The solutions are the values of ωi [eigenvalue analysis of the
system Eq. (2a)] and the associated modes of vibration fAgi.
The fundamental period of vibration T1, i.e., the longest period,
is evaluated by considering the minimum value of ωi as

T1 ¼ max

�
2π
ωi

�
¼ 2π

minfωig
ð2bÞ

As Vöros (2004) clearly demonstrated in singly symmetric cross
section members, the mass matrix ½M� has to be adequately formu-
lated and considered in the structural analysis. As a consequence,
matrix ½M� has been implemented in the Śiva FE analysis software
(Bernuzzi and Gobetti 2014) by considering the presence of seven
DOFs for each beam node. As expected from the basis of the theory
of structures and clearly discussed by Trahair (1993), axial forces
and moments acting on members change the natural frequencies/
periods of vibration of columns, beams, and beam columns. With
reference to a single degree-of-freedom system of massM and stiff-
ness K, the well-known fundamental period is obtained as
T1 ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffi
M=K

p
. If second-order effects are neglected, T1 is

independent of the load condition, i.e., not influenced by the values
of internal forces and bending and torsional moments, applied to
the member; otherwise, when the effects of deformations are ex-
pected to be relevant for equilibrium and compatibility conditions,
K will necessarily include the geometric stiffness contribution,
strictly depending on the loads acting on the structure. By increas-
ing the loads applied to the structure, the fundamental period of
vibration also increases and tends to infinity when the buckling
load is applied.

With reference to more flexible and complex semicontinuous
unbraced structures, such as the racks in the downaisle direction,
a second-order analysis is usually required for routine design. Dy-
namic rack properties are expected to be strictly dependent on the
load condition. To correctly evaluate all of the modes of global
vibration shapes, i.e., flexural, torsional, and lateral-torsional vibra-
tion, and any mutual interaction among them, the geometric stiff-
ness matrix ½K�G will be considered in the system [Eq. (2a)], which
must be modified in

fð½K�E þ ½K�GÞ − ω2½M�gfAg ¼ 0 ð3Þ
Including second-order effects in the free vibration problem

leads to determination of a set of eigenvalues and, as a conse-
quence, a set of periods of vibration, strictly depending on the level
of the applied loads because of the presence of the geometric stiff-
ness matrix ½K�G.

Prediction of the Fundamental Period of Vibration

As previously mentioned, the most important parameter in the
analysis and design of any structure subject to seismic load is
the fundamental period of vibration (T1) being used to define
the design spectrum and select the method of analysis. Major stan-
dard codes [RMI MH 16.1 (RMI 2012); FEM 10.2.08 (Federation
Européenne de Manutention 2010); and prEN 16681 (CEN 2013)]
base the rack design on period T1. As in traditional steel, steel-
concrete composite, or concrete buildings, T1 can be directly de-
termined through a FE free vibration (modal) analysis, which, in
the case of racks and other steel structures made by components
with a singly symmetric cross section, must be developed, taking
into account all of the contributions associated with the presence of
the seventh DOF (cross section warping). For more traditional steel
structures made by double-symmetric cross section hot-rolled
members, significant research has been developed to predict the
fundamental period of vibrations through very simplified equations
on the basis of key geometrical data of the frame. In these cases, the
available analysis approaches and associated design rules are very
well-established, with suitable and reliable procedures proposed by
seismic design codes. These approximated formulas for the T1

period calculation are not admitted for racks. Furthermore, in accor-
dance with the United States practice for routine rack design
(RMI 2012), the traditional Rayleigh’s method is recommended,
and, as an alternative, a simplified displacement-based procedure
(FEMA 2005) is admitted. Both of these approaches, which are
summarized in the following sections, have been applied to the con-
sidered racks to evaluate their level of accuracy, especially with
reference to the presence/absence of the seventh DOF to evaluate
the set of lateral displacements.

Rayleigh’s Method Applied to Racks

As previously mentioned, RMI (2012) and FEMA 460 (FEMA
2005) recommend Rayleigh’s approach to assess the fundamental
period of vibration. It is clearly declared that the fundamental
period must be determined on the basis of the structural properties

Fig. 1. Synopsis of numerical cases considered in parametric analysis



and deformation characteristics of the resisting elements in a prop-
erly substantiated analysis. With reference to the generic floor level
i, identifying the associated vertical load, i.e., generally a dead load
plus a consistent fraction of the pallet load, and the seismic lateral
force with the terms Wi and Fi, respectively, the fundamental
period TR

1 is approximated through Rayleigh’s approach (Super-
script R) as

TR
1 ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Wiδ2i

g
P

Fiδi

s
ð4Þ

where g = acceleration because of gravity and is assumed equal to
9.81 m=s2; and δi expresses the total lateral displacement relative to
the base evaluated by means of a first-order elastic analysis at level
i, as computed using Fi, and is assumed equal to the resulting
gravitational force on the i load level.

FEMA Method Applied to Racks

An alternative to Rayleigh’s method, a very simplified expression
to directly estimate the fundamental period of vibration could be
used, which does not need any kind of structural analysis and there-
fore appears extremely convenient for preliminary design. In par-
ticular, in the “Appendix” of FEMA 460 (FEMA 2005), a simple
analytical displacement-based model discussed in the literature
(Filiatrault et al. 2006) is proposed to appraise the seismic behavior
of storage racks in their downaisle direction. This procedure, which
is used to evaluate the displacement demand and the consequent
rack performance, enables the prediction of few parameters gov-
erning seismic design, such as the fundamental period of vibration,
base shear, and top lateral displacement. The proposed simplified
expressions are on the basis of assumptions, which are usually sat-
isfied in the design practice of unbraced racks, such as
• Regularity of components and geometry (equal beam-to-upright

connections, beams spaced relatively uniformly with height, and
equal base-plate connections);

• Moment-resisting connections of the racks simultaneously
experiencing similar rotations at all times;

• Inelastic deformations occurring only at the connection
locations (beam-to-column and base-plate joints); and

• Overall seismic response reasonably captured through a single
degree-of-freedom system, which corresponds to an assumed
first downaisle mode.
Attention in this paper is focused on the sole prediction of the

fundamental period T1. With reference to the symbols presented in
Fig. 2, the predicted TF

1 value can be expressed as

TF
1 ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNLL
i¼1 Wih2i

g
h
Nbtc

�
Sj;btc·Kb

Sj;btcþKb

�
þ Nbase

�
Sj;base·Ku

Sj;baseþKu

�i
vuut ð5Þ

where g = already defined gravity acceleration; Wi = mass used
in the calculation of the seismic force scaled by the effective hori-
zontal seismic factor; hi = height from the base to the center of
gravity of the vertical load on level i; NLL = number of story;
Sj;btc and Sj;base = rotational stiffness of the beam-to-column and
base-plate connections, respectively; Nbtc and Nbase = number of
beam-to-column and base-plate connections, respectively; and
Kb and Ku = beam and upright flexural stiffness, respectively,
expressed as

Kb ¼
6EIb
Lb

ð6aÞ

Ku ¼
4EIu
hLL

ð6bÞ

where E = Young’s modulus; I = second moment of area; Lb =
beam length; hLL = interstory height; and subscripts b and u are
related to the beam and upright, respectively.

The [ðSj;btc · KbÞ=ðSj;btc þ KbÞ] and [ðSj;base · KuÞ=ðSj;base þ
KuÞ] terms in Eq. (5) express the total rotational stiffness between
the beam and upright and the upright end and industrial floor, re-
spectively. Both terms are obtained by the sum in series of the rota-
tional stiffness of the connections (Sj;btc and Sj;base) and of the
flexural stiffness of the members (Ib and Iu). Using the same

Fig. 2. Simplified model to assess fundamental rack period in accordance with FEMA’s method



symbols already introduced to describe the rack parametric analysis
in the companion paper, TF

1 can be expressed as

TF
1 ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNLL
i¼1 Wih2i

g
h
Nbtc

�
6ρj;btc

ρj;btcþ12

�
EIb
Lb

þ Nbase

�
60ρj;base

15ρj;baseþ2

�
EIu
hLL

i
vuut ð7Þ

Numerical Applications

As already mentioned, FE analysis packages offering only six-DOF
beam element formulations are currently used for routine rack
design, but in several cases, they appear inadequate, leading to

overestimation of the level of safety or, similarly, greater evaluation
of the load-carrying capacity values than what is effective. In the
framework of the research phase focused on seismic design, atten-
tion was at first paid to quantify the errors when the effects as-
sociated with warping are neglected. For this purpose, reference
can be made to Table 1, where the T6

1=T
7
1 ratio is reported for

all of the considered racks, where the Superscripts 6 and 7 are as-
sociated with the number of DOFs in the FE beam formulation.
Furthermore, the domain containing all of these data is plotted
in Fig. 3 versus the beam-to-column joint stiffness parameter
ρj;btc. Hence
• The T6

1=T
7
1 ratio appears to be practically independent of the

value of the base-plate joint stiffness.

Table 1. Approximation of the Fundamental Period of Vibration T1, Neglecting Warping Effects (T6
1=T

7
1) through Rayleigh’s Method (T6−R

1 =T7
1 and

T7−R
1 =T7

1) and FEMA Approach (TF
1 =T

7
1)

Racks ρj;btc

ρj;base ¼ 0.15 ρj;base ¼ 0.30 ρj;base ¼ 0.45

T6
1=T

7
1 T6−R

1 =T7
1 T7−R

1 =T7
1 TF

1 =T
7
1 T6

1=T
7
1 T6−R

1 =T7
1 T7−R

1 =T7
1 TF

1 =T
7
1 T6

1=T
7
1 T6−R

1 =T7
1 T7−R

1 =T7
1 TF

1 =T
7
1

M 4 0.5 0.74 0.74 0.75 0.77 0.75 0.75 0.75 0.76 0.75 0.74 0.75 0.74
1.0 0.82 0.82 0.84 0.85 0.83 0.82 0.84 0.84 0.82 0.84 0.85 0.85
1.5 0.84 0.84 0.86 0.85 0.86 0.86 0.88 0.87 0.85 0.85 0.88 0.86
2.0 0.87 0.86 0.89 0.85 0.86 0.85 0.88 0.85 0.87 0.86 0.89 0.86
3.5 0.86 0.86 0.90 0.79 0.87 0.87 0.91 0.81 0.88 0.87 0.92 0.82
5.0 0.87 0.87 0.92 0.76 0.88 0.87 0.92 0.78 0.88 0.88 0.93 0.79
7.0 0.87 0.87 0.93 0.73 0.88 0.87 0.93 0.75 0.88 0.87 0.93 0.75
10.0 0.87 0.86 0.92 0.68 0.88 0.87 0.94 0.71 0.86 0.86 0.93 0.71

M 5 0.5 0.80 0.79 0.80 0.78 0.81 0.80 0.80 0.75 0.80 0.79 0.80 0.73
1.0 0.86 0.85 0.87 0.85 0.86 0.85 0.87 0.84 0.87 0.86 0.88 0.84
1.5 0.88 0.87 0.90 0.87 0.88 0.87 0.89 0.85 0.89 0.88 0.90 0.86
2.0 0.89 0.88 0.91 0.86 0.88 0.88 0.91 0.85 0.89 0.89 0.92 0.86
3.5 0.90 0.89 0.93 0.83 0.90 0.89 0.94 0.84 0.89 0.88 0.93 0.83
5.0 0.89 0.88 0.94 0.79 0.89 0.88 0.94 0.80 0.90 0.89 0.95 0.81
7.0 0.88 0.88 0.94 0.76 0.89 0.88 0.94 0.77 0.89 0.88 0.95 0.77
10.0 0.89 0.87 0.95 0.73 0.88 0.87 0.95 0.74 0.88 0.87 0.95 0.74

G 3 0.5 0.80 0.79 0.80 0.83 0.82 0.81 0.81 0.80 0.83 0.82 0.83 0.80
1.0 0.87 0.86 0.87 0.94 0.88 0.87 0.88 0.92 0.88 0.88 0.89 0.91
1.5 0.88 0.88 0.90 0.97 0.89 0.88 0.90 0.95 0.89 0.89 0.90 0.95
2.0 0.89 0.88 0.90 0.97 0.89 0.88 0.91 0.96 0.90 0.89 0.91 0.95
3.5 0.89 0.89 0.92 0.95 0.91 0.90 0.93 0.96 0.91 0.90 0.93 0.96
5.0 0.90 0.89 0.94 0.92 0.89 0.89 0.93 0.92 0.90 0.90 0.94 0.94
7.0 0.90 0.89 0.94 0.89 0.90 0.89 0.95 0.91 0.90 0.89 0.95 0.91
10.0 0.89 0.88 0.94 0.85 0.89 0.88 0.94 0.87 0.90 0.89 0.95 0.88

G 4 0.5 0.79 0.79 0.80 0.76 0.77 0.76 0.77 0.70 0.81 0.80 0.80 0.71
1.0 0.85 0.84 0.87 0.86 0.86 0.86 0.88 0.85 0.87 0.87 0.88 0.84
1.5 0.86 0.85 0.88 0.89 0.89 0.88 0.91 0.89 0.88 0.87 0.88 0.87
2.0 0.87 0.87 0.90 0.91 0.88 0.87 0.90 0.90 0.89 0.88 0.90 0.89
3.5 0.88 0.87 0.92 0.90 0.89 0.89 0.93 0.91 0.90 0.89 0.93 0.91
5.0 0.88 0.88 0.94 0.89 0.89 0.88 0.93 0.89 0.89 0.88 0.93 0.89
7.0 0.87 0.87 0.94 0.86 0.88 0.88 0.94 0.87 0.89 0.88 0.94 0.87
10.0 0.88 0.87 0.95 0.84 0.88 0.88 0.95 0.85 0.88 0.88 0.95 0.86

T 3 0.5 0.83 0.83 0.84 0.90 0.85 0.85 0.86 0.89 0.84 0.84 0.85 0.86
1.0 0.89 0.89 0.90 0.96 0.90 0.90 0.91 0.96 0.89 0.88 0.90 0.94
1.5 0.91 0.91 0.92 0.96 0.91 0.91 0.92 0.97 0.90 0.90 0.91 0.95
2.0 0.91 0.91 0.93 0.95 0.91 0.91 0.93 0.95 0.92 0.91 0.94 0.96
3.5 0.92 0.91 0.93 0.89 0.93 0.92 0.94 0.91 0.93 0.92 0.94 0.92
5.0 0.93 0.92 0.95 0.86 0.92 0.91 0.94 0.87 0.93 0.93 0.96 0.89
7.0 0.92 0.92 0.95 0.81 0.93 0.92 0.95 0.84 0.93 0.92 0.95 0.84
10.0 0.92 0.92 0.95 0.77 0.93 0.92 0.95 0.79 0.93 0.93 0.96 0.81

T 4 0.5 0.84 0.83 0.84 0.85 0.84 0.83 0.84 0.82 0.83 0.83 0.84 0.79
1.0 0.89 0.88 0.89 0.92 0.88 0.88 0.89 0.89 0.90 0.89 0.90 0.90
1.5 0.90 0.89 0.91 0.92 0.91 0.91 0.92 0.92 0.90 0.90 0.91 0.91
2.0 0.92 0.91 0.93 0.92 0.92 0.92 0.93 0.93 0.92 0.91 0.93 0.91
3.5 0.93 0.93 0.95 0.89 0.93 0.93 0.95 0.90 0.93 0.92 0.94 0.89
5.0 0.94 0.93 0.95 0.86 0.94 0.93 0.95 0.87 0.94 0.93 0.96 0.87
7.0 0.93 0.93 0.95 0.82 0.93 0.93 0.95 0.83 0.93 0.93 0.95 0.84
10.0 0.94 0.93 0.96 0.79 0.93 0.93 0.96 0.80 0.94 0.93 0.96 0.81



• The trend of all of the T6
1=T

7
1 versus ρj;btc curves is quite similar

and, as an example, Fig. 3 plots the curve related to Rack G 3
with ρj;base ¼ 0.45. The lowest values of the ratio are in corre-
spondence to ρj;btc ¼ 0.5. By increasing the beam-to-column
joint stiffness, the error in predicting T7

1 decreases quickly, and
approximately for ρj;btc ≥ 2.0, it results approximately constant.

• Neglecting the presence of the warping degree of freedom,
i.e., adopting a classical six-DOF FE beam formulation, the fun-
damental period of vibration is significantly underestimated up
to 26% for racks with more flexible joints. By increasing ρj;btc,
the T6

1=T
7
1 ratio also increases, but it is always lower than unity

and its upper limit is 0.94.

Rayleigh’s Method Applied to Racks

The fundamental period of vibration has been predicted through
Rayleigh’s method by using both the set of first-order displacement
obtained from a FE elastic analysis using both a six- and seven-
DOF beam formulation, hereinafter identified as T6−R

1 and T7−R
1 ,

respectively. To allow a direct appraisal of the degree of accuracy
of Rayleigh’s method, Table 1 reports the T6−R

1 =T7
1 and T7−R

1 =T7
1

ratios. Hence
• The fundamental period of vibration is always significantly un-

derestimated by the method, independently of the adopted FE
beam formulation.

• With reference to the use of the traditional beam element for-
mulation, T6−R

1 is practically equal to the one determined
through a six-DOF FE modal analysis and the very limited dif-
ferences are not greater than 2%. This confirms the validity of
the approach when applied to structural systems composed of
doubly symmetric cross section members. Furthermore, T6−R

1

is significantly lower than the fundamental rack period, up to
0.74 times, and by increasing the degree of stiffness of the
joints, the T6−R

1 =T7
1 ratio increases up to 0.93.

• All of the periods that were predicted considering warping DOF
are in general not significantly different from the ones obtained
through a six-DOF beam modal analysis for the lowest values of
ρj;btc. By increasing the degree of stiffness of beam-to-column
joints, the level of accuracy of the prediction increases as well,
and this trend is moderately dependent on the degree of stiffness
of the base plate connections. The use of a seven-DOF beam

element formulation allows slight improvement of the predic-
tion, especially for ρj;btc > 2.0. The T7−R

1 =T7
1 ratio is always

lower than unity but ranges between 0.75 and 0.96.
• A direct comparison between T6−R

1 and T7−R
1 shows that the pre-

dicted period through seven-DOF beam element formulation is
slightly greater than T6−R

1 , owing to the greater lateral deform-
ability associated with the coupling between the flexure and
torsion in the seven-DOF FE beam formulation. The greatest
differences can be noted for the M and G racks. In the case
of ρj;btc ≤ 3.5, the T7−R

1 =T6−R
1 ratio ranges from unity up to

1.09. Otherwise, if the T 3 and T 4 racks are considered, the
influence of the seventh DOF on displacements is more limited
and never greater than 4%.
Fig. 4 presents the domains associated with the T6−R

1 =T7
1 and

T7−R
1 =T7

1 ratios versus the beam-to-column stiffness parameter
ρj;btc. These domains, which were obtained from the values con-
tained in Table 1, are directly overlapped to allow a direct appraisal
of the accuracy obtained through seven- and six-DOF FE beam for-
mulations. In general, the accuracy is improved when warping DOF
is considered, which corresponds to a lower distance from unity.
Furthermore, in correspondence to a ρj;btc of approximately greater
than 2.0, the amplitude of the seven-DOF domain decreases,
whereas for the six-DOF prediction, it remains approximately con-
stant. Fig. 5 presents the cumulated distribution of the T6−R

1 =T7
1 and

T7−R
1 =T7

1 ratios with the value corresponding to the 95% fractile
values. As already discussed, the results are quite different in terms
of accuracy, as it appears from the distribution curves plotted in the
same figure. The use of Rayleigh’s approach does not appear ad-
equate for design purposes, which in many cases are too inaccurate,
despite the fact that 95% of fractile values are quite close to unity
and are approximately equal to 0.93 and 0.95 when warping DOF is
neglected or considered, respectively.

FEMA Method Applied to Racks

Attention has been paid to the prediction of the fundamental period
through the FEMA approach (TF

1 ), and all of the values of the com-
puted ratio TF

1 =T
7
1 are reported in Table 1 and plotted in Fig. 6.

A moderate influence of the base-plate joint stiffness can be noted;
however, it is slightly greater than the one observed for the
Rayleigh’s approach. By increasing ρj;base, the TF

1 =T
7
1 ratio

Fig. 3. Influence of warping on fundamental period of vibration



increases as well, and differences from the limit cases of ρj;base ¼
0.15 and 0.45 are never greater than 6%. The trend of all of these
curves is significantly different from the ones corresponding to
Rayleigh’s method. The TF

1 =T
7
1 ratio increases rapidly, starting

from the lowest values of ρj;btc, remains constant, and then de-
creases moderately for the greatest values of ρj;btc. In correspon-
dence with the lowest values of ρj;btc, the results of the two
prediction methods are similar. By increasing ρj;btc, the inaccuracy
of the FEMA method increases significantly, leading to relevant
errors, which are up to 21% for ρj;btc ¼ 10.0.

Improvements for the Fundamental Period
Prediction

As it appears from the previous sections, the degree of accuracy of
both Rayleigh’s and FEMA’s approaches appears to be not properly

adequate for a practical design purpose when applied to racks. As
an example of a direct comparison between the results associated
with the considered prediction approaches, reference can be made
to Fig. 7, where the T6−R

1 =T7
1, T

7−R
1 =T7

1, and TF
1 =T

7
1 ratios are plot-

ted versus ρj;base. A total of two different racks have been consid-
ered, M 4 with ρj;base ¼ 0.15 and T 4 with ρj;base ¼ 0.45, which
correspond to the cases with the best and the worst T1 prediction,
respectively. A more accurate prediction can be obtained through
the use of T7−R

1 , but the period obtained from the modal analysis
(T7

1) is, however, always underestimated and, as a result, rack de-
sign approaches assume seismic loads greater than the ones asso-
ciated with a correct assessment of the rack flexibility. At the
same time, rack response is more rigid, and hence the influence
of second-order effects is remarkably underestimated without
any evidence that the design is however conservative. This is quite
in contrast to what occurs in the case of static loading. The pre-
dicted critical load multiplier (αcr) is generally underestimated,

Fig. 4. Accuracy of Rayleigh’s method neglecting T6−R
1 =T7

1 or considering T7−R
1 =T7

1 in presence of seventh warping DOF

Fig. 5. Distribution of cumulated relative frequency of T6−R
1 =T7

1 and T7−R
1 =T7

1 for all considered racks



but the use of Horne’s method always leads to a quite conservative
design. It is evident that the discrepancy between the approximated
and numerical value of the fundamental period seems in part at-
tributable to the influence of the effects of the deformations on
very flexible structures, such as pallet racks. As a consequence,
the authors tried to improve the accuracy of both the T1 predic-
tion approaches, considering second-order effects, as discussed
subsequently.

The use of the set of second-order lateral displacements in
Rayleigh’s method should be more appropriate, but a nonnegligible
problem is the solution of the system of the algebraic equation as-
sociated with the structural analysis. The geometric stiffness matrix
is significantly influenced by the values of the internal forces and
especially by the bending moments because of the horizontal
force (Fi) imposed at each load level. Racks are usually unbraced
in the downaisle direction and hence are characterized by a great
flexibility to lateral loads. As a consequence, refined large deflec-
tion analysis FE formulations are required, as Bakker and Pekoz
(2003) clearly stated. It is easy to imagine that for this load

condition, second-order effects are expected to be dominant be-
cause of the very high values of the horizontal loads, out of the
range of practical interest, which hamper the obtainment of the con-
vergence of the solution of the algebraic system associated with the
structural analysis. A reasonable alternative seems to consider, in a
very simplified way, the second-order effects amplifying first-order
displacements through the amplifying factor typically used for the
amplified sway moment method [EN 1993-1-1 (CEN 2005)],
which is distinguished in β6A and β7A if a six- or seven-DOF
set of displacements is used, respectively. In particular, the funda-
mental period should be predicted by taking into account the
second-order effects

TK−RA
1 ¼ ðβKAÞψ · TK−R

1 ¼
�

1

1 − 1
αK−H
cr

�
ψ
· TK−R

1 ð8Þ

where αK−H
cr = elastic critical load multiplier estimated by Horne’s

method; Superscript K indicates the number of DOFs considered in

Fig. 6. Accuracy of FEMA’s method to predict fundamental period of vibration

Fig. 7. Accuracy of considered prediction method for M 4 racks with ρj;btc ¼ 0.15 and T 4 racks with ρj;btc ¼ 0.45



the FE beam element formulation; and ψ = suitable numerical
coefficient.

The first attempt was done by assuming ψ ¼ 0.50, which cor-
responds to the direct amplification of lateral displacement δ in
Eq. (5), but the predicted values were significantly greater than
the fundamental period obtained from a seven-DOF FE modal
analysis, T7

1, up to 25%. As a consequence, a sensitivity analysis
has been carried out, and ψ ¼ 0.25 has been identified as the best
value to be used to obtain a quite satisfactory degree of accuracy. To
allow an appraisal of the degree of accuracy of Rayleigh’s method,
both the ratios T7−RA

1 =T7
1 and T6−RA

1 =T7
1 have been evaluated and

presented in Table 2. Hence
• The T6−RA

1 and T7−RA
1 values are greater than the corresponding

T6−R
1 and T7−R

1 ones, as expected, where
ffiffiffiffiffiffiffiffi
βKA0.25

p
is greater than

unity. It results that T7−RA
1 is slightly greater than T6−RA

1 (up to
6%), and the degree of accuracy is significantly improved by the
proposed amplification factor.

• With reference to the six-DOF formulation, the fundamental
period is in general underestimated, primarily with reference
to the greatest values of ρj;btc (up to 10% for M and
G racks and 5% for T racks). In a very limited number of cases,
i.e., only for M 4 with ρj;btc ¼ 0.5, T6−RA

1 is moderately greater
than T7

1 by up to 4%.
• Considering the amplified period obtained through the

seven-DOF set of displacements, the errors decrease signifi-
cantly. Generally, T7−RA

1 is lower than T7
1, and differences

are generally not greater than 5%. In a very limited number
of cases, the fundamental period is overestimated and the

Table 2. Approximation of the Fundamental Period of Vibration T1, Including Second-Order Effects in Rayleigh’s Method (T6−RA
1 =T7

1 and T7−RA
1 =T7

1) and
FEMA Approach (TFA

1 =T7
1)

Racks ρj;btc

ρj;base ¼ 0.15 ρj;base ¼ 0.30 ρj;base ¼ 0.45

T6−RA
1 =T7

1 T7−RA
1 =T7

1 TFA
1 =T7

1 T6−RA
1 =T7

1 T7−RA
1 =T7

1 TFA
1 =T7

1 T6−RA
1 =T7

1 T7−RA
1 =T7

1 TFA
1 =T7

1

M 4 0.5 1.04 1.06 0.90 1.02 1.04 0.85 1.00 1.02 0.82
1.0 0.97 1.00 0.95 0.97 0.99 0.93 0.98 1.01 0.93
1.5 0.95 0.98 0.94 0.97 1.00 0.94 0.95 0.99 0.92
2.0 0.95 0.99 0.92 0.94 0.98 0.91 0.95 0.99 0.92
3.5 0.93 0.98 0.85 0.93 0.98 0.86 0.94 0.99 0.87
5.0 0.93 0.99 0.81 0.93 0.98 0.83 0.93 0.99 0.83
7.0 0.93 0.99 0.77 0.92 0.98 0.78 0.92 0.99 0.79
10.0 0.91 0.99 0.72 0.92 0.99 0.75 0.90 0.98 0.74

M 5 0.5 0.99 1.00 0.88 0.98 0.99 0.83 0.97 0.98 0.80
1.0 0.97 0.99 0.93 0.96 0.98 0.90 0.97 0.99 0.90
1.5 0.96 0.99 0.93 0.95 0.98 0.91 0.96 0.99 0.91
2.0 0.95 0.99 0.92 0.94 0.98 0.90 0.95 0.99 0.90
3.5 0.94 0.99 0.87 0.94 1.00 0.87 0.93 0.99 0.86
5.0 0.93 0.99 0.83 0.92 0.99 0.83 0.93 1.00 0.84
7.0 0.92 0.99 0.78 0.91 0.99 0.79 0.91 0.99 0.80
10.0 0.91 0.99 0.75 0.90 0.99 0.76 0.90 0.99 0.76

G 3 0.5 0.96 0.97 0.93 0.97 0.97 0.89 0.98 0.98 0.87
1.0 0.97 0.98 1.04 0.97 0.98 1.00 0.98 0.99 0.98
1.5 0.96 0.98 1.05 0.96 0.98 1.02 0.96 0.98 1.01
2.0 0.95 0.98 1.04 0.95 0.97 1.02 0.95 0.98 1.01
3.5 0.94 0.98 1.00 0.94 0.99 1.01 0.95 0.99 1.00
5.0 0.93 0.98 0.97 0.92 0.97 0.97 0.94 0.99 0.98
7.0 0.93 0.99 0.93 0.93 0.99 0.94 0.93 0.98 0.95
10.0 0.92 0.98 0.88 0.91 0.98 0.90 0.92 0.99 0.91

G 4 0.5 0.96 0.99 0.86 0.92 0.94 0.77 0.96 0.99 0.78
1.0 0.94 0.98 0.95 0.96 0.98 0.92 0.97 0.99 0.91
1.5 0.93 0.97 0.96 0.96 0.99 0.96 0.95 0.96 0.93
2.0 0.93 0.98 0.97 0.94 0.97 0.95 0.94 0.96 0.95
3.5 0.92 0.98 0.94 0.93 0.99 0.95 0.94 0.99 0.95
5.0 0.92 0.99 0.93 0.92 0.98 0.92 0.92 0.98 0.92
7.0 0.90 0.98 0.89 0.91 0.98 0.90 0.91 0.99 0.90
10.0 0.90 0.99 0.86 0.91 0.99 0.88 0.91 0.99 0.88

T 3 0.5 0.96 0.98 0.99 0.97 0.99 0.96 0.96 0.98 0.92
1.0 0.97 0.98 1.04 0.97 0.99 1.02 0.96 0.98 0.99
1.5 0.97 0.99 1.03 0.97 0.99 1.02 0.96 0.97 1.00
2.0 0.96 0.99 1.01 0.96 0.98 1.00 0.96 0.99 1.00
3.5 0.95 0.98 0.93 0.95 0.99 0.95 0.95 0.98 0.95
5.0 0.96 1.00 0.89 0.95 0.98 0.90 0.96 0.99 0.92
7.0 0.95 0.99 0.84 0.95 0.99 0.86 0.95 0.98 0.87
10.0 0.95 0.99 0.80 0.95 0.99 0.82 0.95 0.99 0.83

T 4 0.5 0.98 1.00 0.94 0.97 0.99 0.89 0.96 0.98 0.85
1.0 0.97 0.99 0.99 0.96 0.98 0.96 0.97 0.99 0.95
1.5 0.96 0.98 0.98 0.97 0.99 0.97 0.96 0.98 0.95
2.0 0.97 0.99 0.97 0.98 0.99 0.97 0.96 0.98 0.96
3.5 0.97 0.99 0.93 0.97 0.99 0.94 0.96 0.98 0.92
5.0 0.97 0.99 0.89 0.96 0.99 0.90 0.97 0.99 0.90
7.0 0.96 0.99 0.85 0.96 0.98 0.86 0.96 0.99 0.86
10.0 0.96 0.99 0.81 0.95 0.99 0.82 0.95 0.98 0.83



maximum error is 6% for the M 4 rack, with ρj;btc ¼ 0.5
and ρj;base ¼ 0.5.
As a summary of the results associated with Rayleigh’s equa-

tion, reference can be made to Fig. 8, which is related to the cu-
mulated distribution of the error in the period prediction, in
particular, the period obtained through the use of the set of displace-
ments associated with both six and seven DOFs (T6−R

1 and T7−R
1 )

already plotted in Fig. 5, and can be directly compared with T6−RA
1

and T7−RA
1 . The nonnegligible increment of the degree of accuracy

associated with the use of the multiplier
ffiffiffiffiffiffiffi
β6A0.25

p
or

ffiffiffiffiffiffiffi
β7A0.25

p
can be

directly appraised by the nonnegligible translation of the amplified
distribution toward unity and the increase of the associated slope.
Furthermore, the 95% fractile values (equal to 0.978 and 0.996
for six and seven DOFs, respectively) also confirm that the proposal
to slightly modify Rayleigh’s method seem to be adequate for
design purposes.

Similarly to what was proposed to account for the actual set of
displacements on flexible racks for Rayleigh’s method, for the
FEMA approach, an improvement is also required to increase
the accuracy in the T1 prediction. Owing to the great flexibility
of the rack frames in the downaisle loads, second-order effects
have already been introduced in the discussion of the method
by Filiatrault et al. (2006) to evaluate the top lateral displacement
of the racks. In particular, a second-order amplification factor βα
has been proposed, with reference to the deformed rack under the
gravity loads caused by the pallet weights. The expression is

βα ¼
PNLL

i¼1 Wihi
�
Sj;btcþKb

Sj;btcKb

�
h
Nbtc þ Nbase

�
Sj;baseKu

Sj;btcKb

��
Sj;btcþKb

Sj;baseþKu

�i ð9aÞ

In accordance with the symbols previously introduced that re-
lated to the current study, the multiplier βα can be expressed as

βα ¼
hPNLL

i¼1 Wihi
i

L
EIb

�
ρj;btcþ12

6ρj;btc

�
h
Nbtc þ Nbase

ρj;base
ρj;btc

10IuLb
IbhLL

�
ρj;btcþ12

15ρj;baseþ2

�i ð9bÞ

The authors’ proposal is to also include the term βα in the ex-
pression of the fundamental period of vibration by substituting the
amplified value βαδi with the value of the generic displacement δi

in Eq. (5). The modified fundamental period results, as a conse-
quence, in

TFA
1 ¼ TF

1 ·
ffiffiffiffiffiffi
βα

p
ð10Þ

Table 2 presents the TFA
1 =T7

1 ratio. The values of TFA
1 are sig-

nificantly greater than the corresponding TF
1 , and this appears to be

practically independent from the degree of stiffness of the base col-
umn. The trend of the TFA

1 − ρj;btc relationships is similar to the
TF
1 − ρj;btc ones previously described, but it is shifted up

(TFA
1 > TF

1 ); hence, the errors are significantly reduced, especially
for lower values of ρj;btc. The use of the improved approach leads to
overestimation of the period in a very limited number of cases, but
the error is never greater than 5%, confirming its efficiency for rou-
tine rack design. In Figs. 9 and 10, the distribution of the relative
and cumulated frequency, respectively, of both the TFA

1 =T7
1 and

TF
1 =T

7
1 ratios is proposed for all of the considered cases. A direct

comparison between the relative frequency curves shows that in
correspondence with the most important concentration of the
TF
1 =T

7
1 values, i.e., in the range between 0.82 and 0.95, the values

of the relative frequency associated with the TFA
1 =T7

1 ratio are now
more reduced. Otherwise, the number of occurrences increases re-
markably when TFA

1 =T7
1 tends to unity. Influence of the second-

order effects and efficiency of the proposed improvements are
also confirmed by the nonnegligible translation of the associated
cumulated relative frequency distribution curve toward unity.
Moreover, the 95% fractile value is significantly increased from
0.96 to 1.02.

Concluding Remarks

A two-part paper on steel storage pallet racks summarizes the re-
search outcomes to evaluate the level of accuracy of the simplified
approaches that were developed for traditional steel frames com-
posed of doubly symmetric cross section hot-rolled members.
The uprights of the racks present the key feature to have the cross
section with only one axis of symmetry, and their design ap-
proaches do not appear to appropriately consider all of the effects
associated with the eccentricity between the shear center and cross
section centroid.

In the companion paper (Bernuzzi et al. 2015a), attention was
focused on the static design, and prediction of the elastic critical

Fig. 8. Distribution of cumulated relative frequency of T6−R
1 =T7

1, T
7−R
1 =T7

1, T
6−RA
1 =T7

1, and T7−RA
1 =T7

1 for all considered racks



load multiplier was discussed with reference to a wide range of
cases of practical interest for the routine design of medium-rise pal-
let racks. These same cases have been considered in the present
paper, which deals with seismic design. The fundamental period
of vibration obtained from a modal analysis using a seven-DOF
FE beam formulation (T7

1) has been predicted through Rayleigh’s
and FEMA approaches. The first formulation has been applied by
using the set of horizontal displacements arising from a first-order
elastic analysis in the case of both six- and seven-DOF FE beam
formulations. Despite a slightly greater degree of accuracy guaran-
teed by considering the presence of Wagner’s constants and shear
center eccentricity in the stiffness matrices in the analysis, the fun-
damental period of vibration is significantly underestimated if
warping is considered, which leads to the assumption of a more
rigid rack behavior and, as a consequence, underestimation of lat-
eral deformability and second-order effects. Conversely, the au-
thors’ suggestion is to use the set of second-order displacements
obtained through a suitable amplifying factor. This leads to a more
accurate prediction, ranging from the period between 0.90T7

1 and

1.04T7
1 when warping is neglected and between 0.95T

7
1 and 1.05T

7
1

when warping is considered. Furthermore, the alternative use of the
direct approach proposed by FEMA has been discussed, and its
results indicate a nonsatisfactory degree of accuracy for rack design
purposes. The authors propose to consider second-order effects
through a suitable coefficient, βα, depending on frame geometry
and rack components, obtaining, in this case, an important reduc-
tion of errors in the prediction of the fundamental period of vibra-
tion. Finally, research outcomes show that both the improved
proposed approaches seem very promising for routine rack design
in the absence of more refined FE analysis packages, but further
numerical cases are required to better define the correction factors
to be recommended for practical design.

Appendix. Benchmark for the Simplified Approaches

This Appendix is a benchmark for the application of the simplified
approaches presented in this paper and the companion paper

Fig. 10. Distribution of cumulated relative frequency of TFA
1 =T7

1 and TF
1 =T

7
1 for all considered racks

Fig. 9. Distribution of relative frequency of TFA
1 =T7

1 and TF
1 =T

7
1 for all considered racks



(Bernuzzi et al. 2015a). Because of the impossibility of directly
presenting all of the data related to the commercial racks considered
in the numerical analysis, reference can be made to the following
contents that concern the routine application of the considered
methods.

The two-bay and four-load level rack in Fig. 11 has been con-
sidered. Pallet beams in Fig. 12 are assumed to be connected to the
uprights through a semirigid connection having a rotational stiff-
ness Sj;btc of 400 kNm=rad. Base plate connections have been as-
sumed as a semirigid joint, with a rotational stiffness Sj;base of
800 kNm=rad. Table 3 reports the geometry of the cross sections.

All of the components have been assumed to belong to Class 3
in accordance with the European criteria for cross section classifi-
cation [EN 1993-1-1 (CEN 2005)]. Young’s modulus E has been
assumed to be equal to 210,000 MPa, and Poisson’s coefficient ν is
equal to 0.3.

Procedure for Static Design

The sole case of fully loaded racks was considered, with pallet units
interested by a uniform load on pallet beams. The value of the ap-
plied uniform load is 4.00 kN=m. The overall frame imperfections
equal to 0.0033 rad in terms of out of plumb (ϕ) of the uprights in
both the cross-aisle and downaisle directions have been considered

contemporaneously and were simulated through horizontal forces
concentrated on each floor level.

Parameter Value

Distributed load (q) 4.00 kN=m
Lb 2.78 m
hLL 1.80 m
ϕ 0.0033
NLL 4

The critical load multiplier αcr obtained by buckling analysis
with Śiva software is

α6
cr ¼ 6.27

α7
cr ¼ 5.78

where Superscripts 6 and 7 are related to the six- and seven-DOF
FE beam formulation.

The displacements obtained by first-order analysis with Śiva
software are

Node δ6 (mm) δ7 (mm) δ6=δ7

C1 0.899 0.900 1.00
C2 1.976 2.115 0.93
C3 2.762 3.006 0.92
C4 3.147 3.529 0.89

The critical load multiplier αcr obtained by Horne’s method is

α6−H
cr ¼ 5.58

α7−H
cr ¼ 4.94

The final ratios are

Ratio Value

α6
cr=α7

cr 1.085
α6−H
cr =α7

cr 0.965
α7−H
cr =α7

cr 0.854

Procedure for Seismic Design

The sole case of fully loaded racks was considered with pallet units
interested by a uniform load on pallet beams. The value of the ap-
plied uniform load is 4.00 kN=m, like in the previous section. The
overall frame imperfections, which are equal to 0.0033 rad in terms

Fig. 11. Geometry of considered rack; all dimensions are in
millimeters

Fig. 12. Particular of Node A: top and bottom of external uprights



of out of plumb (ϕ) of the uprights in both the cross-aisle and
downaisle directions, have been considered contemporaneously
and simulated through horizontal forces concentrated on each
floor level. The fundamental period obtained by analysis with Śiva
software in Fig. 13 is

T6
1 ¼ 1.70

T7
1 ¼ 1.96

For the use of Rayleigh’s method, at each level floor, a horizon-
tal force has been applied, which is obtained as

FR
i ¼ q · 5.56 · 2 ¼ 44.48 kN ð11Þ

Rayleigh’s lateral displacements obtained with Śiva software are

Node δ6 (mm) δ7 (mm) δ6=δ7

C1 247.549 247.501 1.00
C2 549.677 587.771 0.94
C3 765.481 837.675 0.91
C4 881.611 975.943 0.90

For FEMA’s procedure, the principal data are reported as

Parameter Value

Nbtc 32
Nbase 6
Ib 1.639 × 10−6 m4

Iu 5.0985 × 10−7 m4

ϕ 0.0033
NLL 4
Kb [Eq. (6a)] 743.17 kNm
Ku [Eq. (6b)] 262.75 kNm

The fundamental period obtained by Rayleigh’s lateral displace-
ments [Eq. (4)] and with the FEMA procedure [Eq. (5)] is

Period Value

T6−R
1 1.69

T7−R
1 1.77

TF
1 1.49

The amplification of the fundamental period [Eq. (8)] is

Period Value

T6−RA
1 1.76

T7−RA
1 1.86

TFA
1 1.58

The final ratios are

Ratio Value

T6
1=T

7
1 0.87

T6−R
1 =T7

1 0.86
T7−R
1 =T7

1 0.90
TF
1 =T

7
1 0.76

T6−RA
1 =T7

1 0.90
T7−RA
1 =T7

1 0.95
TFA
1 =T7

1 0.81

Notation

The following symbols are used in this paper:
A = eigenvector matrix, cross-sectional area;
B = bimoment;
d = interstory drift;
E = Young’s modulus;
F = shear force, seismic lateral force;
G = shear modulus;
g = acceleration of gravity;
H = height;
h = height;
I = second moment of area;
K = flexural stiffness, stiffness matrix;
L = length;
M = moment, mass matrix;

min = minimum;
N = axial force;
P = gravity load;
q = distributed uniform load;
S = beam-to-column joint stiffness, base-plate joint stiffness;

Fig. 13. Example of deformed shape associated with fundamental
period of vibration (T1)

Table 3. Cross Section Geometry of the Rack Components

Parameter Upright Pallet beam Lacing

Height (mm) 75 166 30
Width (mm) 74.5 40 30
Lip (mm) 32.5 — —
Thickness (mm) 2.0 1.3 3.0
A (mm2) 563 527 299
Iy (mm4) 489,296 172,381 34,645
Ix (mm4) 509,851 1,639,699 34,645
It (mm4) 771.53 525,172 61,523
Iw (mm6) 1,509,751,119 178,028,881 7,392
xO (mm) 80.3 0.00 0.00
αz 8,700.5 — —
αx 0.00 — —
αy 168.31 — —
αw −0.261 — —



T = period of vibration;
V = seismic story shear;
W = vertical load;
x = symmetry axis of cross section, distance between centroid

and shear center;
y = nonsymmetry axis of cross section;
α = load multiplier, Wagner’s coefficients;
β = multiplier for second-order effects;
δ = lateral displacement;
θ = interstory drift sensitive coefficient;
ρ = adimensional stiffness;
ϕ = out of plumb; and
ω = dynamic eigenvalue, sectorial area.

Subscripts

1 = first;
b = beam;

base = base-plate connection;
btc = beam-to-column connection;
cr = critical;
Ed = design value;
i = i-esim;
j = initial node of beam element, joint;
k = final node of beam element;
L = lower;

LL = load level;
max = maximum;
O = position of the centroid;
r = relative;
t = Saint Venant’s torsion;

tot = total;
U = upper;
u = upright;
w = warping;
x = symmetry axis of cross section;
y = nonsymmetry axis of cross section;
z = longitudinal axis of beam element; and
α = load multiplier.

Superscripts

A = amplification;
E = elastic stiffness matrix;
F = FEMA method;
G = geometric stiffness matrix;
H = Horne’s method;
K = index used to identify six- or seven-DOF FE beam

formulation;
R = Rayleigh’s method;
ψ = suitable number;
6 = analysis with beam element formulation having six DOFs

per node; and
7 = analysis with beam element formulation having seven

DOFs per node.
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