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Abstract

This paper addresses the relative position tracking and attitude synchronization control problem for space-
craft formation flying (SFF). Based on the derived relative coupled six-degree-of-freedom dynamics, a robust
adaptive finite-time fast terminal sliding mode controller is proposed to achieve the desired formation in
the presence of model uncertainties and external disturbances. It is shown that the designed controller is
effective for changing information exchange topology making it robust to node failure. Then, the artificial
potential function method is employed to generate collision avoidance schemes to modify the controller such
that inter-agent collision avoidance can be ensured during the formation maneuver, which is critical for prac-
tical missions. The stability of the overall closed-loop system is proved by using Lyapunov theory. Finally,
numerical examples for a given SFF scenario are presented to illustrate the performance of the controller.

Keywords: Relative position tracking and attitude synchronization; Spacecraft formation flying;
Finite-time fast terminal sliding mode controller; Changing topology; Collision avoidance.

1. Introduction

Spacecraft formation flying (SFF) is a technology using multiple simpler, less-expensive, and cooperative
spacecraft that can realize the functionality of large complex spacecraft [1, 2]. Furthermore, they are
more flexible, responsive and robust as their formation and numbers during a mission can be adjusted [3].
These benefits could significantly enhance the possibility of new mission applications such as autonomous
rendezvous and docking, interferometry, deep space applications and wide aperture Earth monitoring [4, 5].
However, these applications also require high precision control. To satisfy the control requirement of future
missions, the translational and rotational motion should be considered in a coupled six-degree-of-freedom
(6-DOF) framework.

For a practical space mission, a spacecraft tracks its desired states under external disturbances, and
mass and inertia uncertainties due to fuel consumption and moving parts [6]. The existence of such uncer-
tainties makes the dynamics far more complex with time-varying parameters and highly nonlinear terms[7].
Advanced robust nonlinear control approaches have been applied to improve the tracking performance of
a class of complex nonlinear systems with uncertainties such as finite frequency H∞ control for under-
actuated quadrotors in [8], adaptive fuzzy tracking control for nonlinear systems in [9, 10], anti-saturation
robust dynamic surface control for hypersonic vehicles in [11], and also spacecraft tracking control. De-
veloping tracking controls for spacecraft with coupled orbit-attitude dynamics has attracted considerable
interest in the literature, and several robust nonlinear control theories have been developed in response, such
as optimal open-loop formation reconfiguration control [12], adaptive sliding mode control [13, 14], back-
stepping control [15], and proportion-derivative (PD) control [16]. One example of a class of robust controls,

∗Corresponding author
Email addresses: zhangjianqiao@hit.edu.cn (Jianqiao Zhang), yed@hit.edu.cn (Dong Ye),

jamesdouglas.biggs@polimi.it (James D. Biggs), sunzhaowei@hit.edu.cn ( Zhaowei Sun)

Preprint submitted to Advances in Space Research March 20, 2019



due to their simplicity of implementation, fast response, and good transient performance, are sliding model
controls [17], which have been applied effectively in 6-DOF SFF control in [1, 18]. In [18], a sliding mode
controller was designed such that each follower would track its desired states with respect to a virtual leader
to achieve the desired formation. Although the controller is robust against disturbances and feasible for SFF
configuration control, convergence to the desired formation is achieved in infinite time. For real-time space
missions, it is critical to guarantee convergence in a realistic finite-time [19]. Moreover, finite-time stability
yields a better disturbance rejection than asymptotic or exponential stability[20]. In [1], a terminal sliding
mode controller was proposed to guarantee the tracking errors of the follower converge to zero in finite-time.
However, this terminal sliding mode control can only provide a fast local convergence. In recent years, fast
terminal sliding mode controller (FTSMC) has been developed, for it maintains fast convergence, in finite-
time, globally. It has been applied successfully in SFF attitude coordination control [4], spacecraft attitude
fault-tolerant control [19], spacecraft attitude tracking control [21], SFF orbit synchronization control [22],
6-DOF spacecraft tracking control [13, 23], and spacecraft hovering control over an asteroid [24].

In the existing literature, most of the 6-DOF SFF control designs assume a leader-follower architecture,
such as [1, 14]. This type of control is centralized, whereby increasing the number of followers, the leader
controller structure becomes more complicated, and the loss of leader will result in mission failure [25]. In
contrast, a decentralized controller is generated according to each follower’s desired states, which is superior
in terms of robustness and reliability [26]. The decentralized virtual structure method, where each follower’s
tracking errors are measured with respect to a virtual leader, has been used to solve the control problem of
SFF involving a mass of spacecraft in [5, 18, 25]. For a 6-DOF SFF, besides the requirement of absolute
attitude and position tracking, it also requires the followers to maintain relative attitudes and an accurate
geometric configuration. However, information exchange among followers is neglected in the control design
in [5]. To overcome this modeling deficiency, in [18], the 6-DOF dynamics were developed in a common
reference frame allowing information exchange among agents, and the decentralized control problem for SFF
was investigated under undirected fixed topology. On the assumption of fixed topology, many results have
been obtained to solve the decentralized relative attitude/position control problem for SFF. For example,
Zou et al. [4, 26] proposed decentralized attitude controllers to guarantee the finite time stability of the SFF
under undirected topology. In [27], a relative position tracking control problem for SFF, subject to directed
communication topology, was addressed using sliding mode control. However, all of these decentralized
controls assume a fixed topology apriori. In practice, robustness to a time-varying topology is critical for
flexibility, adaptive mission scenarios and member fault.

In this paper, the relative coupled dynamics of the SFF system are developed in a compact Euler-
Lagrange formulation, where information exchange among followers in a common frame is permitted. Based
on the derived model, a fast terminal sliding surface is constructed, and by choosing parameters properly the
singularity in [21] can be avoided. A decentralized integrated robust adaptive controller is designed via sliding
mode control, adaptive control, and the virtual structure technique to guarantee the finite-time stability of
the closed-loop system. The proposed controller is shown to be robust against external disturbances. In
addition, system parameters can be estimated online by using the adaptive terms. Most importantly, the
controller guarantees closed-loop finite-time stability independently of the type of communication topologies.

In addition to developing a robust, flexible, decentralized control with globally fast convergence, it is
imperative that collision avoidance between agents during a formation maneuver should be built into the
control law [28]. To solve the collision avoidance problem and maintain some form of connectivity among
agents, an artificial potential function method is usually adopted for multi-agents systems [29]. This method
assumes that the agents are immersed in a virtual potential field, and when they are too close, the collision
avoidance acceleration generated from the negative gradient of the potential field will work as a repulsive
force to prevent the agents from colliding with each other such as, collision avoidance control for Lagrangian
systems in [28] and [30], decentralized relative position control with collision avoidance for SFF in [31, 32],
and also decentralized control for 6-DOF SFF in [5]. More specifically, a decentralized controller with
collision avoidance was proposed in [5]. However, the relative coupled dynamics were developed in the
body-fixed frame of each follower, and the main problem with this formulation is that the control does not
consider the local information exchange among the followers. In addition, the control objective was only
achieved in infinite time. In this paper, for every SFF member, considering the relative position information
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of other spacecraft within its communication region, the artificial potential function is used to modify the
finite-time controller such that each agent’s safety during the formation maneuver can be guaranteed. The
closed-loop system is shown to remain finite-time stable after introducing the collision avoidance terms.

In summary, the main contribution of this paper is to enhance 6-DOF controls that guarantee closed-loop
stability in finite-time in the presence of disturbances to include robustness to time-varying communication
topologies and collision avoidance. The paper is organized as follows: In Section 2, mathematical prelim-
inaries and the dynamical model of the relative formation flying system are presented, and the problem is
formulated in a precise context. In Section 3, the main results are given. A robust adaptive finite-time
controller is developed and the stability of the closed-loop system is proved. This result is extended to the
case where the collision avoidance schemes are included. Simulations are conducted in Section 4 to show
the effectiveness of the proposed controllers. Finally, Section 5 concludes this paper.

2. Preliminaries and problem formulation

2.1. Notation

For the convenience of expression, we define the following notations. In ∈ Rn×n represents a n-by-n
identity matrix, and 0n×m ∈ Rn×m denotes a n-by-m null matrix. And for a positive definite matrix A,
we denote λmax(A) and λmin(A) as its maximum and minimum eigenvalues, respectively. For a matrix A
and a vector x, we use Ai or xi (i = 1, 2, . . . , N) to represent the control parameters or the system states
of spacecraft i and a subscript l is used to represent the parameters of the virtual leader, where N is the
number of the followers within the formation. Given a vector xi = [x1i , x

2
i , . . . , x

m
i ]T ∈ Rm and a scalar

α, we define sigα(xi) = [ |x1i |
α

sgn(x1i ) . . . |xmi |
α

sgn(xmi ) ]T, where sgn(·) is the standard sign function.

‖xi‖ represents the Euclidean norm or its induced norm. Moreover, for a vector xi = [x1i , x
2
i , x

3
i ]

T ∈ R3,
S(xi) stands for its cross-product operator of a skew-symmetric matrix, which is given by

S(xi) =

 0 −x3i x2i
x3i 0 −x1i
−x2i x1i 0

 (1)

2.2. Mathematical model of the SFF system

In this study, we consider a SFF system including a virtual leader and a group of N rigid followers.
It is desired to control the followers’ translational and rotational motions to specified states including pre-
determined position configurations and synchronized attitudes with respect to the virtual leader, whose
trajectory is a circle orbit computed offline without considering external disturbances and is known to all
the formation members. Moreover, the relative states between each two followers should be guaranteed. In
this subsection, based on the dynamics of a single rigid spacecraft, the relative translational and rotational
dynamics of the SFF system will be derived.

In order to describe the dynamic models, three necessary coordinate frames are defined first, as shown
in Fig.1: (1) The standard Earth centered inertial (ECI) frame FI(xI , yI , zI). (2) Body-fixed frame
Fb(xb, yb, zb). Moreover, we use Fbl to represent the body-fixed frame of the virtual leader and Fbi

to represent the body-fixed frame of the ith follower. (3) Local-vertical-local-horizontal (LVLH) frame
Fo(xo, yo, zo)[27]. This frame is a right-handed orthogonal system, whose origin is located in the mass
center of the virtual leader and is used to investigate the relative motion of the SFF system. x axis points
in the radial direction from the origin of the inertia frame to the leader, z axis is normal to the orbital plane
of the leader, and y axis is found by using the right-hand rule.
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Fig. 1. Definition of the coordinate reference frames.

2.2.1. Kinematics and dynamics of a single spacecraft

Let C ∈ SO(3) be the rotation matrix from Fb to FI , and R ∈ R3 be the position coordinates from
the origin of the ECI frame to the mass center of the spacecraft expressed in FI , where C is an element
of SO(3), and SO(3) can be denoted by SO(3) = {C ∈ R3×3 : CTC = I3,det(C) = 1}[33]. Then the
kinematic models of a rigid spacecraft can be described by the following equations [13]{

Ċ = CS(ω)

Ṙ = Cv
(2)

where ω and v are the angular velocity and translational velocity expressed in Fb, respectively.
Let J and m be the moment of inertia matrix and the mass of the spacecraft respectively, and then the

6-DOF dynamics of the spacecraft as given in [5] can be described as:{
Jω̇ + S(ω)Jω = Mg + τ + dτ

mv̇ +mS(ω)v = fg + u+ df
(3)

These equations are established in Fb, τ and u are the control torque and force, dτ and df are the
disturbance torque and force, and Mg and fg are gravity gradient moment and force, respectively. The
translational dynamics developed here considers the Earth’s oblateness to the level of J2, the second zonal
harmonics, and then the specific expressions of Mg and fg are given by [16]:

Mg = 3
(

µ
‖R‖5

)(
S(CTR)J(CTR)

)
fg = m(ag + aJ2), ag = − µCT

‖R‖3R,

aJ2 = −3J2µR
2
eC

T

2‖R‖5
(
D − 5R2

z

‖R‖2
I3

)
R

(4)

where µ = 398600.44km3/s2 is Earth’s gravitational constant, J2 = 1.08263× 10−3, Re = 6378.14km is the
Earth’s equatorial radius, D = diag(1, 1, 3), and Rz is the z-axis component of R.

2.2.2. Relative 6-DOF dynamics of the SFF system

In order to make information exchange among followers come true, the relative 6-DOF dynamics of the
SFF system developed herein should promise that the relative attitude errors are independent of coordinate
frames and the relative orbital model should be established in a common reference orbit frame. Therefore,
the MRPs are used herein to represent the relative rotational dynamics, which turns out to be minimal
attitude representation, and the relative translational dynamics are established in LVLH, whose center is in
accordance with the virtual leader.
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It should be pointed out that the virtual leader running on a particular orbit is not a real spacecraft,
whose position and attitude are just used to describe the relative dynamics of the agents in formation.
Thus, for the convenience of the following derivation and the implementation of the experimental tests, it is
assumed that the virtual leader’s attitude Cl (the rotation matrix from Fbl to FI) is the reference attitude
of each follower, and its body fixed frame Fbl coincides perfectly with the LVLH frame Fo.

Let Ci be the rotation matrix from Fbi to FI . Then the relative MRPs attitude σei and relative angular
velocity error ωei of Fbi with respect to Fbl expressed in Fbi as given in [34] are

σei =
(1− σT

l σl)σi − (1− σT
i σi)σl − 2S(σl)σi

1 + σT
l σlσ

T
i σi + 2σT

l σi
(5)

ωei = ωi −Ceiωl (6)

where Cei = CT
i Cl is the rotational matrix from Fbl to Fbi, and σl = nl tan(φl/4) and σi = ni tan(φi/4)

are the MRPs of Fbl and Fbi with respect to FI , respectively. n is the Euler principal axis and φ is
the Euler rotation angle, which can be calculated by the rotational matrix C [35]. The error rotational
kinematics can be expressed by

σ̇ei = G(σei)ωei (7)

where G(σei) = 1
4 [(1− σT

eiσei)I3 + 2S(σei) + 2σeiσ
T
ei], and satisfies [36]:

GT(σ)G(σ) = (
1 + σTσ

4
)2I3 (8)

We can calculate σei based on Eqs.(2) and (5). Then motivated by [36], taking the derivative of Eq.(7), and
then substituting Eqs.(3) and (6) into the result, we can obtain the second-order derivatives of σei, which
allows us to describe the relative rotational dynamics by a Lagrange-like formulation as

J∗i σ̈ei +Haiσ̇ei + Θai = PT
i τi + PT

i Mgi + PT
i dτi (9)

where Pi = G−1(σei), J
∗
i = PT

i JiPi, Hai = −J∗i Ġ(σei)Pi − PT
i

(
S(JiPiσ̇ei) − S(Ceiωl)Ji

)
Pi, Θai =

PT
i

(
Ji(S(ωei)Ceiωl +Ceiω̇l) + S(Ceiωl)Ji(Ceiωl)

)
.

Furthermore, for on-orbit spacecraft, which suffers disturbances, fuel consuming and environmental influ-
ences, it is impossible for the inertia tensor and the mass of the spacecraft to be known exactly. Consequently,
we use J1i = Ji+∆Ji to represent the actual inertia of a follower as in [17], where ∆Ji is the uncertain part
of the inertia. By regarding the inertia uncertainties and the external disturbances as the total disturbances
of the follower, we can rewrite Eq.(9) as

J∗i σ̈ei +Haiσ̇ei + Θai = PT
i τi + ∆dτi (10)

where ∆dτi = −PT
i

(
∆JiPiσ̈ei − ∆JiPiĠ(σei)Piσ̇ei − S(∆JiPiσ̇ei)Piσ̇ei + S(Ceiωl)∆JiPiσ̇ei −Mgi −

dτi + ∆Ji
(
S(ωei)Ceiωl +Ceiω̇l) + S(Ceiωl)∆Ji(Ceiωl)

)
.

LetRi andRl denote the position vector of follower i and the virtual leader expressed in FI , respectively.
To establish the relative translational dynamics, we define the relative position from the leader to ith follower
as ρi = CT

l (Ri−Rl) = [xi, yi, zi]
T and their desired relative position as ρdi = CT

l (Rd
i−Rl), both of which are

represented in Fo. Then the relative position tracking error of ith follower can be denoted by ρ̃i = ρi−ρdi ,
and ˙̃ρi = ρ̇i− ρ̇di is its velocity. Then motivated by [27] and from Eq.(3), the relative orbital motion can be
obtained as

mi
¨̃ρi +Hbi

˙̃ρi + Θbi = CT
l Ciui +CT

l Cidfi (11)
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where Hbi = miS(`), ` = [0, 0, 2θ̇]T, Θbi = miaΘbi
, aΘbi

= aθi+Hbiρ̇
d
i + ρ̈di +aJ2l−S(ωl)vl−CT

l CiaJ2i+
CT
l CiS(ωi)vi, and

aθi =

 −θ̈yi − θ̇
2xi + µ(xi+‖Rl‖)

‖Rl+Clρi‖3
− µ
‖Rl‖2

θ̈xi − θ̇2yi + µyi
‖Rl+Clρi‖3

µzi
‖Rl+Clρi‖3

 (12)

where θ is the true anomaly of the leader, which satisfies ‖Rl‖ =
al(1−e2l )
1+el cos θ

, al and el are the semi-major

axis and orbital eccentricity of the leader, respectively. Let nl =
√
µ/a3l denote the mean orbital angular

velocity, and then θ̇, θ̈ can be obtained by
θ̇ =

nl(1 + el cos θ)2

(1− e2l )
3
2

θ̈ =
−2n2l (1 + el cos θ)3el sin θ

(1− e2l )3

(13)

Denote the mass uncertainty part be ∆mi, and then similar as Eq.(10), we can rewrite the relative transla-
tional dynamics as

mi
¨̃ρi +Hbi

˙̃ρi + Θbi = CT
l Ciui + ∆dfi (14)

where ∆dfi = CT
l Cidfi −∆mi

(
S(`)ρ̇i + ρ̈i + aθi + aJ2l − S(ωl)vl −CT

l CiaJ2i +CT
l CiS(ωi)vi

)
.

In combination with (10), (14) and defining ξi = [σT
ei, ρ̃

T
i ]T, we can describe the relative 6-DOF dynamics

in a united framework as

Miξ̈i +Hiξ̇i + Θi = BiΓci + ∆di (15)

where Mi = diag(J∗i ,mI3), Hi = diag(Hai,Hbi), Θi = diag(Θai,Θbi), Bi = diag(PT
i ,C

T
l Ci), Γci =

[τT
i ,u

T
i ]T, ∆di = [∆dTτi,∆d

T
fi]

T.
This model is a standard Euler-Lagrange formulation and has the following well known structural features,

similar as usual Euler-Lagrange systems [37]:

Property 1. (P1) Mi is a symmetric positive definite matrix and it is bounded, which means that there

exist two positive constants λ1, λ2 and λ1 ≤ λ2 such that λ1 ‖x‖2 ≤ xTMi(ξi)x ≤ λ2 ‖x‖2 holds for all
x, ξi ∈ R6.

Property 2. (P2) Ṁi − 2Hi is a skew-symmetric matrix, which satisfies xT(Ṁi − 2Hi)x = 0 for all
x ∈ R6.

Remark 1. Considering the structured and unstructured uncertainties, Eq. (15) forms the relative 6-DOF
dynamics of the SFF system investigated in this research, in which the relative translational and rotational
motion are described in a united framework with their dynamical couplings included in Θi. The coupled
effect of the angular velocity on translational dynamics is considered, and as such provides a more realistic
model than the current state of the art used in [18]. The relative translational dynamics introduced herein
has high accuracy in any eccentric orbits when the distances among formation members are not very far.
Moreover, as discussed in [36], it should be noted that the relative attitude error will be nonsingular and
bounded by switching between the MRPs σ and its corresponding shadow σs = −σ/(σTσ). Furthermore,
by designing an appropriate controller Γci, the relative orbit and attitude tracking control can be realized
with high accuracy simultaneously to satisfy the requirements of some spacecraft proximity operations, which
is superior than describing the 6-DOF model independently without considering the dynamical coupling.
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2.3. Assumptions and lemmas

In space applications, the environmental disturbances can be characterized into gravitational forces,
solar radiation pressure, air drag, gravity gradient perturbations and magnetic dipole effects. All of these,
although possibly not precisely determined, can be characterized by an upper-bound on the disturbance
torque and force. In addition, the uncertainties in mass and inertia properties due to fuel consumption and
moving parts are naturally bounded. Furthermore, for close spacecraft operation, the relative tracking error
ξi and its first two derivatives are bounded. Thus it is reasonable to give the following assumption:

Assumption 1. The disturbance ∆di is unknown but bounded such that |∆dki | ≤ δki , k = 1, 2, · · · 6, where
δi ∈ R6×1 is a positive constant vector.

In order to facilitate the stability analysis of the control laws, the following useful lemmas are presented.

Lemma 1. ([19]) Suppose that there exists a continuous positive definite function V (t) : Rn → R, which
satisfies the following differential inequality:

V̇ (t) +$1V (t) +$2V
$(t) ≤ 0,∀t > t0 (16)

where $1 > 0, $2 > 0, and 0 < $ < 1. Then V (t) can converge to the equilibrium in finite time tf , where

tf ≤ t0 +
1

$1(1−$)
ln
$1V

1−$(t0) +$2

$2
(17)

Definition 1. ([38]) Consider the perturbed system ẋ = f(t,x) + g(t,x), where ẋ = f is the nominal
system and g is its perturbation. If g(t,0) = 0, which means that g vanishes at the equilibrium x = 0, then
g is defined as the vanishing perturbation of the perturbed system.

Lemma 2. ([31]) Let x = 0 be a finite-time stable equilibrium of the nominal system ẋ = f(t,x). If
the Lyapunov function of the nominal system V (t,x) satisfies the following inequalities with some positive
scalars βk, (k = 1, · · · , 5) and 0 < γ < 1

β1‖x‖2 ≤ V (t,x) ≤ β2‖x‖2

∂V

∂t
+
∂V

∂x
f(t,x) ≤ −β3‖x‖2 − β4‖x‖2γ

‖∂V
∂x
‖ ≤ β5‖x‖ (18)

and the vanishing perturbation g(t,x) is assumed to satisfy

‖g(t,x)‖ ≤ κ‖x‖, and κ < β3/β5 (19)

then x = 0 is a finite-time stable equilibrium of the perturbed system ẋ = f(t,x) + g(t,x). Moreover, if all
the above inequalities hold globally, then the origin is a global finite-time stable equilibrium of the system.

2.4. Problem statement

In this study, we investigate the relative motion control problem of a SFF system. The control objective
herein can be stated as follows: Considering the relative 6-DOF dynamics governed by Eq. (15) with
the above reasonable assumption holding, our purpose is to design suitable control schemes such that the
rotational and translational motion of each follower can converge to their desired states with respect to the
virtual leader in the presence of model uncertainties and external disturbances in finite time. Moreover, in
order to make the SFF system perform as a whole rather than several individuals, and enhance formation-
keeping and attitude consensus performance, coordination terms among the followers are considered such

7



that the desired relative states between each two followers can be promised. That is to say limt→tf ξi =

limt→tf ξ̇i = 0, limt→tf ρij − ρdij = limt→tf ρ̇ij − ρ̇dij = 0, and limt→tf σij = limt→tf σ̇ij = 0. The controller
should be effective with no assumption on the information exchange graph. Furthermore, collision avoidance
problem should be addressed during the formation maneuver.

3. Controller design and stability analysis

The main results will be presented in this section. Based on the existing results on FTSMC, a class
of robust adaptive control laws are proposed to achieve the control objective. Meanwhile, the finite-time
stability of the developed controllers will be given by employing Lyapunov methods.

3.1. Robust adaptive finite-time controller synthesis

To guarantee the finite-time stability of the SFF system, a fast terminal sliding surface is first designed
such that once the system states arriving on it, then they can converge to the equilibrium in finite time.
The form of the sliding surface is defined as

Si = ξ̇i + ϑ1iξi + ϑ2isig
α(ξi) (20)

where ϑ1i,ϑ2i ∈ R6×6 are positive definite diagonal matrices, and 0.5 < α < 1. Denoting qi = ϑ1iξi +
ϑ2isig

α(ξi) and q̇i = ϑ1iξ̇i + αϑ2idiag(sigα−1(ξi))ξ̇i, and combining Eq. (15) and Eq. (20) yields

MiṠi +HiSi = Miq̇i +Hiqi −Θi + BiΓci + ∆di (21)

Since for on-orbit spacecraft, the inertia and mass of the spacecraft are usually unknown, to estimate
these values, motivated by [14], a linear operator L acting on a vector y = [y1, y2, y3]T ∈ R3 is defined first
as follows:

L(y) =

 y1 0 0 0 y3 y2
0 y2 0 y3 0 y1
0 0 y3 y2 y1 0

 (22)

Then we have Jiy = L(y)ν(Ji), ν(Ji) = [(Ji)11, (Ji)22, (Ji)33, (Ji)23, (Ji)13, (Ji)12]T ∈ R6. Thus, (21) can
be rewritten as

MiṠi +HiSi = Yi(ξi, ξ̇i)ν(Ξi) + BiΓci + ∆di (23)

where ν(Ξi) = [(Ji)11, (Ji)22, (Ji)33, (Ji)23, (Ji)13, (Ji)12,mi]
T, and Yi(ξi, ξ̇i) = diag

(
Yi(σei, σ̇ei),Yi(ρ̃i, ˙̃ρi)

)
∈

R6×7. Yi(σei, σ̇ei) ∈ R3×6 and Yi(ρ̃i, ˙̃ρi) ∈ R3×1 are defined explicitly with the following expressions:
Yi(σei, σ̇ei) = PT

i

(
L(Pi[q̇i]1)−L

(
PiĠ(σei)Pi[qi]1

)
+ S(Ceiωl)L(Ceiωl)

+ S(Pi[qi]1)L(Piσ̇ei)−L
(
S(ωei)Ceiωl +Ceiω̇l

))
,

Yi(ρ̃i, ˙̃ρi) = [q̇i]2 + S(`)[qi]2 − aΘbi

where [qi]1 = [q1i , q
2
i , q

3
i ]T and [qi]2 = [q4i , q

5
i , q

6
i ]T. To this end, the first main result of this study is

presented as follows:

Theorem 1. For the SFF system governed by (23), Assumption 1 is satisfied and the control scheme is
designed as:

Γci =B−1i

(
− Yi(ξi, ξ̇i)ν̂(Ξi)−K1iSi −K2isgn(Si)−

N∑
j=1

(kijSi − oijkjSj)
)

(24)

8



where K1i,K2i,kij ,kj ∈ R6×6 are all positive definite diagonal matrices. oij is a time-varying binary
number, if there is interconnection between spacecraft i and j, oij = 1, otherwise oij = 0. ν̂(Ξi) is the
estimation of ν(Ξi), which is updated by

˙̂ν(Ξi) = ΛiY
T
i (ξi, ξ̇i)Si (25)

where Λi ∈ R7×7 is a positive definite diagonal matrix. If the control parameters are designed such
that λmin(kij) > ~ij, [K2i]k > ϕki , where [K2i]k is the kth element on the main diagonal of K2i, and
~ij(4λmin(kij) − ~ij) > oijλ

2
max(kj), then the finite-time stability of the closed-loop SFF system can be

guaranteed.

Proof. The proof of this theorem can be divided into the following two steps:

(1) The sliding surface Si is finite-time stable under controller (24) with the adaptive law (25);

(2) Once the sliding surface Si = 0 has been reached, its two components ξi and ξ̇i will reach the origin
in finite-time, independently.

To prove step 1, the following candidate Lyapunov function is considered:

V1 =
N∑
i=1

V1i =

N∑
i=1

(1

2
ST
i MiSi +

1

2
ν̃T(Ξi)Λ

−1
i ν̃(Ξi)

)
(26)

where ν̃(Ξi) = ν̂(Ξi)− ν(Ξi), and by using P1 it is obvious that V1 is positive. Taking the time derivative
of V1 along Eq. (23), yields

V̇1 =

N∑
i=1

(
ST
i MiṠi +

1

2
ST
i ṀiSi + ν̃T(Ξi)Λ

−1
i

˙̃ν(Ξi)
)

=

N∑
i=1

ST
i

(
−HiSi + Yi(ξi, ξ̇i)ν(Ξi) + BiΓci + ∆di

)
+

1

2

N∑
i=1

ST
i ṀiSi +

N∑
i=1

ν̃T(Ξi)Λ
−1
i

˙̃ν(Ξi)

Using P2 that xT(Ṁi − 2Hi)x = 0 and substituting Eqs. (24), (25) into it, one can obtain

V̇1 =

N∑
i=1

ST
i

(
− Yi(ξi, ξ̇i)ν̃(Ξi)−K1iSi −K2isgn(Si)−

N∑
j=1

(kijSi − oijkjSj) + Yi(ξi, ξ̇i)ν̃(Ξi) + ∆di

)

≤ −
N∑
i=1

ST
i K1iSi −

N∑
i=1

6∑
k=1

(
[K2i]k − δki

)
|Ski | −

N∑
i=1

N∑
j=1

(
λmin(kij)S

T
i Si − oijST

i kjSj

)
(27)

Note that for a SFF system, the following equation holds:

N∑
i=1

N∑
j=1

~ij
(
ST
i Si − ST

j Sj
)

= 0 (28)

where ~ij = ~ji > 0. Then adding Eq. (28) to both sides of Eq. (27), we have

V̇1 ≤ −
N∑
i=1

ST
i K1iSi −

N∑
i=1

N∑
j=1

(λmin(kij)− ~ij)ST
i Si +

N∑
i=1

N∑
j=1

oijS
T
i kjSj −

N∑
i=1

N∑
j=1

~ijST
j Sj

≤ −
N∑
i=1

ST
i K1iSi −

N∑
i=1

N∑
j=1

ΥT
ijΥij −

N∑
i=1

N∑
j=1

£ijS
T
j Sj

9



where Υij =
√
λmin(kij)− ~ijSi −

oijkj

2
√
λmin(kij)− ~ij

Sj , and £ij = ~ij −
oijλ

2
max(kj)

4λmin(kij)− ~ij
.

When λmin(kij) > ~ij and ~ij(4λmin(kij)− ~ij) > oijλ
2
max(kj) hold, we have

V̇1 ≤ −
N∑
i=1

ST
i K1iSi ≤ 0 (29)

which implies that V1 is asymptotically stable and bounded. Thus we can conclude that Si and ν̃(Ξi) are
both bounded. Then, after time t1 the following inequality holds: δki +|Yi(ξi, ξ̇i)ν̃(Ξi)|k ≤ ϕki , k = 1, 2, . . . , 6,
where ϕi ∈ R6×1 is a positive constant vector. Next, we consider the following Lyapunov function

V2 =

N∑
i=1

1

2
ST
i MiSi = V1 −

N∑
i=1

1

2
ν̃T(Ξi)Λ

−1
i ν̃(Ξi) (30)

Calculating the derivative of V2 with respect to time yields

V̇2 ≤ −
N∑
i=1

ST
i K1iSi −

N∑
i=1

6∑
k=1

(
[K2i]k − δki

)
|Ski | −

N∑
i=1

N∑
j=1

ΥT
ijΥij −

N∑
i=1

N∑
j=1

£ijS
T
j Sj +

N∑
i=1

Yi(ξi, ξ̇i)ν̃(Ξi)Si

≤ −
N∑
i=1

ST
i K1iSi −

N∑
i=1

6∑
k=1

(
[K2i]k − ϕki

)
|Ski | ≤ −ā1V2 − ā2V

1/2
2 (31)

where ā1 = min
(
2λmin(K1i)/λmax(Mi)

)
> 0, and ā2 = min

(√
2 ‖[K2i]k − ϕki ‖/λmax(Mi)

)
> 0. Thus by

using Lemma 1, it is obvious that the sliding surface can be reached in finite time, which yields

ξ̇i = −ϑ1iξi − ϑ2isig
α(ξi) (32)

Next, in order to prove step 2, we consider another Lyapunov function V3 = 1
2ξ

T
i ξi. Differentiating V3

with respect to time and substituting Eq. (32) into it, we can obtain

V̇3 = ξTi ξ̇i = −ξTi
(
ϑ1iξi + ϑ2isig

α(ξi)
)
≤ −ϑ̄1iV3 − ϑ̄2iV

1+α
2

3 (33)

where ϑ̄1i = 2λmin(ϑ1i) > 0 and ϑ̄2i = 2(1+α)/2λmin(ϑ2i) > 0. Thus by using Lemma 1, the finite-time sta-
bility of ξi is guaranteed. Then it is easy to obtain that ξ̇i = 0 can also be reached in finite time. Thereby,
the proof of Theorem 1 has been completed.

Remark 2. In view of the proposed controller (24), it can be divided into three parts. The adaptive term
−B−1i Yi(ξi, ξ̇i)ν̂(Ξi), which is used to control nominal components and drive the tracking errors of the
followers to their reference states. The disturbance-rejection term −B−1i

(
K1iSi + K2isgn(Si)

)
is used

to compensate for both lumped disturbances and estimation errors of inertia and mass to enhance the
robustness of the SFF system. The formation control term −B−1i

∑N
j=1(kijSi − oijkjSj), which is used to

maintain certain relative attitudes and formation configuration such that the SFF will perform as a whole
within the formation. The controller is effective under any type of communication topology. Because a time
varying binary number oij = 0 or 1 is used to describe the topology, the interconnection between each two
followers can be disconnected or connected, fixed or time-varying. Moreover, since in the theoretical analysis
of Theorem 1, we have no limits on oij = oji, thus if oij = oji is satisfied for ∀i, j ∈ N, i 6= j, the topology
is undirected, otherwise the topology will be directed.

Remark 3. For the sliding surface in (20), when 0 < α < 1, it will have the same form as the sliding
surface in [21]. Though the surface has a high convergence either near the origin or far away from it, since
its derivative includes diag(sigα−1ξi)ξ̇i in Yi(ξi, ξ̇i), the controller outputs will be infinite if ξi reaches the
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origin before ξ̇i. In this study, to improve the system transient state performance, we select 0.5 < α < 1
and keep ξi away from the origin before Si = 0 is reached such that no singularity will occur. Because
when Si = 0, we have diag(sigα−1ξi)ξ̇i = −ϑ1i|ξi|α − ϑ2isig

2α−1(ξi) = 0. Moreover, it should be noted
that due to the implementation of the discontinuous sign function in controller (24), chattering appearing in
control signals cannot be avoided, which is a common phenomenon in sliding mode controller design and is
not desirable for engineering application. When applying sliding mode controller in practice, a continuous
function S/(‖S‖+ ε) is employed to approximate sgn(S) [17], where ε is a small positive constant.

3.2. Control law design with collision avoidance

It should be noted that collisions may occur among the followers in certain regions during the maneuver
of driving the followers to their expected configurations, and the above proposed controller (24) fails to
take the possible collisions into consideration. In order to solve the SFF control problem with collision
avoidance, the artificial potential function method is adopted in this study. In FI , the relative position of
ith follower to jth follower is Rij = Ri −Rj , and the distance between them is denoted as rij = ‖Rij‖.
Before proceeding, we introduce some concepts first. For the ith follower, we define a collision region
Φi = {x ∈ R3×1| ‖x−Ri‖ ≤ rc}, where rc is the minimum safe distance between the followers to meet the
requirement of collision avoidance. Moreover, an avoidance region Ψi = {x ∈ R3×1| rc < ‖x−Ri‖ ≤ ra} is
defined, in which the designed collision avoidance schemes are activated to avoid collisions. In the avoidance
region, the ability of each follower measuring its relative distances with respect to the others should be
promised. Thus the communication topology should be redefined as:

oij(CA) =

{
1, rc < rij ≤ ra,
oij , rij > ra.

(34)

Generally speaking, the concept of potential field comes from the physical model of molecular interaction:
the Lennard-Jones potential [5]. The field has its global minimum at the desired position of the object and
will have high values once the object is in the forbidden areas [32]. Therefore, we use the gradient of the
potential field to measure the magnitude of the repulsive force to prevent the followers from colliding with
each other. The designed potential function U(rij) should be nonnegative and its derivative should be
nonpositive, and both of them should be continuous at rij = ra, which satisfies:

1. U(rij) = 0, rij ∈ (ra,+∞); 2. U
′
(rij) = 0, rij ∈ (ra,+∞); 3. lim

rij→r−a
U(rij) = lim

rij→r+a
U(rij) = 0;

4. lim
rij→r−a

U
′
(rij) = lim

rij→r+a
U
′
(rij) = 0; 5. U(rij) > 0, rij ∈ (rc, ra); 6. U

′
(rij) < 0, rij ∈ (rc, ra);

7. lim
rij→r+c

U(rij) = +∞; 8. lim
rij→r+c

U
′
(rij) = −∞.

The potential function designed in this study is motivated by [28, 30] and given as follows:

U(rij) =


(r2a − ‖Ri −Rj‖2

‖Ri −Rj‖2 − r2c

)2
, rc < rij ≤ ra

0, rij > ra

(35)

Taking its partial derivative with respect to Ri, yields

∂U(rij)

∂Ri
=

−
(4(r2a − r2c )(r2a − ‖Ri −Rj‖2)

(‖Ri −Rj‖2 − r2c )3
)

(Ri −Rj)
T, rc < rij ≤ ra.

0, rij > ra.

(36)
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Then the controller (24) in consideration of collision avoidance can be modified as

Γ ∗ci = Γci −B−1i [01×3,Kcai

n∑
j=1

∂U(rij)

∂Ri
Ci]

T (37)

where Kcai is a positive scalar and n is the number of followers in the avoidance region Ψi.

Denoting acai = [01×3,−Kcai

∑n
j=1

∂U(rij)
∂Ri

Cl]
T and taking this modified controller into Eq. (23), yields

MiṠi +HiSi = Yi(ξi, ξ̇i)ν(Ξi) + BiΓci + ∆di + acai (38)

Theorem 2. For the SFF system governed by Eq. (38), Assumptions 1 is satisfied and all the SFF members
are outside each other’s collision region Φi at t = 0. The controller is designed as Eq. (37), the adaptive
law is given by Eq. (25), and all the control parameters in Γci are the same as those defined in Theorem 1
with λmin(kij) > ~ij, [K2i]k > ϕki , and ~ij(4λmin(kij) − ~ij) > oij(CA)λ2max(kj) holding. If the collision
avoidance parameters are designed such that

‖acai‖ <
λmin(K1)‖S̄‖λmin(M)

Nλmax(M)
(39)

then the finite-time stability of the closed-loop SFF system can be guaranteed. Furthermore, during the
formation maneuver collision avoidance can be guaranteed.

Proof. In order to prove the stability of the resulting closed-loop SFF system, we first rewrite Eq. (38) as
follows:

M ˙̄S +HS̄ = Y ν +BΓc + ∆d+ aca (40)

where
S̄ = [ST

1 ,S
T
2 , · · · ,ST

N ]T ∈ R6N×1, M = diag(M1,M2, . . . ,MN ) ∈ R6N×6N ,
Y ν = [(Y1ν1)T, . . . , (YNνN )T]T ∈ R6N×1, H = diag(H1,H2, . . . ,HN ) ∈ R6N×6N ,
B = diag(B1,B2, . . . ,BN ) ∈ R6N×6N , Γc = [ΓT

c1,Γ
T
c2, . . . ,Γ

T
cN]T ∈ R6N×1,

aca = [aT
ca1,a

T
ca2, . . . ,a

T
caN ]T ∈ R6N×1.

Then we can write the system in the form of the perturbed system as defined in Definition 1

˙̄S = f(t, S̄) + g(t, S̄) (41)

where f(t, S̄) = M−1(−HS̄ + Y ν +BΓc + ∆d), g(t, S̄) = M−1aca.

Next, based on the above definitions, for the nominal system ˙̄S = f(t, S̄), taking the derivative of
V2 = 1

2 S̄
TMS̄ with respect to time as the same proof process in Theorem 1, we can obtain

V̇2 ≤ −λmin(K1)‖S̄‖2 − µ̄‖S̄‖ (42)

where K1 = diag(K11, . . . ,K1N ), µ̄ = min([K2i]k − ϕki ), i = 1, 2, . . . , N. k = 1, 2, . . . , 6. And for the
vanishing perturbation g(t, S̄), we have

‖g(t, S̄)‖ = ‖M−1aca‖ ≤ ‖M−1‖
N∑
i=1

‖acai‖ ≤
∑N
i=1 ‖acai‖
λmin(M)

(43)

If the condition in Eq. (39) is satisfied, ‖g(t, S̄)‖ < λmin(K1)
λmax(M) ‖S̄‖ holds. By choosing 0 < β1 ≤ 0.5λmin(M),

β2 > 0.5λmax(M), β3 = λmin(K1), β4 = µ̄, β5 = λmax(M), γ = 0.5, and κ < λmin(K1)
λmax(M) = β3/β5, the

conditions in Lemma 2 will all be satisfied. Then S̄ will converge to the origin in finite-time. In combination
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with the proof process of step 2 in Theorem 1, the finite-time stability of ξ̇i, ξi can be guaranteed. The
overall analysis completes the proof of Theorem 2.

Remark 4. For the modified controller, the term acai is used to avoid collisions. Since the direction of

−∂U(rij)
∂Ri

is from jth follower to ith follower, when follower j is in Ψi, a repulsive force will be generated
on follower i such that follower j will move away from the forbidden area relatively. Moreover, it should
be noted that the collision avoidance schemes are effective only when Eq. (39) is satisfied. Usually, for
certain shapes of the SFF followers, the value of rc is fixed , and ra and Kcai can be adjusted according
to the requirements of specific aerospace missions to satisfy Eq. (39). The lager of Kcai and the closer of
ra to rc are, the larger collision avoidance acceleration will be generated. However, since in the proof of
Theorem 2, the collision avoidance acceleration is regarded as the vanishing perturbation of the SFF system,
if its value is too large, maybe the control performance would be sacrificed. Thus some compromises should
be considered in the process of parameters design.

4. Simulation results

In this section, numerical examples are conducted to verify the effectiveness of the proposed finite-time
controller for a given SFF mission scenario, in which a virtual leader and four followers are involved. The
nominal parts of the mass of the followers are assumed to be: m1 = 100kg, m2 = 105kg, m3 = 108kg and
m4 = 110kg, and the nominal parts of the inertia matrices (kg ·m2) are

J1 =

 25 1 0.5
1 22 1.2

0.5 1.2 23

;J2 =

 22 1.5 1
1.5 26 −1.2
1 −1.2 28

;

J3 =

 28 1.2 1.6
1.2 27 −1.5
1.6 −1.5 25

;J4 =

 30 1.5 2
1.5 25 1.3
2 1.3 26

.
It should be noted that the virtual leader is only used to generate the desired trajectory, thus its mass and

inertia can be arbitrary values. For convenience, we assume that ml = 100kg and Jl = diag(20, 20, 20)kg·m2.
The mission is that four followers are involved in the SFF system, and it is desired to reconfigure them to a
circle-shaped formation with their coordinates being ρd1 = [0,−25, 0]Tm, ρd2 = [25, 0, 0]Tm, ρd3 = [0, 25, 0]Tm,
ρd4 = [−25, 0, 0]Tm expressed in Fo with respect to the virtual leader, whose orbital elements are given in
Table 1. While, the attitude, the angular velocity and the translational velocity of the virtual leader need
to be tracked by each follower.

Table 1: Initial orbital elements of the virtual leader.

Orbital parameters Values

Semi-major axis 6778.14km
Eccentricity 0
Inclination 45◦

Argument of perigee −150◦
Mean anomaly 270◦

Right ascension of ascending node (RAAN) −60◦
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Table 2: Initial tracking errors of the followers.

Initial States Parameter Values

Initial relative positions (m)
ρ1(t0) = [15

√
2, 12,−15

√
3]T, ρ2(t0) = [−10

√
3,−15

√
2, 15]T,

ρ3(t0) = [15,−10
√
3,−15

√
2]T, ρ4(t0) = [10,−5

√
2, 10]T.

Initial relative attitudes
σe1 = [0.44, 0.26,−0.51]T, σe2 = [0.51, 0.14,−0.29]T,
σe3 = [0.41, 0.2,−0.57]T, σe4 = [0.37, 0.3,−0.7]T.

Initial relative velocities ρ̇i = σ̇ei = 0

Initially, the followers are assumed to be performing a different mission, and there are already some proper
controls acting on them to obtain the initial relative states with respect to the virtual leader as presented
in Table 2. During the process of driving the followers to their desired states, the disturbance forces and
torques considering solar radial pressure force, magnetic torque, and aerodynamics that the followers suffer
are assumed to be [32, 36]:

dτi = 10−4 ·

 sin(i+ 0.12t)
cos(i+ 0.15t)
sin(i+ 0.18t)

 (N ·m),

dfi = 10−5 · [ −1.025, 6.248, −2.215 ]T sin (2π‖ωl‖t) (N).
The uncertainty parts of mass and inertia matrix considering fuel cost are chosen as ∆Ξi = diag(0.2Ji, 0.2miI3),
and the changing communication topologies oij are set as

o12 = o13(t+ 1.2) = o14(t− 3.5) = o21(t+ 4.8) = o23(t− 2.6) = o24(t− 1.6) = o31(t− 4.5)

= o32(t+ 5.2) = o34(t− 1) = o41(t− 5.5) = o42(t+ 2.2) = o43(t− 2.4)

where o12(t) =

{
1 mod (t, 8) ≤ 6

0 mod (t, 8) > 6
, and mod(t, 8) represents the remainder of dividing t by 8.
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Fig. 2. Case 1: Norms of attitude and angular velocity tracking errors.

Three cases are considered: Case 1: the proposed controller (37) with collision avoidance schemes
and coordination terms; Case 2: without collision avoidance schemes; and Case 3: without coordina-
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tion terms. Each follower is modeled as a sphere with radius 6m, and then it is suitable to choose
rc = 12m, and modify the communication topology as oij(CA) in Eq. (34). The guideline of choosing
the controller parameters for these cases is by trial-and-error until a good control performance is ob-
tained, and the controller parameters are chosen as: K1i = diag(5I3, 6I3), K2i = diag(0.15I3, 0.2I3), ϑ1i =
diag(0.06I3, 0.03I3), ϑ2i = diag(0.08I3, 0.05I3), α = 2/3, ra = 25m, Kcai = 1.2, kij = 2I6, kj = 0.8I6,
Λi = diag(12, 12, 12, 12, 12, 12, 1.5), and the initial estimations of ν̂(Ξi) are all set as [25, 25, 25, 0, 0, 0, 100]T.
In addition, special attention should be paid to actuator saturation due to physical limits. Here, we as-
sume that the followers have available continuous control outputs in all body axes. The control torques
are generated by reaction wheels with maximum torque τmax = 0.2N ·m [36], and the control forces
are provided by thrusters with maximum output umax = 5N [32], respectively. If the theoretical con-
trol input is larger than the maximum value, then the actual control input will be described as [7]:

sat(τ k=1,2,3
i ) = sign(τ ki )min{|τ ki |, τmax} and sat(uk=4,5,6

i ) = sign(uki )min{|uki |,umax}. Case 2 with Kcai = 0
and Case 3 with kij = kj = 0 are conducted for the purpose of comparison to highlight the proposed con-
troller. Simulation results are presented in Figs. 2-10.
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Fig. 3. Case 1: Time responses of control torques (left) and control forces (right).
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Fig. 4. Case 1: Parameter estimations for ν̂(Ξi).

Fig. 2 shows the time histories of attitude synchronization, including norms of error Euler principal
angles, which can be obtained as in [35], and norms of relative angular velocities of Case 1. It can be seen
that the rotational motion of the leader is synchronized by the followers with a settling time less than 130s.
The steady-state errors show that the proposed controller has fine performance with ‖φei‖ < 1× 10−4(deg)
and ‖ωei‖ < 8 × 10−4(deg/s). The corresponding applied control torques and forces on the followers are
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presented in Fig. 3, from which we can see that the control outputs are bounded by actuator saturation.
Fig. 4 shows the response of the estimated values of the adaptive parameters in controller (24). For the

sake of brevity, only the plots of the control torques and forces of follower 1, and Ĵ1 are provided. Although
the estimated values do not converge to their true values, using these values as the feedback states of the
controller, the finite-time stability of the SFF system is still promised.
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Fig. 5. Relative distances of the followers without collision avoidance schemes in formation.
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Fig. 6. Relative distances of the followers with collision avoidance schemes in formation.

The results presented in Figs. 5-7 are used to demonstrate the effectiveness of the collision avoidance
schemes. Fig. 5 presents the time histories of the relative distances between each two followers of the SFF
without collision avoidance schemes, and the plots with collision avoidance schemes are given in Fig. 6. We
can see that without the collision avoidance schemes, follower 1 and 3, follower 2 and 4 will collide with
each other during the formation reconfiguration maneuver. When applying the proposed collision avoidance
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schemes, the safety of the formation can be guaranteed as illustrated in Fig. 6. Meanwhile, in both cases, the
followers will arrive their desired relative positions, but the settling time of Case 1 is about 135s and that of
Case 2 is less than 100s. The norms of the position tracking errors and the norms of translational velocity
tracking errors of each follower with respect to their desired states without and with collision avoidance
schemes are given in Fig. 7. It can be seen that the convergence time, the transient process and the steady-
state errors of Case 2 are better than those of Case 1. Moreover, to compare the performance of these
two cases further, the corresponding applied control force of follower 1 in case 2 is presented in Fig. 8.
Furthermore, the fuel is always limited for on-orbit spacecraft , which means that energy-efficient issue as
a key to extend spacecraft’s working life should be considered seriously in the comparison. Thus, we define

the energy cost function as E =
∫ T

0
‖ui‖2 dt to compare the performance of Case 1 and Case 2 more deeply,

where T is set to be 200s. Time responses of the energy consumption of these two cases are presented in
Fig. 9, and CA is the abbreviation of collision avoidance. From the results of Figs. 3, 7-9 we can conclude
that the safety of the SFF system is guaranteed at the cost of control performance and more energy, and
considering some compromises in the process of controller parameters design is necessary, as illustrated in
Remark 4.
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Fig. 7. Norms of (a) position tracking errors without collision avoidance schemes, (b) position tracking errors with collision
avoidance schemes, (c) translational velocity tracking errors without collision avoidance schemes, (d) translational velocity
tracking errors with collision avoidance schemes.

17



0 30 60 90 120 150 180
time(s)

-6

-4

-2

0

2

4

6

u
1
 (

N
)

u
1x

u
1y

u
1z

Saturation limit

u=-5N

Saturation limit

u=5N

Fig. 8. Case 2: Time responses of control forces

0 50 100 150 200
time(s)

0

200

400

600

800

1000

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

Controller with CA

Controller without CA

380.8

802.2

Fig. 9. Energy consumption comparison between Case 1 and 2

0 25 50 75 100 125 150 175 200
time(s)

0

20

40

60

80

100

A
A
E

N
∑ i=

1

(

‖
φ
e
i‖
/
4

)

With coordination terms
Without coordination terms

200 205 210 215 220
0

1

2

3
×10

-5

160 170 180
0

0.5

(a)

0 25 50 75 100 125 150 175 200 220
time(s)

0

20

40

60

80

R
A
E

N
∑ i
=
1

N
∑

j
=
1
,
j
6=
i

(

‖
φ
i
j
‖
/
1
2

)

With coordination terms

Without coordination terms

200 205 210 215 220
0

0.5

1
×10

-4

160 170 180
0

1

2

(b)

0 25 50 75 100 125 150 175 200
time(s)

0

25

50

75

100

125

150

175

200

A
D
E

N
∑ i
=
1

(

∥ ∥

ρ
i
−
ρ
d i

∥ ∥

)

With coordination terms

Without coordination terms

200 205 210 215 220
0

0.5

1

1.5

×10
-4

170 180 190 200
0

0.05

0.1

(c)

0 25 50 75 100 125 150 175 200
time(s)

0

50

100

150

200

250

300

350

400

450

R
D
E

N
∑ i
=
1

N
∑

j
=
1
,
i
6=
j

(

∥ ∥

ρ
i
j
−
ρ
d i
j

∥ ∥

)

With coordination terms

Without coordination terms

200 205 210 215 220
0

1

2

3

4

55
×10

-4

170 180 190 200
0

0.1

0.2

(d)

Fig. 10. Time responses of rotational and translational motion performance indexes (a) AAE, (b) RAE, (c) ADE, (d) RDE.

Finally, to show the proposed controller (37) can promise a better control performance of formation-
keeping and relative attitude consensus among followers when the position tracking maneuver and absolute
attitude synchronization are performed, comparisons between the simulation results of Case 1 and Case 3
are presented. Four performance indexes: absolute attitude errors (AAE), relative attitude errors (RAE),
absolute distance errors (ADE), and relative distance errors (RDE) are introduced herein to measure the
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performance, defined as:

AAE =

N∑
i=1

(
‖φei‖/4

)
; RAE =

N∑
i=1

N∑
j=1,j 6=i

(
‖φij‖/12

)
;

ADE =

N∑
i=1

(
‖ρi − ρdi ‖

)
; RDE =

N∑
i=1

N∑
j=1,j 6=i

(
‖ρij − ρdij‖

)
.

The curves of AAE, RAE, ADE, and RDE are given in Fig. 10. It can be observed that the convergent
accuracy of these four indexes is AAE < 3 × 10−5(deg), RAE < 1 × 10−4(deg), ADE < 1.5 × 10−4m and
RDE < 5 × 10−4m. Though the accuracy of Case 3 is only a little worse than Case 1, the convergence
time and the transient process of controller (37) involving the coordination terms are much better than the
controller of Case 3 without coordination terms. Summarizing the comparison results of the above three
cases, we can conclude that the existence of the collision avoidance schemes enhances the safety of the SFF
system, and by introducing the coordination terms in controller (37), the control objective of this study can
be achieved with fine performance.

5. Conclusions

In this paper, a relative motion control problem for six-degree-of-freedom spacecraft formation flying was
solved. The developed decentralized control law was robust to model uncertainties and external disturbances,
and guaranteed convergence to the desired formation in finite-time. In addition, the collision avoidance
schemes were effective to avoid collisions during the formation reconfiguration maneuver. Furthermore, the
controller only required the bounds of the inertia and mass of each follower and was effective for all types of
topology: disconnected or connected, fixed or time-varying, and directed or undirected. Finally, numerical
examples for a given mission scenario were conducted to show the effectiveness of the proposed controller.
The simulation results of three cases have shown that the investigated problem in this study could be solved
effectively by the presented controller, and the existence of coordination terms in the controller promised
faster convergence time (about 135s) and a better performance of the transient process of formation tracking
and attitude consensus maneuver than the controller without coordination terms (about 180s). While, since
collision avoidance was achieved at the cost of control performance and more energy, some compromises
considered in controller design for different missions would be necessary.
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