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Abstract: Brain-inspired computing has been the subject of an intense research in the last 

decades, with the aim of recreating some of the cognitive computing functions of the 

human brain in silicon-based hardware. In this frame, resistive switching memories 

(RRAM) and other emerging memory technologies are extremely promising as they offer 

memory and plasticity with high scaling capability, thus enabling the integration of a high 

density of synapses and neurons. This chapter summarizes the status and challenges of 

RRAM-based neuromorphic engineering. RRAM synapses are described within the 

frame of various neural network architectures, such as artificial neural networks (ANNs) 

and spiking neural networks (SNNs). First, ANNs with deep neural network architectures 

are described in terms of their operation during inference and learning, referring to the 

typical backpropagation scheme for supervised training. The challenges for high-density, 

high-functionality ANNs for computer vision with RRAM synapses are addressed. 

RRAM circuits enabling spike-timing dependent plasticity (STDP) and their use for 

unsupervised learning in feed-forward and recurrent networks are then presented. A 

hardware SNN for unsupervised learning by STDP in RRAM synapses is illustrated, 



demonstrating learning of static and dynamic patterns with both binary and gray-scale 

values. Finally, an outlook on the prospects of RRAM for future cognitive computing is 

given. 
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1. Introduction  

For the last 50 years, digital computing machines have improved their performance by 

scaling down the field-effect transistor (FET) according to the Moore’s law, which 

predicts the doubling of the transistor count on the chip every 18 months [1]. Currently, 

the scaling trend in the microelectronics industry is facing the hard challenge of extreme 

dynamic power consumption, which is preventing the frequency increase due to the 

excessive chip heating [2]. To overcome the current limitations of scaling, novel devices 

have been proposed with the purpose of improving the subthreshold slope, thus allowing 

for the reduction of the dynamic power at constant static power consumption. New 

proposals include the tunnel FET [3], the negative-capacitance FET [4], and many other 

concepts [5], which are currently at the stage of demonstration in academic and industrial 

research labs. 

On the other hand, the search for increasingly high operating frequency is questioned by 

the energy efficiency of the von Neumann architecture. Fig. 1 shows the power density of 

commercial central processing unit (CPU) chips as a function of the frequency 



bandwidth, demonstrating the relentless increase according to the Moore’s law since 

1971 [6]. In comparison, the human brain is located at the end of low power (about 20 W 

total consumed power) and low frequency (about 10 Hz). These data indicate that 

functionality may be improved not only by a mere increase of the number of operations 

per second, but also, and most importantly, by the architecture of the computing and 

memory elements. 

 

 

Fig. 1. Power density and clock frequency of digital microprocessors between 1971 and 

2014. Moore’s law improves both power density and clock frequency, however battery- 

and thermal-limitations of power dissipation forced a saturation during the last few 

technology generations. Despite the low frequency and low power density, the brain can 

outperform a digital computer in many cognitive tasks. Reproduced with permission from 

[6]. Copyright AAAS (2014). 

 



 

Fig. 2. Sketch of a feed-forward FC neural network with an input layer of neurons (x1, x2, 

etc.), 2 hidden layers (h1, h2, …, n1, n2, …), and an output layer with one neuron (o1) for 

classification. 

 

The high performance and energy efficiency in the human brain can be explained by the 

co-location of the computing and memory elements, and the parallelism of the neural 

network architecture. Fig. 2 shows a simple feed-forward neural network with an input 

layer of neurons, 2 hidden layers, and an output layer with one neuron for classification. 

The network is fully connected (FC), in that each neuron in layer i is connected to each 

neuron in layer i-1 and layer i+1 through synapses. Each neuron in layer i collects the 

signals delivered by neurons in layer i-1, weighted by the corresponding synapse. The 

specific function of the neural network, e.g., the type of pattern that can be recognized 

and distinguished by the network, is dictated by the weight of the synapses and the 

architecture, e.g., the number of layers and the number of neurons in each layer. Synapses 

thus play a critical role for neuromorphic engineering, that is the study and design of 

neural networks for developing cognitive circuits emulating the functioning of the brain. 

Note that memory and computing are sparsely distributed within a neural network, thus 
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enabling enhanced performance with respect to von Neumann architectures, where the 

memory chip and the CPU are physically separated [7]. 

In this scenario, emerging memory technologies such as resistive switching memory 

(RRAM) [8-10], phase change memory (PCM) [11-13], and magnetic memory (MRAM) 

[14-16] can play a pivotal role, thanks to possibility of multilevel storage, nanoscale 

dimension, back-end-of-line (BEOL) integration, and good reliability. Emerging memory 

devices can both store data and provide computing functionality, such as Boolean logic 

operations in RRAM devices [17-20] and PCM devices [21-23]. Accumulative 

crystallization in PCM allows for algebraic summation [24] and prime factorization [25]. 

Finally, RRAM and PCM allow for integration in crosspoint arrays, which naturally 

provide matrix-vector multiplication (MVM) via physical computing through the Ohm’s 

law and the Kirchhoff’s law [26, 27]. 

As a result of the high computing capabilities in emerging memories, several schemes 

were proposed for artificial synapses and neurons in neuromorphic circuits. Synapses in 

crosspoint arrays were demonstrated using PCM [28, 29] and RRAM [30, 31]. Brain-

inspired synapses capable of changing their weights according to spike-timing dependent 

plasticity (STDP) were demonstrated by PCM devices [32-34] and RRAM devices [35-

40]. Electronic neuron circuits with integrate-and-fire operation were shown either 

relying on the accumulation of input spiking signals by crystallization in PCM devices 

[41] or using the threshold switching operation in volatile-type RRAM [42, 43]. 

Hardware implementations of neurons and synapses with PCM or RRAM technologies 

were demonstrated for supervised learning [29-31] or unsupervised learning [44]. Despite 

several challenges to upscale the proposed concepts to the higher level of complete 



systems capable of cognitive computing, the reported results are extremely promising for 

the development of neuromorphic circuits based on emerging memories. 

This chapter addresses RRAM devices, and most generally emerging memories such as 

PCMs, for neuromorphic circuits. RRAM-based neural networks will be reviewed with 

reference to supervised learning and unsupervised learning, discussing RRAM synaptic 

structures and the techniques for weight update in the network. Brain-inspired associative 

memory and error correction in recurrent Hopfield networks will be finally discussed.  

 

2. Neural networks for supervised learning 

Neural networks find extensive applications in pattern recognition, such as recognition of 

objects or faces within a picture. The most popular approach to this purpose is the deep 

learning concept, where FC-ANNs with multiple layer perceptron (MLP) structure are 

trained to provide an abstract representation of the submitted data [45]. Deep learning has 

recently led to several breakthroughs in various fields, including speech recognition [46], 

image recognition and object detection [47], machine translation [48], drug discovery and 

genomics [49]. The use of 2-terminal memory elements, such as PCM or RRAM, for the 

synaptic connections in the ANN of Fig. 2 has been early recognized as an attractive 

strategy for at least 2 reasons: first, the memory element can represent a multiple-bit 

value thanks to the analog nature of PCM and RRAM, thus offering the capability to 

replace many single-bit RAM cells for weight storage. For instance, up to 8 levels, i.e., 3 

bits, have been demonstrated with RRAM devices [50, 51] and PCM devices [52], thus 

supporting the feasibility of a very high synaptic density in the ANN. The second added 

value of using 2-terminal resistive memories is the crosspoint-architecture which enables 



physical computation of MVM by Ohm’s and Kirchhoff’s laws [26, 27]. In fact, the total 

current Ij of the crosspoint column of index j is given by: 

𝐼" = ∑ 𝐺&"𝑉&&            (1) 

where Vi is the voltage applied to the crosspoint row of index i, and Gij is the synaptic 

conductance (or weight) connecting the row i and the column j. As a result, MVM is 

completed in-situ within one single step, without any need for multiplication-

accumulation (MAC) requiring multiple steps in a digital CPU with time-consuming 

exchange of input/output data with the memory chip. Supervised training supported by 

RRAM/PCM synaptic arrays thus seems a promising trend for saving power and 

speeding up the learning process for deep learning applications. 

 

 

Fig. 3. Sketch of a feedforward FC ANN with MLP structure adopting PCM synapses. 

For supervised learning of handwritten digits from the MNIST dataset, patterns are 

submitted to input neurons, then propagated forward by the non-linear transfer function 

of the neuron according to Eq. (2). Only the output neuron “1” should fire in response to 



the presentation of a digit “1” as input pattern. Reproduced with permission from [29]. 

Copyright IEEE (2015). 

 

 

Fig. 4. Examples of non-linear transfer functions adopted for neurons in ANNs, including 

the hyperbolic tangent function, the logistic function, and the rectifying linear unit 

(ReLU) function. 

 

2.1 Network training by the backpropagation algorithm 

Fig. 3 shows a typical ANN with MLP structure adopting PCM synapses [29]. For 

supervised learning, first a pattern, e.g., a handwritten digit from the MNIST dataset, is 

submitted to the input layer, thus resulting in a feedforward propagation of the pattern 

across the several layers of neurons. In the feedforward propagation, neurons compute 

their output values as a proper function of the sum of the signals from the preceding 

layer, each signal multiplied by the corresponding synaptic weight, namely: 

𝑥") = 𝑓+∑ 𝑤&"𝑥&-& .		         (2) 

where xi
A and xj

B are the output signals of neuron i in layer A and neuron j in layer B, 

respectively, wij is the weight of the synapse connecting these 2 neurons, and f is a 



suitable non-linear function representing the threshold-type behavior of the McCulloch-

Pitts (MCP) neuron [53]. Fig. 4 shows some typical transfer functions adopted for ANNs, 

including the hyperbolic tangent function, the logistic function, and the rectifying linear 

unit (ReLU) function, which has been demonstrated to speed up the supervised learning 

in the backpropagation scheme and simplify the tuning of the parameters [54]. At the end 

of the forward propagation process, the synaptic weights are updated according to the 

backpropagation scheme shown in Fig. 5. Here, the output signals xj
D are compared with 

the correct answer gj provided by each pattern label, and the comparison leads to an error 

term dj
D given by: 

𝛿"1 = 𝑓′+𝑥"1.+𝑔" − 𝑥"1.	        (3) 

where 𝑓′ is the derivative of the neuron transfer function with respect to the neuron value 

xj
D. The error term dj

D in Eq. (3) is then used to update the weights of synapses connected 

to the output neuron layer according to the incremental update formula [55]: 

∆𝑤&" = 𝜂𝑥&7𝛿"1		         (4) 

where h is a learning efficiency parameter dictating the speed of update of the 

backpropagation process. Note that the weight in Eq. (4) is changed proportionally to the 

error dj
D, which marks the distance of the actual weight from the ideal value for correctly 

recognizing the submitted pattern, and the input signal xi
C, which is a figure of the 

importance of the synapse in the recognition process for the specific pattern. The learning 

efficiency h plays a key role for convergence and accuracy, therefore its value must be 

carefully tuned to maximize the network ability to classify unknown input images. Errors 

in the preceding hidden layer C are calculated according to [55]: 

𝛿87 = 𝑓′(𝑥87)∑ 𝑤&"𝛿&1" 		        (5) 



where 𝑓′ is the derivative of the neuron transfer function with respect to the internal 

variable xk. Also, Eq. (5) allows to iteratively compute errors across the ANN layers in 

the backpropagation direction. 

 

 

Fig. 5. Sketch of an ANN depicting the supervised learning process by the 

backpropagation scheme. The error from Eq. (3) is back-propagated from output to input 

for weight update according to Eq. (4). Reproduced with permission from [29]. Copyright 

IEEE (2015). 

 

2.2 Weight update of resistive switching devices 

The weight update according to Eq. (4) poses a significant challenge in the design of 

PCM and RRAM synapses, in that both potentiation and depression must be achieved via 

incremental steps. However, in general, only one of the 2 operations can be gradually 

achieved: for instance, the crystallization process in PCM is incremental in that the 

application of sequential pulses causes more amorphous phase to change the crystalline 



state [21, 24]. On the other hand, amorphization process is only a function of the applied 

voltage and current in each pulse, without any significant dependence on the actual state 

of the PCM device. As a result, only incremental potentiation can be achieved in PCM 

devices, i.e., Eq. (4) is only applicable for increasing the synaptic weight wij, or PCM 

conductance Gij. Conversely, RRAM devices generally show incremental depression by 

repeating reset pulses [56], while incremental potentiation requires specific device 

materials, such as interfacial switching Pr1-xCaxMnO3 [57] or bilayer-stacked TaOx-TiO2 

[58]. Another issue with resistive arrays is that a conductance Gij can only map a positive 

weight wij, whereas both positive and negative weights are generally needed to represent 

input patterns in ANNs [55, 57].  

 

 

Fig. 6. Measured update characteristics for weight increase (potentiation) and weight 

decrease (depression). Data show the measured conductance in response to the 

application of a sequence of pulses with constant positive/negative amplitude. Analog 

potentiation/depression is needed for backpropagation in the supervised learning of 

ANNs. Reproduced with permission from [59]. Copyright IEEE (2015). 

 

(a)                                         (b)                                          (c)



These problems can be overcome by a differential approach, where each synapse is 

represented by 2 memory elements, e.g., 2 PCM devices [28, 29] or 2 RRAM devices 

[57], and synaptic currents are obtained as the difference between the 2 paths in the 

differential scheme, namely: 

𝐼" = ∑ +𝐺&"; − 𝐺&"<.𝑉&&          (6) 

where Gjj
+ and Gjj

- are the conductance values of the positive and negative resistive 

elements in the synaptic cell at position (i,j) in the array [57]. As a result, potentiation of 

weight wij can be achieved by either potentiation of conductance Gij
+, or depression of 

conductance Gij
-, depending on potentiation or depression being incremental in the 

adopted resistive switching synapse. 

Another key issue for resistive switching synapse is the linearity and symmetry of the 

plasticity characteristics. Clearly, update according to Eq. (4) requires that the amount of 

potentiation/depression depends only on the number of pulses applied to the synapse 

element, not on the actual weight of the synapse which is generally not known. As a 

result, an ideal synapse should be linear, in that a certain amount of 

potentiation/depression can be achieved by a fixed amount of set/reset pulses irrespective 

of the resistive state of the device. On the other hand, real devices fail in satisfying 

linearity as shown by the weight update characteristics in Fig. 6 [59]: all the 3 reported 

cases show non-linear change of conductance along both the potentiation and depression 

branches of the characteristics. For instance, potentiation is relatively steep if potentiating 

pulses are applied to a device with low conductance, whereas slow potentiation is 

obtained for relatively high conductance. Similarly, steep depression occurs for high 

conductance states, with saturation taking place at low conductance. As a figure of merit, 



one can define a linearity factor a, which controls the power dependence of the 

normalized weight g on the number of pulses given by: 

𝑔 = =<=>
=?<=>

,          (7) 

where g varies between 0 and 1 as the synaptic weight G changes from the lowest value 

G0, corresponding to the HRS, and the highest value G1, corresponding to the LRS [57]. 

The normalized weight increases with the normalized number of pulses x, also changing 

between 0 and 1, according to the power law: 

𝑔 = 𝑥
?
@,          (8) 

with the non-linearity factor a generally varying from 3 to 6 for potentiation and being 

equal to 1 only for ideally linear potentiation/depression synapses. 

 

 

Fig. 7. (a) Learning efficiency for training, namely the probability for correct recognition 

of a pattern belonging to the data set and already submitted to the network during 

training, and for test, namely the probability of correct recognition of a pattern which was 

not submitted to the network during training. The learning efficiency was studied for 

various types of update characteristics, such as non-linear/non-symmetric characteristics 

with a > 1 for potentiation and a < 1 for depression (b), non-linear/symmetric 



characteristics with a < 1 relatively close to 1 (c), linear characteristics (d), non-

linear/symmetric characteristics with large a > 1 (e), and non-linear/symmetric 

characteristics with small a < 1 (f). Reproduced with permission from [57]. Copyright 

IEEE (2015). 

 

The lack of linear update causes inefficient learning in Fig. 7, showing the learning 

efficiency for training, i.e., the probability for correct recognition of a pattern belonging 

to the data set and already submitted to the network during training, and for test, i.e., the 

probability of correct recognition of a pattern which has not been submitted to the 

network during training [57]. The learning efficiency has been studied for various types 

of update characteristics, such as non-linear/non-symmetric characteristics with a > 1 for 

potentiation and a < 1 for depression (b), non-linear/symmetric characteristics with a < 1 

relatively close to 1 (c), linear characteristics (d), non-linear/symmetric characteristics 

with large a > 1 (e), and non-linear/symmetric characteristics with small a < 1 (f). In 

general, the learning efficiency suffers from both non-linearity and asymmetry, with the 

best performance for linear characteristics (d), and the worst behavior for non-linear, non-

symmetric update (b). These results support the importance of a broad research scope 

aiming at linearity and symmetry in update characteristics, either by material engineering 

[57-59], or by circuit design [60]. Another important device property is the available 

dynamic range, namely the ratio between the highest and the lowest achievable 

conductance. A higher dynamic range allows to accommodate a larger number of 

intermediate steps, thus providing improved ANN performances. Toward this goal, an 

interesting approach is the periodic carry concept [61], where, instead of using one device 



for G+ and one for G-, more devices are employed, each of them with a varying 

significance obtained by weighting the single device contributions with incremental 

coefficients (e.g., 1, 1/5, 1/25 and 1/125 [61]). With the periodic carry concept, the 

available number of levels can thus increase linearly with the number of devices 

employed. 

 

2.3 Acceleration of ANNs with resistive switching devices 

Crossbar architectures display large potential advantages for the calculation of MVM 

operations, thus being ideal to implement FC-ANNs. Several studies have been proposed 

to either perform training [29, 30] or directly program pre-trained weights [62, 63]. The 

goal of the crossbar implementation is to achieve substantial speedup over conventional 

approaches to training and forward inference of deep learning networks, generally 

adopting the graphical processing unit (GPU) for fast MVM [29]. While GPUs show high 

performance in training convolutional neural networks (CNNs) [64], due to their ability 

to rapidly manipulate and move kernel weights during convolution operations, the 

performance on FC-ANNs is reduced because of the very large amount of weights to be 

trained. In this context, dense crossbar arrays of resistive devices represent an optimal 

solution, ideally reducing the duration of the weight update within an entire crossbar, 

hence ANN layer, to a single clock step [29].  

To combine the fast training in crosspoint architectures with the flexibility of GPUs, 

recently proposed analog/digital hybrid systems implement the crossbar array as an 

analog computational unit able to largely accelerate the calculation of the MVM [65-68], 

thus allowing to relax the computational load on the digital section [68]. For instance, a 



dot-product engine was proposed where the resistive crossbar array efficiently calculates 

MVM via vector scalar product a·b = Σaibi, achieving in simulation software-like 

accuracy on MNIST digit recognition by implementing pre-trained weights and 

efficiently performing forward inference [65, 66]. In a recently-proposed hybrid scheme, 

ANN training is performed by storing the weight updates into a high-precision memory, 

and then transferring the cumulated weight change DW on a crossbar memory only when 

DW shows a size comparable with the device conductance change [68]. Based on these 

reports, hybrid systems incorporating analog/digital CMOS circuits and crosspoint arrays 

of emerging memories, such as PCM and RRAM, appear as the most promising approach 

to ANNs and other neural networks for deep learning applications.  

 

 

Fig. 8. Sketch of a feedforward FC SNNs with a single-layer perceptron architecture. 

Reproduced from [44]. 

 

3. Spiking neural networks for unsupervised learning 

In a typical ANN, the input and output information are carried by the amplitude of a 

voltage or a current, which are linked to the synaptic weights by Eq. (1). While 

input/output signals might be either continuous or pulsed, there is no information carried 



by the time variables of the pulse, such as pulse width, or the frequency and the time of 

the occurrence of a stimulus. This is opposite to how the brain represents information, 

which is mapped by the specific neuron being active, and by the specific time of the 

neuron action, or spike. Such a spatiotemporal coding is what makes the brain highly 

energy efficient and highly functional in representing and elaborating complex 

information [69-71]. Another conjectured mode of information coding in the brain is rate 

coding [69-71], where the average rate of neuron spiking is used to describe the relevant 

input/output information. 

Neuromorphic systems aiming at replicating the correct data processing in the brain 

usually adopt the spiking neural network (SNN) architecture with suitable spatio-

temporal or rate coding of the information. Fig. 8 illustrates a typical SNN with single-

layer perceptron structure, consisting of a first layer of neurons, each referred to as a pre-

synaptic neuron (PRE), and a second layer with a single post-synaptic neuron (POST), 

which is connected to each PRE by a synapse [44]. The PRE spikes are transmitted 

through the synaptic connections to the POST for processing and learning. 

 

 

Fig. 9. (a) Sketch of an integrate&fire neuron, (b) input spikes and (c) corresponding 

internal potential Vint according to simulations. At fire, the accumulation is reset and a 

spike is generated toward the next layer of neurons. Reproduced from [44]. 
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Fig. 10. (a) Sketch of a biological system of 2 neurons connected by a synapse, (b) 

synapse circuit implementation into a hybrid CMOS/RRAM 1T1R structure, (c) I-V 

curve of the 1T1R HfO2-based RRAM with bipolar switching characteristics, (d) PRE and 

POST spikes overlapping for Dt > 0, and (e) measured STDP characteristics of h as a 

function of spike time delay and initial synaptic resistance R0. Reproduced from [44]. 

 

3.1 Neurons and synapses in SNNs 

In a SNN, neurons typically have a leaky integrate&fire (LIF) behavior, where input 

spikes are accumulated into an internal variable, usually referred to as membrane 

potential or internal potential Vint. As Vint reaches a threshold value, the neuron fires, i.e., 
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emits a spike toward the next layer of neurons, while resetting Vint back to zero. Fig. 9a 

shows the typical circuit of an electronic LIF neuron [44], including a first stage for leaky 

integration of an input current, with output Vint. The latter serves as input for the second 

‘fire’ stage, consisting of a voltage-controlled astable circuit for generating a spike as Vint 

overcomes a given threshold. At the fire event, the fire stage also sends a control signal 

back to the integration to reset the internal voltage Vint to zero by short-circuiting the 

feedback capacitor C. Fig. 9b shows a typical spiking current signal, while Fig. 9c shows 

the calculated Vint from a circuit simulation with the fire threshold Vth = 1 V [44]. 

Fig. 10a illustrates a biological system of 2 neurons connected by a synapse. To replicate 

such elementary system in silico, the synapse can be implemented by a hybrid 

CMOS/RRAM structure as represented in Fig. 10b. Here, the synapse combines a RRAM 

element with a field-effect transistor (FET) in a 1-transistor/1-resistor (1T1R) structure, 

where the HfO2-based RRAM shows a bipolar switching behavior with a set transition 

from high resistance state (HRS) to low resistance state (LRS) at positive voltage, and a 

reset transition from HRS to LRS for negative voltage (Fig. 10c). The current during set 

transition is forced to remain below a compliance current IC, which can be controlled by 

the gate voltage of the series FET. When the PRE emits a spiking voltage to the gate of 

the FET, a small current proportional to the 1T1R conductance flows thanks to the 

constant voltage VTE applied to the top electrode. The bottom electrode is connected to the 

input node of the POST, which thus integrates all spiking currents from the connected 

PREs. When the internal (membrane) potential Vint of the POST reaches a threshold, the 

POST fires, which consists of the generation of a feedforward spike to the next layer of 

neurons. Also, the POST generates a feedback spike composed by a positive voltage 



pulse and a negative voltage pulse, which can temporally overlap with the PRE spike. In 

case the PRE spike is temporally preceding the POST spike by a time delay Dt > 0 (Fig. 

10d), the positive branch of the feedback spike partially overlaps with the PRE spike, 

thus causing a set transition of the RRAM, or synaptic potentiation. Conversely, if the 

PRE spike is temporally following the POST spike by Dt < 0, the negative branch of the 

feedback spike partially overlaps with the PRE spike, thus inducing a reset transition of 

the RRAM, or synaptic depression. The delay-dependent RRAM conductance changes 

reproduce STDP, where potentiation and depression occur for positive and negative Dt, 

respectively [72-76]. The PRE spike is 10 ms long, which is designed to cause no impact 

on the 1T1R conductance for relatively long delays, i.e., |Dt| > 10 ms, according to the 

STDP learning rule. Fig. 10e shows the experimental STDP curve, reporting the ratio h = 

log10(R0/R) as a function of the delay time Dt for various initial resistances R0 of the 

RRAM device. Data indicate depression and potentiation for Dt < 0 and Dt > 0, 

respectively [44]. Note that the 1T1R synapse is bistable, as a weight update always leads 

to a full set transition to LRS, or a full reset transition to HRS, irrespective of the initial 

resistance R0. This implementation of STDP contrasts with the ANN trained with the 

backpropagation algorithm in Sec. 2, as it only requires two synaptic levels, thus being 

much more resilient to RRAM variability [77] and noise [78, 79]. On the other hand, the 

repeated request for full transitions may cause a stronger device degradation, with respect 

to the incremental conductance changes in backpropagation-based ANN. 

 



 

Fig. 11. (a) Measured PRE and POST spikes in a hardware 4x4 feedforward SNN, (b) 

corresponding change of resistance indicating potentiation (Dt = +3 ms) and depression 

(Dt = -7 ms), and (c) correlation plot of final resistance R(ti+1) and initial resistance R(ti) 

for various delays in the STDP synapse, leading to potentiation (positive Dt), depression 

(negative Dt), and no change (large Dt). Reproduced from [44]. 

 

3.2 Unsupervised learning by STDP  

A key difference between brain-inspired SNNs and ANNs for deep learning is the type of 

learning taking place at synaptic level. Since there is no direct supervision in the brain, 

SNNs usually implement unsupervised learning by STDP, where the synaptic network 

autonomously learns a pattern that is stochastically submitted to the network. 

Unsupervised learning by STDP has been demonstrated in hardware SNNs with 1T1R 

synapses based on feedforward structure shown in Fig. 8. Fig. 11 shows the experimental 

STDP behavior for a 1T1R synapse with the structure of Fig. 10, which was implemented 

in a 4x4 feedforward perceptron [44]. Based on the temporal overlap between the PRE 

and POST spikes in the 1T1R synapse (Fig. 11a), the synaptic weight undergoes 

b

ca



potentiation for Dt > 0 (Dt = +3 ms in Fig. 11b) and depression for Dt < 0 (Dt = -7 ms in 

Fig. 11b). Fig. 11c summarizes the STDP response of the synapse, showing the 

correlation between the resistance R(ti) measured before the application of the spikes, and 

the resistance R(ti+1) measured after the application of the spikes, for various pulse 

combinations. Cases with 0 < Dt < 10 ms reveal clear transitions to the LRS, while the 

synapse switches to the HRS for -10 ms < Dt < 0. Finally, cases for |Dt| > 10 ms show no 

resistance variation, as the pulses are never applied to the device at the same time [44]. 

 

 

Fig. 12. (a) Sketch of a feedforward SNN with 1T1R synapses, (b) pattern and (c) noise 

adopted for unsupervised learning, (d) input spikes and (e) corresponding Vint indicating 

fire in response to the presentation of the pattern after learning. Reproduced with 

permission from [40]. Copyright IEEE (2016). 

 

Fig. 12a shows the circuit implementation of perceptron network (Fig. 8), evidencing an 

architecture where many PREs are connected to the POST by 1T1R synapses. To achieve 

unsupervised specialization on an input pattern, the pattern (e.g., the “X” in Fig. 12b) is 

repeatedly submitted by the PREs through the synaptic channels, and on purpose 



randomly alternated with noise (Fig. 12c), as indicated by the raster plot in Fig. 12d, 

which shows the pixels of the 64 channels as a function of time. Thanks to the 

unsupervised learning, once the network has specialized on the input pattern, the internal 

voltage Vint in Fig. 12e shows a clear correlation between fire events and input pattern 

[40]. 

 

 

Fig. 13. (a) Measured conductance of the 1T1R synapses during unsupervised learning, 

and color plots of the synaptic weights for (b) initial state, (c) after 250 epochs, and (d) 

after 500 epochs. While potentiation of pattern synapses is almost immediate, the 

depression of background synapses is more gradual due to the uncorrelated, low-density 

noise spikes. Reproduced with permission from [40]. Copyright IEEE (2016) 

 

Fig. 13a shows the simulated behavior of the synaptic weights during the unsupervised 

training described in Fig. 12. Simulations were carried out according to a stochastic 

model of RRAM devices, where set/reset events led to a statistically distributed 

resistance values replicating the experimentally observed distributions [40]. Starting from 



a random distribution of synaptic conductances, the synapses within the pattern channels 

converge to full LRS in around 50 epochs, while synapses in the other channels, also 

known as background synapses, show a gradual depression, as evidenced by synaptic 

conductance maps in Fig. 13b-d. The contrast between the abrupt potentiation and the 

gradual depression origins from the different roles of input pattern and noise. In fact, the 

pattern submission generates an immediate potentiation of pattern synapses, because 

pattern PRE spikes are correlated in time, thus are followed by a POST fire which causes 

potentiation according to the STDP rule. On the other hand, PRE noise spikes are not 

correlated, therefore are much more likely to follow a POST fire, rather than anticipate a 

POST fire. Synapse depression thus occurs according to the STDP rule. However, since 

noise spiking density is relatively small compared to the pattern density, the depression 

rate is lower than the potentiation rate, the latter approaching the one- or few-shot 

learning speed [80]. Higher noise density leads to a faster background depression, hence 

increased overall training speed. However, excessive noise prevents the initial pattern 

potentiation, due to the competition between pattern and noise in inducing POST fire. 

The maximum amount of injected noise, hence maximum learning rate, is thus dictated 

by a trade-off between learning speed and training robustness and stability [81].  

 

3.3 Hardware demonstration of unsupervised learning 

A FC SNN with perceptron architecture was experimentally demonstrated by 

implementing PRE/POST neurons and synapses on a printed circuit board (PCB) [44]. 

An Arduino Due microcontroller (µC) was adopted to describe the spiking neurons, while 

the 1T1R HfO2 RRAM synapses were wired together to build a 4x4 perceptron network. 



Fig. 14a shows the schematic circuit layout, while Fig. 14b shows the practical hardware 

implementation on the PCB [44]. 

 

 

Fig. 14. (a) Sketch and (b) picture of the hardware SNN implemented on a PCB. The 

1T1R synapses and the PRE/POST neurons controlled by the microcontroller are 

indicated. Reproduced from [44]. 

 

Fig. 15 shows the measured synaptic weights during the unsupervised learning by 

stochastic spikes. The visual pattern consisted of a diagonal from lower-left to upper-

right of the 4x4 image and was alternated with random noise functional for depression. 

Starting from a random distribution of synaptic conductance, synapses automatically 

adapt to the submitted pattern, reaching a complete pattern potentiation and background 

depression in about 1000 epochs, as shown by the color plot of the synaptic weights in 

Fig. 15a-d. Fig. 15e shows the spiking activity alternating pattern and noise, while 

Fig. 15f shows the detailed measured conductance evolution with time. The noise density 

was relatively low (about 5%), due to the small size of the visual pattern. Despite the 



programming variability and resistance fluctuations which characterize the RRAM, 

Fig. 15f indicates a marked resistance window between the pattern synapses at LRS and 

background synapses at HRS, thus supporting the robustness of the learning algorithm. 

In addition to pattern specialization and recognition, one of the advantages of 

unsupervised algorithm is the ability to adapt to input variations, at least in case input 

variations are slower than the learning time. This adaptive behavior contrasts with ANNs 

trained with backpropagation algorithm, where the “catastrophic forgetting” [82] prevents 

the network to adapt to modifications of the input information, such as the addition of a 

new class, thus forcing to retrain the entire network rather than just adapt a portion of the 

weights. 

 

 

Fig. 15. Color plot of synaptic conductance values for (a) initial states, (b) after 300 

epochs, (c) after 600 epochs, and (d) after 1000 epochs, (e) corresponding input spikes 



and (f) real-time behavior of the synaptic conductance. Pattern synapses are potentiated 

to LRS, while background synapses are depressed to HRS. Reproduced from [44]. 

 

 

Fig. 16. (a) Input spikes, (b) synaptic weight evolution with time, (c) submitted patterns 

for each phase and (d) corresponding weights for the initial state and after each training 

phase. The submitted pattern was initially a top bar, then shifted to the left by one pixel at 

a time at every epoch. Reproduced from [81].  

 

To demonstrate the adaptability of the STDP algorithm, Fig. 16 shows the successive 

learning of four different patterns, which were submitted during presentation phases at 

increasing times. During each phase, a different pattern was applied (Fig. 16a), leading to 

the adaptation of the synaptic weights to the submitted pattern (Fig. 16b). Fig. 16c shows 

the four visual patterns, consisting of 4 pixels gradually shifting from the top bar to the 

left bar in three steps. Fig. 16d shows the color plot of the synaptic weights, revealing a 

fast adaptability to the variation of the input pattern. Interestingly, the synapses not 



involved in the change of the input pattern do not significantly change their conductance 

after input shift, thus confirming the robustness of STDP to input variations [81]. 

 

 

Fig. 17. (a) SNN for multi-pattern learning by POST1 and POST2, (b) submitted pattern 

1 (top bar with anticlockwise shift) and pattern 2 (bottom bar with anticlockwise shift), 

color plot of the synaptic conductance for synapses pointing to (c) POST1 and (d) 

POST2, measured synaptic weights for (e) POST1 and (f) POST2 as a function of epoch. 

Reproduced from [44]. 

 

STDP networks can also enable the classification and recognition of more than one 

pattern by implementing inhibitory synapses. Fig. 17a shows a perceptron SNN where the 



input layer is fully connected to two POST neurons, defined as POST1 and POST2. The 

two POSTs are mutually connected by inhibitory synapses, namely non-adaptive 

synapses which provide a negative current spike from a firing POST to the other. For 

instance, when POST1 fires in response to submitted pattern 1, POST2 receives a 

negative spike, thus inducing a decrease of the internal potential and preventing POST2 

to fire in response to the same pattern. This allows each neuron to specialize on separate 

patterns, thus maximizing the information storage and recognition capability of the 

network. Two 3x3 RRAM synaptic arrays were physically implemented to fully connect 

the 9 input axon channels to POST1 and POST2. To demonstrate learning and synaptic 

adaptation in the network, the two moving patterns in Fig. 17b, consisting of top/bottom 

horizontal stripes shifting to the clockwise or anticlockwise direction by one pixel every 

submission phase, were submitted. The patterns were randomly presented one at a time at 

the PRE channels, and were alternated with noise according to the previously discussed 

stochastic approach. Every 1000 epochs the patterns were shifted as indicated by arrows. 

Fig. 17c and d show the color plots of the measured synaptic weights for POST1 and 

POST2, respectively, at the end of each training phase. Note that each POST randomly 

learns one of the 2 patterns initially, then remains locked to the same pattern during the 

subsequent phase, due to the tendency to minimize the synaptic weight change from one 

phase to the other. Fig. 17e and f show the measured weight conductance for increasing 

epochs during each phase for POST1 and POST2, respectively. Pattern synapses are 

almost immediately potentiated to enable specialization of POST1 and POST2 to learn 

different patterns and track them during subsequent phases, thus keeping memory of the 

previous stored pattern. 



 

 

Fig. 18. Synaptic weights in a gray-scale color plot for (a) initial states, (b) after 300 

epochs, (c) after 600 epochs, (d) after 1000 epochs, (e) measured I-V curve of the HfO2 

RRAM for a low compliance current IC1 = 50 µA, corresponding to gray color, and (f) IC2 = 

100 µA corresponding to white color, (g) input spikes and (h) measured synaptic weights 

as a function of time. Reproduced from [44]. 

 

Bistability of 1T1R synapses allows for robust learning thus providing strong advantages 

in a real implementation, however the amount of information that can be encoded is only 

one bit, while several cases need more capacity. For instance, gray-scale images require a 

larger amount of information during synapse training, namely, not only the position of 



the pattern, but also the signal amplitude at that position. Fig. 18 shows an experimental 

demonstration of gray-scale image recognition, where the pattern was characterized by 

white and gray pixels. Fig. 18a-d shows the conductance color plots of experimental 

RRAMs during pattern learning. Information was stored into the 1T1R synapses 

changing the compliance current IC proportional to pixel brightness, where gray 

correspond to IC =50 µA (Fig. 18e), while white corresponds to the highest IC =100 µA 

(Fig. 18f). The black background was achieved by noise-induced depression. Fig. 18g 

shows the raster plot of input spikes, while Fig. 18h shows the measured synaptic 

conductances for increasing epochs, supporting gray-scale learning with gray and white 

patterns reaching separate LRS conductance values LRS1 and LRS2, respectively [44]. 

 

4. Conclusions and outlook  

This chapter reviews the state of the art regarding neuromorphic computing using 

resistive switching memory (RRAM) devices. Two computing approaches have been 

covered, namely the ANN for supervised training and the SNN for brain-inspired 

unsupervised learning via STDP. ANNs find application in computer vision and can 

improve the training speed and energy efficiency with respect to CMOS-based systems, 

such as the GPU, thanks to physical computation of MVM within the memory array. The 

main challenge is the control of conductance in the RRAM, due to variability and non-

linearity of weight update characteristics. On the other hand, RRAM seems a promising 

solution for synaptic elements in brain-inspired SNNs, due to robust learning and 

relatively-easy implementation of bio-realistic learning schemes, such as STDP and 

spike-rate dependent plasticity (SRDP) rules. Unsupervised learning via STDP in SNNs 



was demonstrated both in simulation and hardware experiments, thus supporting the 

feasibility of RRAM-based SNNs for brain-inspired neuro-computing. 

Although RRAM seems promising for synaptic elements in neural networks, there are 

still several challenges to reach commercial viability with respect to other existing 

technologies. In ANN applications, RRAM synapses are still affected by relatively slow 

programming compared to SRAM and DRAM, strong non-linearity of weight update [57-

60], and variability issues [31,77]. In particular, gradual set and reset processes are 

usually observed in a limited class of RRAM devices, which still requires optimization to 

improve the symmetry and linearity and thus achieve robust learning in supervised 

training. Materials engineering, e.g., adopting interface-type switching in bilayer 

structures [58], or synaptic circuit engineering [60] are needed to improve and optimize 

RRAM characteristics for analog ANNs. 

Regarding brain-inspired SNNs, the application scenario for this technology is not clear 

yet. The implementation of cognitive primitives similar to the human brain is extremely 

promising for realizing image and speech recognition in hardware, with relatively high 

energy efficiency and large information storage density. However, these applications still 

require synaptic devices capable of closely resembling the biological learning rules in the 

brain, such as short-term activation in synaptic plasticity, which might enable bio-

realistic learning by the physics of the device [83]. The architecture to achieve this goal 

might require both feedforward and recurrent SNNs, such as Hopfield networks with 

attractor-based dynamics [84]. A broadly interdisciplinary approach involving device 

engineering, circuit design, and neuroscience is thus needed to create a research roadmap 

toward the development of truly brain-inspired neuromorphic computing. 
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