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The process of online reinforcement learning also creates a stream of experiences that an agent can store to re-learn
from them. In this work, we introduce a concept of artificial perception affecting the dynamics of experience memory
replay, which induces a secondary goal-directed drive that complements the main goal defined by the reinforcement
function. The different perception dynamics are capable of inducing different “personality” types able to govern the agent
behavior, possibly enabling it to exhibit an improved performance over an environment with specific characteristics.
Experimental results show that different personalities show different performance levels when facing environment
variations, therefore showcasing the influence of artificial perception in agent’s adaptation.
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Introduction

Reinforcement learning is a process aimed at reducing
uncertainty about which actions an agent is required to take
at each time step in order to better adapt to its environment.
This process of adaptation is driven by a specific feedback
the agent receives, usually provided by a reinforcement
function ranging on some signals from the environment.
The main goal of the agent is to create a mapping from its
sensed state to the probability of selecting an action that
would represent the best choice to maximize the received
reinforcement in the long run. This probability distribution
is called an optimal policy 7* and it is a result of an iterative
update of the previous policies 7 over the learning process.

Given that we may have multiple optimal policies 7* all
of them achieving optimal behavior in different ways, by
selecting different actions, it might be possible to influence
the agent behavior by further narrowing action selection,
while still keeping it focused on the main goal of maximizing
the reinforcement. This work exploits this possibility by
modifying the agent’s behavioral characteristics by changing
the way the agent perceives the feedback it receives from its
immediate environment; this creates an additional secondary
drive that augments the main one given by the reinforcement
function. Perception is not represented by the data collected
by the agent, but as the way the feedback from its immediate
environment is encoded and managed by the learning
mechanism. Influencing the way data are encoded, we can
modify the dynamics of the agent’s perception and thus
influence its behavioral characteristics.

Due to the increase in state space dimension, modern
approaches to reinforcement learning rely on a function
approximator, such as an artificial neural network, to
approximate the state-action values. The proposed approach
takes an advantage of the dynamics of the stochastic gradient
descent algorithm which is used to perform the learning
update on the weights of the artificial neural network at
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each time step in order to better approximate the values.
An agent learns from a sequential stream of experiences
and after each perception it updates its belief about the
optimal state-action value Q* (s, a) by performing a gradient
descent on the parameters or weights of neural network
© in order to minimize the square error of the previous
estimate and the expected value of () for the perceived state
s and the taken action a. For the accurate approximation
a gradient descent should be performed on each dataset
point and, in our case, this means computing an algorithm
not just on the current experience, but on the whole
history of experiences the agent perceived so far, which is
computationally impractical for most implementations. To
alleviate this approximation problem a minibatch stochastic
gradient descent first proposed by Lin (1993) is used,
which, instead of re-learning from all of the experiences
selects a batch of few random experiences from a sliding
window buffer of experiences called replay memory and re-
learns from this batch at each time step. The dynamics of
determining which experiences to store and replay using
minibatch approach form the basis for the implementation
of the artificial perception mechanism that is the focal point
of this work.

A reinforcement learning mechanism is concerned not
only with the information that its environment provides,
but also with the way this information is perceived. This
perception factor becomes the additional secondary drive
that could further reduce the agent’s uncertainty during the
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learning process. The process of a secondary drive controlled
by the perception mechanism allows for a further and more
subtle modification of an agent’s behavior without interfering
with the primary reward maximization behavior. Similarly in
humans we see different dispositions to a range of behaviors
that alter they way they achieve their primary goals. These
dispositions are known as personality traits and they are a
product of the different physical characteristics of human
brains altering the chemical compositions that governs
the behavior. For example, extroverted and introverted
individuals can achieve the same primary goal of enjoying,
but in a different way; the first will most probably engage
in social activity, while the latter will prefer to stay home,
away from people. This paper proposes an algorithm to
manage perception able to model agents with a specific set
of personality types, similar to human ones, that will enable
them to better adapt and thrive in environments with different
or changing characteristics.

Related Work
Prioritized sampling and replay

To reduce the time needed to collect enough experience to
converge to a good estimation of Q, it has been proposed to
keep in memory some of the already collected experiences
and to replay them.

Dyna approach by Sutton (1990) incorporates learning
with planning as two radically similar processes. Planning is
taking advantage of the world model to generate imaginary
experiences that can be used by a model-free learning
algorithms such as g-learning. In doing so it can incorporate
previous experiences in the process of learning similar
to replay memory approach. It has also been extended
to support learning with linear function approximation
by Sutton et al. (2012), which is consistent with the approach
presented in this paper.

Similar to the ideas of Dyna algorithm the infernal
simulation by Jirenhed et al. (2001); Ziemke et al. (2005)
relied on the fact that human perception can allow for self-
generated sensory experience in the absence of external
stimuli. The agent’s inner world is able to build an internal
representation of the external world and by generating
experience partly alleviate the need for costly trial and
error actions. The model used a recurrent neural network in
which the previous inputs are able to influence future ones
providing an internal state or context.

The internal simulation approach was also used by Shanahan
(2006) to model cognitive functions such as anticipation and
planning.

In a more recent work Ramicic and Bonarini (2019) used
a genetic algorithm to evolve an artificial neural network
crisp selector that was able to determine if the selected
experience would be sampled into the replay memory. The
approach evolved a specific perception filter similar to the
one presented in this paper that was able to further adapt the
agents to the environment characteristics.

Since the introduction of the replay memory mechanism
in Deep Q-Learning (DQL) Mnih et al. (2013) many works
have been aimed at further improving the efficiency of
learning, by focusing, or giving priority, to certain types of
experiences over others, both in sampling and replay. One
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of the first successful approaches Schaul et al. (2015) used
stochastic prioritizing on the experiences stored in replay
memory, with high Temporal Difference (TD) error, under
the assumption that high TD error of experience transition
would make the training faster because of its higher deviation
from the current approximated Q-value for the state-action
pair.

Another approach Zhai et al. (2016) further argued that
prioritized sampling performed by Schaul et al. (2015) may
suffer from loss of potentially valuable transitions with
higher TD error especially in the beginning of the learning
process when the transitions with rewards are mainly the
ones that account for high TD error levels. Instead of uniform
sampling, their approach was to sample all the transitions
into two separate replay memory buffers: one containing
the transitions with the immediate reward, and the other the
rest of the transitions. Stochastically sampling from the two
memory buffers with different priorities allowed them to
reach a learning speed higher than in Schaul et al. (2015).

Another approach Ramicic and Bonarini (2017b) intro-
duced a different criterion for prioritizing on the experiences,
based on the Shannon’s entropy level of the starting state of
a transition, sg. This criterion directly influences the learning
performance given that during each approximation, state sg
is backpropagated through the ANN on input together with
the TD error of the taken action ag on the output in order
to update our prediction of Q*(s, a). Experimental results
from Ramicic and Bonarini (2017b) show that the transitions
with higher entropy levels of s0 are more likely to train the
approximator faster, and even more when they are coupled
with a higher level of TD error on the output. Therefore,
combining the two criteria leads to an improvement of speed.

In Ramicic and Bonarini (2017a), we wanted to further
explore the social aspect of agent behavior. In a multi-
agent setting, agents had the ability to communicate by
exchanging a positive reinforcement upon contact and thus
motivating it. Agents had the possibility of learning to choose
whether to engage more with other agents, which provided
an indirect communication reinforcement, or focus more
on the exploration of the environment in search for more
direct reinforcement coming from abundant food sources.
Experimental results have shown that agents prioritizing on
the transitions that led to communication between the agents
can modify their behaviour, making them more inclined to
engage with the interaction, while agents that focused on the
transitions that are related to exploration showed tendency to
stay away from other agents. These two types of agents are
used to model the two extremes in the main five factor John
et al. (1999) personality dimensions of Extroversion; on the
higher end of the scale there is the agent type that gravitates
more towards interaction with other agents and, similarly, on
the low scale we have the more selfish, exploratory agent
type.

In the work we are presenting here, we built upon this
approach using the same prioritization principle, but instead
of focusing on the social aspect we have developed a general
framework to fully support the concept.

Agents with personality traits

In the work by Recchia et al. (2014) agents with varying
personality traits were developed based on Myers-Briggs



personality type indicator by assigning reward adjustments
specific to the trait. The agents were tested in a multi-
agent cooperative environment and results were measured
by the team performance on all of the agents under the
commander agent. The experiments showed that the best
team performance was under the commander agent that
implemented team oriented personality types instead of
introverted selfish ones.

Sun and Wilson (2014b,a) explore the role of compu-
tationally modelled instinct as a product of basic human
motivation in forming of various personality traits. The
personality types are represented by three axis; social/shy,
confident/anxious and responsible/lazy. The experiments
performed interpret the influence that a specific personality
has on behavior preferences in agents.

A more recent work by Metcalf et al. (2018) proposes a
method for learning agents to adopt turn-taking behaviors
such as passive, aggressive and stochastic while interacting
with rule-based agents.

Agents with emotional states

In literature starting from Goleman (2006) emotion is often
defined as a complex and dynamic process that is mediated
by personality, time and experience. A work by Rumbell
et al. (2012) provides a good introduction and review of the
work that dealt with the emergence of emotional states in
artificial learning agents.

One of the first approaches in modeling emotion in
reinforcement learning is presented in a work by Gadanho
and Hallam (1998) implementing a bottom-up model with
four basic emotions of sadness, happiness, fear, and anger
that are induced by a combination of feelings and a simple
artificial hormone system. Instead of providing a secondary
drive goal as outlined in the approach presented here, the
main role of the emotions in this work is the decomposition
of the main drive into more basic parts which can be activated
by emotions and thus become more manageable separately.

Expanding on Gadanho and Hallam (1998) another
biologically inspired work was presented by Tsankova
(2009). This work proposed a model of Amygdala; an
emotion controlling brain cluster which is found in complex
vertebrates. The emotion model which is mediating the
action selection is based on the computational model of
information flow in Amygdala and its being used primarily to
model the emotion of fear. The performance was measured in
agents effectiveness during tasks of obstacle avoidance with
varying degrees of complexity.

Salichs and Malfaz (2006) proposed models of three
emotions; happiness, sadness and fear which affected the
algorithm in different ways. The emotion of happiness
was used as an intrinsic motivation as its maximization
represented the final goal of an agent. Happiness/sadness
dichotomy also provided positive/negative reinforcement
values while the emotion of fear was used by an agent to
avoid potential dangers.

In the work by Ahn and Picard (2005) the emotions
are induced by their components of valence and arousal,
which, similarly to our approach, takes into account the
cognition flow of the agent’s experience stream. The valence
component takes into consideration the history of previous
experience to calculate the anticipation of the reward, and
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it is positive when a choice is expected to give a reward
higher than expected, and negative if that is not the case. The
arousal component increases with the cognitive uncertainty
associated with the decision.

Sato et al. (2004) similarly to Ramicic and Bonarini
(2017a) focused on idea of emotions as emerging
properties of social multi-agent interaction while each agent
implemented a set of behavioral rules that affected its
action selection. The emotions were represented by two
dimensions; valence and activity which in turn affected the
behavioral rules. The agents were able to learn how to show
positive emotion towards benevolent agents and negative
towards the hostile ones and to decide whether to flock
towards them or avoid them. This behaviour was made
possible as they were able to detect the valence of the other
agents and consequently their dispositions.

Theoretical Background
Reinforcement Learning

Reinforcement learning is a process of creating a policy m
that maps the agent’s perceived state to the probabilities of
selecting the possible actions available to an agent. In this
process the policy 7 is constantly updated by an agent’s
interaction with the environment in discrete time steps to
maximize the total cumulative reward over the long run and
converge towards optimal policy 7* Sutton and Barto (1998).
The steps are defined as transitions over a Markov Decision
Process and they are represented by a tuple (s, ag, ¢, St41).
An optimal policy mapping requires an optimal action-value
function Q*(s, a) defined as the maximum expected return
while following the policy 7 shown in Equation 1.

Q*(s,a) = maxE[R;|s; = s,a; = a, 7] €))

Bellman Optimality Equation 2 guarantees the
convergence when 7 —ox and it indicates that the expected Q
value is equal to the immediate reward plus the discounted
value of the expected next state. Using this equation in
iteration over all of the state-action pairs is impractical for
most cases where we are faced with a high dimensional
state space so in this case we use a function approximator,
such as an artificial neural network, to approximate Q*(s, a).

Qir1(s,a) =E [r +ymax Qi(s',ad)]s,a )

A function approximation gives us an estimates of the Q
values for each of the possible next actions given the input of
the state-action pair. After each iteration one computes the
expected Q value using Equation 2 and compare it to our
previous estimate Q(s, a; ©) =~ Q*(s, a) that we receive by
forwarding the state-action pair at the input of the ANN. The
difference between our previous estimate and our expectation
is then backpropagated through the ANN in order to update
our current approximation of Q*(s, a).

Backpropagation is performed by updating the weights of
the neural network © by performing a gradient descent on
the loss L;(©;) according to Equation 3:

Ve, Li(0i) = (y: — Q(s,0;0:)) Ve,Q(s,a;0:),  (3)
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where y; = r + ymax, Q(s',a’; ©,_1) represents the Bell-
man equation as our target value.

Model Architecture and Learning Algorithm

The agent performs a transition in the environment by
moving from state s; to next state s;;; using action ay
and experiencing a scalar reward 7; in the process. These
observed values contain enough information to perform an
iteration of a learning process by updating our previous
belief about the value Q(s,a) of the state-action pair. This
update is performed at (d) block of Figure 1 as a part of
the main learning loop (b) and it consists of updating the
weights vector © of artificial neural network detailed in
Figure 2 making our approximation of @) a step closer to
the target value as given by Equation 2. The process creates
an experience stream of sequential transitions the agent has
experienced from the beginning of the learning process. Each
of these experiences carries a potential for re-learning that
would be lost if they are discarded after the initial update;
therefore, instead, they are recycled through a perceptive
buffer called replay memory as shown in (a) section of
Figure 1.

Due to the limited capacity of the memory buffer, this
form of perception, just like in humans, should be able to be
selective over types of experiences that are being sampled.
The perception itself becomes a kind of reality filter”, able
to influence how does the agent gather information from its
environment and further interacts with it to reach its goal.
The premise of this approach is that the contents of the
replay memory that represents a subset of the experience
stream form the perceptive layer able to provide a secondary
drive that, in turn, influences the agent’s behaviour. The idea
of perception being a filter of experiences that protects the
agent from oversaturation is implemented through stochastic
sampling shown in the artificial perception box included in
block (f) of Figure 1. As we can see from Algorithm 1 the
artificial perception block is implemented as a probability of
sampling the transition P (%) into replay memory structure D.

Experimental Setup

Experiments were performed to compare the performance of
six agent types implementing different perception dynamics
or sampling strategies in two different environments: Water-
world and Lunar Lander. The first one, Waterworld Karpathy
(2013) represents a continuous learning process implement-
ing a high-dimensional state space and a crisp reinforce-
ment function, while a more applicable and realistic setup
of Lunar Lander Brockman et al. (2016) environment is
characterized by an episodic task, with a continuous and
complex reinforcement function, and a low dimension of
state space. Waterworld was implemented in three variations
depending of the good to bad food ratio, which together
with Lunar Lander evaluation accounted to a total of four
separate batches of experiments. Each of the agent types
were evaluated separately in a single-agent setting and the
agents were initialized at a random position with a random
approximation ANN. The effectiveness of each agent was
measured by a total cumulative reinforcement received, or
how well it performed in the given environment.
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Algorithm 1 Q-learning with artificial perception block

Initialize replay memory D with capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
fort=1,Tdo
With probability e select a random action a
otherwise select a; = arg max, Q*(s¢, a; ©)
Execute action a;, observe reward r; and state sy

Store transition (s, at, ¢, S¢+1) in D according to

the probability P()
Sample random batch of transitions (s¢, as, 74, St4+1)
from D

T terminal s; 41
sety; =

ri +ymaxy Q(siy1,a’;0),

descent

Perform a gradient (ys —

step on
Q(s;,a;;0))? according to Equation 3
end for

end for

Waterworld environment

The Waterworld environment as a part of ReinforcelS
framework Karpathy (2013) consists of food pieces that
are generated as they are consumed, at a random position
with a random velocity vector. They move freely in the
environment. There are two types of food: good and bad. The
dynamics of this specific environment allowed us to perform
different sets of experiments, exploring the effect of different
amounts of food. In the first one, the number of bad and good
food pieces in the environment are the same, namely 2 of
each type. In the second one, the proportion of good and bad
food is brought to 2:1, making it benevolent. In the third,
hostile one, the proportion of good and bad food is inverted
so that the environment contains an amount of bad food twice
than the good one.

The agents aim at discovering an optimal policy that
would allow them to eat (touch) the most good food pieces,
while avoiding as much as possible the bad ones. The
reinforcement is, respectively, +1 for the good, and -1 for the
bad food sources that the agent can reach. The environment
contains equal amounts of good and bad food pieces and the
ratio is kept constant by regenerating the consumed piece of
food.

The agent perception includes 30 directional sensors, each
of which can detect 5 continuous variables: distance and
speed in x and y direction of the different perceived objects
that include good food, bad food, and distance to wall or the
boundaries. This, with an agent’s own speed components in
z and y direction accounts for a quite high dimensional state
space of 152 continuous variables.

Approximation of Q(s,a;0) ~ Q*(s,a) is obtained
using an ANN with one hidden fully connected layer of 100
neurons, which are producing as output the Q values of all
five actions available to the agent: up, down, left, right, stay.

non terminal
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Figure 1. General learning model architecture including attention focus block: (a) Replay memory buffer; (b) Main learning loop;
(d) Q-value function approximator detailed in Figure 2; (¢) Raw stream of the experiences; (f) Artificial perception block
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STATE

Figure 2. Main function approximator ANN implemented in the
(d) block of Figure 1: it receives a 152-dimensional state as its
input and approximates it to Q) values for each of the five
possible actions available to an agent at its output, therefore
providing an approximation for Q(s, a) pairs.

The learning rate of an approximator « is set to a low 0.05
and the capacity of the replay memory buffer is 5000. The
value of e is set to 0.2 at the beginning and adjusted to 0.1 at
the 30.000-th step of the learning to exploit more the learned
behavior. The discount factor + is set to 0.9.
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Lunar Lander environment

A part of OpenAl Gym framework by Brockman et al.
(2016), Lunar Lander environment consists of a craft
equipped with thrusters attempting to land to a designated
platform on a surface under the influence of a weak lunar
gravity.

The craft has a total of four discrete actions at its disposal:
do nothing, fire main thruster, fire left thruster, fire right
thruster. The world state as perceived by the agent consists
of 8 variables; crafts angle, angular velocity, z and y
components of velocity, x and y position relative to the
landing platform and a contact of each of the two legs with
the surface.

The reinforcement function is proportional to the distance
of the craft to the landing platform while each leg contact
is awarded by +10 and usage of a main engine by -0.3.
An episode finishes if the lander crashes or comes to rest,
receiving additional -100 or +100 of reinforcement.

The experiment consisted of 20 batches each running 1600
episodes, which proved to be more than enough to consider
the environment as solved. The starting € of 1.0 was decayed
after each episode multiplying it by 0.998. v was set to 0.99.
Artificial neural network was initialized with two hidden
layers which consisted of 128 and 64 nodes respectively with
the learning rate parameter set at a low 0.0001.
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Perception Dynamics

In order to see how does the artificial perception component
contribute to behavioral characteristics and performance, a
total of six behavioral traits or personalities are outlined in
Table 1 each of them corresponding to a different perception
dynamics given by their experience sampling strategy. The
sampling strategies induce dynamics by modifying two
dimensions of the experience stream: the type of the
transition given by the reward obtained and the amount of
transitions sampled, reported in Table 2. The rows of the
table are showing the transition type which is good if the
reinforcement is positive, bad if it is negative, and random
if the agent doesn’t care about the reinforcement. A low
or high amount of each type of experience can be sampled
according to what reported on the columns of Table 2.
This gives us a total of six combinations of perception
dynamics; each one corresponding to an agent’s personality
disposition. The amount of experience columns divide the
agent types in two meta-groups, which can be associated
with the extroversion/introversion main axis found in major
personality indicators such as John et al. (1999); Briggs
(1976). Extroverted agents have a tendency to sample more
experiences while the introverted ones are conservative and
tend to limit the amount of sampling.

The actual probability values used in varying sampling
dynamics are reported in Table 3.

Table 1. Mapping of agent’s personality traits and sampling
strategies.

Emotion  Strategy

state

happy There is something good in any experience.
It selects a lot of experiences, randomly.

sad There is always something bad in new things.
It selects randomly few experiences.

fearful It is afraid to get bad things. It selects a good
number of negative experiences, so to learn
to avoid them.

greedy Always get as much as possible. It selects a
lot of good experiences, discarding the bad
ones.

cautious It aims for good, but it tends to be conserva-
tive. It selects few good experiences.

provident It is ready to face problems, and it conser-

vative. It selects few negative experiences to
learn from them.

Experimental Results

Waterworld environment

Normal environment which contained equal amounts of
positive and negative reinforcement sources showed a
divergence in agents score implementing different perception
dynamics as we can see from Figure 3. We can also notice
that in this type of balanced environment the conservative
sampling strategy of the provident agent type proved to be
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Table 2. Agent personality trait types represented as
combinations of two sampling dimensions with columns
representing the quantity of sampled transitions and rows
represent the type.

amount/ype | few many
good cautious greedy
bad provident fearful
random | sad happy

Table 3. Agent sampling strategies probability values used in
experiments.

type/amount | few many

good p(.05) or (if(r=1) and p(.05) or (if(r=1) and
p(5)) p(1)

bad p(.05) or (if(r=-1) and  p(.05) or (if(r=-1) and
p(.5) p(1)

random p(.15) p(.5)

most effective, while the optimistic happy agent was the
worst. Agents with cautious and greedy attitude performed
slightly better than the conservative one, and the random
sampling strategy of the sad one still underperformed when
compared to the second best fearful strategy.

Hostile environment showcased in Figure 4, which
was mostly populated with negative reinforcement (ratio
good/bad food is 1:2), shows even more divergence among
the agent types than the normal one. This harsh environment
have proved to be best faced by the agents that adapted a
fearful strategy allowing them to thrive and perform far more
than the other types. The conservative strategies of provident
agents also showed adaptability scoring second best followed
by an ultra-optimistic happy one. The strategies that haven’t
adapted to this kind of environment were the ones that
focused on positive experiences, such as cautious and greedy
and the conservative random approach of sad agent.

Figure 5 compares the performance in a benevolent envi-
ronment containing more positive than negative reinforce-
ment (ratio 2:1). This environment variation was faced in
a similar way by all the perception dynamics, except the
optimistic happy agent that underperformed despite the high
availability of the positive food sources.

Lunar Lander environment

Contrasting the results on default or Normal configuration
of Waterworld reported in Figure 3, from the Figure 6
it is evident that the Lunar Lander environment favored
the random approaches of optimistic happy agent and the
conservative sad agent. The third best performance belonged
to a selective, but conservative, provident type followed by
an ultra-conservative fearful agent. The greedy and cautious
agent types performed the worst in the Lunar Lander



environment dynamics. which proved to be consistent with
the hostile variation of Waterworld shown in Figure 4.

Discussion

Looking at the all-round performance across the environ-
ments and their variations it seems that conservative, cau-
tious strategies like provident and fearful deliver the best
performances. The fearful approach to perception seems to
give a good consistent performance in all of the experiments
in the setup, suggesting that negative experiences play a
more important role than the positive ones in the learning
process. Even in environments that are scarce in positive
reinforcement like the hostile Waterworld, focusing on the
negative experience still gives a performance that is equal
or better than the other sampling strategies. Not surprisingly,
the fearful agent performs the best in an environment that
is hostile by focusing on avoidance rather than exploration,
but, interestingly, it provides an effective strategy also for the
environments that are by nature more supportive.

The sampling strategy implemented through provident
agent’s narrower selection of negative experiences is
insightful of the nature of perception itself. Its superior
performance in the baseline Waterworld and a good overall
performance in Lunar Lander gives us a clue about the fact
that perception is inherently highly selective of experiences
and that it can be best represented as a filter with respect
to the environment. Acting as a mediator of agent’s
cognition it can protect its cognitive gateway of limited
capacity, the replay memory, from being oversaturated
with experiences. Oversaturation posed a problem for a
Waterworld environment, but it had a positive effect on
Lunar Lander, where a larger replay memory buffer was
implemented. All of the variations of Waterworld showed
a low performance of the happy strategy, while the same
strategy proved to be the best in Lunar Lander environment.
In the Waterworld and its variations the “happy” selection
of a lot of random experiences oversaturated the replay
memory quickly and this had a great effect on the agent’s
performance.

In Waterworld variations the cautious and greedy
strategies of focusing on the good experiences proved to be a
good approach in the baseline, where they outperformed the
random ones of happy and sad, but due to the lack of positive
reinforcement in hostile world they could not achieve high
performance there.

On the contrary, cautious and greedy preference for
positive experience proved to be the least favorable approach
considering the dynamics of Lunar Lander environment.
Interestingly enough, the lack of performance of cautious
and greedy agent types became evident only in the long
run while their performance over the first 6000 episodes
was comparable or even better than the one of the other
types. It seems that in these early stages of learning the
focus on positive experiences enabled the agent to learn
the more rewarding landing tactics and to progress more
quickly, while the lack of negative experiences prevented it
to further perfect them. The hostile nature of Lunar Lander
environment favored the agents that were inclined towards
negative experiences as we can notice from the performance
of provident and fearful, but the best trend throughout for
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this environment belongs to the neutral dispositions such as
happy and sad.

Overall the agents that focused their perception on the
positive experiences showed a more exploratory behavior,
while the ones that focused on the negative were more
conservative and static.
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Figure 3. Average score or total reinforcement received over
50 trials with agents with different perception dynamics in
Normal environment type during first 60.000 learning steps.
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Figure 4. Average score or total reinforcement received over
50 trials with agents with different perception dynamics in
Hostile environment type during first 60.000 learning steps.

Conclusion

We presented a model of artificial perception capable of
modifying the way an agent selects information from its
environment during learning. The perception layer creates
additional possibility for influencing the agent’s behavior
which can be used as a secondary goal-oriented drive
in addition to the reinforcement function. Using this
technique, an agent is able to better adapt its learning to
a specific environment only by changing the use of its
perceived experiences without modifying its reinforcement
function. The main point is that the algorithms simplicity
implemented only by a cognitive filter can elicit a complex
behavioral pattern without defining motivational goals or
drives as in Sun and Wilson (2014b,a) or modifying the
experience as in Recchia et al. (2014). Compared to Dyna



Journal Title XX(X)

9
8
8
8

Agent Type
CAUTIOUS
FEARFUL

— GREEDY
HAPPY

2000+

= PROVIDENT

= sap
1000+

Average Score (total reinforcement) of Agents in Benevolent Environment
°

0 20 40 60
Training Steps (e"3)
Figure 5. Average score or total reinforcement received over

50 trials with agents with different perception dynamics in
Benevolent environment type during first 60.000 learning steps.
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Figure 6. Average score or total reinforcement received over
20 trials with agents with different perception dynamics in Lunar
Lander environment during first 1600 episodes.

approaches Sutton (1990); Sutton et al. (2012) and internal
simulation ones Jirenhed et al. (2001); Ziemke et al. (2005)
our algorithm relies only on filtering in different ways the
actual data perceived from the environment.

Looking beyond the effectiveness, artificial perception
can create a contextual filtering buffer between the
agent’s cognition and the learning algorithm, possibly
producing more efficient data exploitation, and preventing
the mechanism of replay memory to be oversaturated, thus
becoming ineffective.
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