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Abstract

This paper explores the capability of solar sails to transfer a probe from the displaced Sun-Earth L1 and
L2 libration points to the region of practical stability (RPS) around the triangular equilibrium points L4

and L5. If the sailcraft arrives inside the RPS with zero synodical velocity, it will remain there with minor
station keeping requirements. Moreover, the location of the RPS is ideal for space weather missions as the
Sun can be observed from a different angle compared to spacecraft orbiting the L1 point. The unstable
manifolds of the displaced L1 and L2 points come close to these regions providing opportunities for natural
transfer trajectories. By varying the solar sail orientation along the manifold, the dynamics can be altered
and simple transfer trajectories that reach the RPS with few sail maneuvers are enabled. However, these
trajectories are not optimal from a transfer time perspective, but can serve as suitable initial guesses for
a direct optimization method to find minimum-time transfers between the displaced L1 and L2 points and
the RPS at L4 and L5.

Keywords: solar sails, libration point orbits, invariant manifolds, regions of practical stability, minimum
time optimization

Nomenclature

Constants

µ Dimensionless Earth mass

σ∗ Critical sail loading

G Universal gravitational constant

msun Mass of the Sun

P0 Solar radiation pressure at 1 astronomical unit

R0 Sun-Earth distance equal to 1 astronomical unit

Other notation

�̈ Second-order time derivative
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Preprint submitted to Journal of Aerospace and Science Technology August 7, 2019



∆� Difference

�̇ First-order time derivative

Paramters

α Pitch angle

β Lightness number

δ Clock angle

ρa Absorption coefficient

ρs Reflectivity coefficient

σ Ratio of spacecraft mass and sail area

A Solar sail area

a0 Characteristic acceleration

m Spacecraft mass

P Solar radiation pressure

Subscripts

0 Initial

f Final

i Integer with i = 1, 2, . . .

M Maximal

m Minimal

R Related to region R

max Maximum

Variables

(r, θ) Polar coordinates

(x, y, z) Axes of synodical reference frame

k Vector of static parameters

n̂ = (nx, ny, nz) Solar sail unit normal vector

r̂s Sun-sail unit vector

ẑ Unit vector along z-axis

Ω(x, y, z) Sum of gravitational and centripetal potential

{r̂s, p̂, q̂} Sail-centered reference frame to define solar sail acceleration vector

J Objective function

Jc Jacobi constant
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R,R′ Subset in (x, y)- or (r, θ)-coordinates around SL4,5

r2 Sun-sail distance projected on (x, y)-plane

RS Distance from the Sun

rpe Earth-sail distance

rps Sun-sail distance

SLi Displaced Libration point with i = 1, . . . , 5

T Integration time

t Time

u Control variable

W s(SLi) Stable manifold of the displaced SLi point with i = 1, 2

Wu(SLi) Unstable manifold of the displaced SLi point with i = 1, 2

v̂ui Unstable direction of the SLi equilibrium point

as = (ax, ay, az) Solar sail acceleration vector and components

Fa Solar radiation pressure force due to absorption

Fr Solar radiation pressure force due to reflection

rpe Earth-sail vector

rps Sun-sail vector

1. Introduction

Solar sails are a type of low-thrust propulsion system that take advantage of the Solar Radiation Pressure
(SRP) to accelerate a probe by means of a highly reflective surface. To date, there have been three successful
solar sail demonstration missions: IKAROS by JAXA (May 2010)[41], NanoSail-D2 by NASA (December
2010)[21] and LightSail-1 by The Planetary Society (June 2016)[39]. These successes have sparked further
interest in solar sailing, resulting in more scheduled demonstration missions in the upcoming two years:
LightSail-2 (the follow-up of LightSail-1 by The Planetary Society) and NASA’s NEA Scout mission.

The unique selling point of solar sailing is the fact that its propulsive capabilities do not rely on an on-
board reaction mass. This makes solar sailing an appealing option for a range of challenging mission concepts
such as hovering along the Sun-Earth line sunward of the L1 point (also known as the Geostorm [43, 42]
or Sunjammer mission concept [18, 19]), displacing the orbits or L1 point above the ecliptic plane for high-
latitude observations of the Earth [30, 13, 11], precessing an elliptical Earth-centered orbit for long residence
times in the Earth’s magnetotail (the GeoSail mission concept [25, 28, 32]), and even low-cost multi-asteroid
rendezvous missions [33]. The purpose of the current paper is to complement this extensive list of solar sail
enabled mission concepts with a preliminary study on the feasibility of solar sail transfers from the L1 and
L2 points of the Sun-Earth Circular Restricted Three Body Problem (CRTBP) to the vicinity of the L4 and
L5 points.

The Sun-Earth CRTBP is a well-known reference model in astrodynamics and has been extensively
studied in the past [40]. It is also well-known that the system exhibits five equilibrium points (L1, . . . , L5)
whose position can be artificially displaced when including a solar sail acceleration [27]. Due to their strategic
location close to the Earth and their dynamical properties, periodic and quasi-periodic orbits around L1
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and L2 have been used as reference orbits for several mission in the past such as SOHO, Genesis, GAIA,
and Hershel-Plank. Because orbits around L4 and L5 are stable and no station keeping is required, they are
also starting to become of interest. Besides the interest from an astrodynamics perspective, the L4 and L5

points also hold great scientific interest as they provide a unique “side-on” view of the Sun. Such a view
would be crucial in furthering the understanding of the initiation and propagation of space weather events
as well as improving current space weather event forecasting capabilities. In particular, through the side-on
view, the speed of Coronal Mass Ejections (CMEs) can be measured with greater accuracy and, from L5,
the part of the Sun’s surface that is about to rotate towards the Earth can be observed providing an early
view of the CMEs [14].

Though of significant interest, the L4 and L5 points are hard to reach, but recent studies [35, 6] show that
with solar sail propulsion, the vicinity of the L4 and L5 points can be reached in a reasonable amount of time.
While the work by Sood and Howell [35] (and a similar work for chemical propulsion by Llanos et al. [24]),
proposes to depart from a parking orbit around the Earth and reach a stable periodic orbit around L4/L5,
the goal of the current paper is to use the natural dynamics of the system; in particular, taking advantage
of the invariant manifold structure around L1 and L2 [22] to design transfer trajectories to the Regions of
Practical Stability (RPS) around L4/L5 [36, 37]. These regions are ideal final destinations, as the trajectory
of a probe starting inside these regions with zero synodic velocity will not escape within 1000 years. To
obtain time-optimal transfers to these regions, we employ a two-step approach. The first step consists of
generating transfer trajectories from the vicinity of L1 and L2 to a suitable neighborhood of the L4/L5 points
by means of the unstable invariant manifolds of the former equilibria. These trajectories are sub-optimal
from a transfer-time perspective due to the assumptions made during the design process. However, they are
excellent initial guesses to solve the optimal control problem associated with finding time-optimal transfers
between L1/L2 and the L4/L5 RPS. The second step consists of solving the optimal control problem using
the software tool PSOPT [1], which is a particular implementation of a direct pseudo-spectral method in
C++. In both steps we consider the classical CRTBP as the dynamical model, accounting for SRP acting
on the solar sail (CRTBPS from now on), where the sail acceleration depends on three parameters: the sail
lightness number, β, (accounting for the sail efficiency), and two angles, α and δ (accounting for the sail
orientation).

This paper is organized as follows: Section 2 introduces the CRTBPS and describes the main parameters
of the system (β, α and δ). Section 3 describes the non-linear dynamics around the two regions that play
an important role during the design process of the transfer trajectories: the invariant manifold structure
around the displaced L1 and L2 equilibrium points (subsection 3.1) and the region of practical stability
around L4/L5 (subsection 3.2). Section 4 addresses the main goal of the paper, finding transfer trajectories
between L1/L2 and L4/L5, where subsection 4.1 explains how we explore the phase space to find a piece-wise
transfer trajectory and subsection 4.2 takes these initial guesses to find time-optimal transfers. Finally, the
conclusions are given at the end of the paper in Section 5.

2. Equations of Motion

To model the motion of a solar sail in the Sun - Earth system the CRTBPS is considered. Let us recall
that the CRTBPS assumes that both Earth and Sun are point masses that move around their common center
of mass in a circular way due to their mutual gravitational attraction. The solar sail, on the other hand, is
a mass-less particle that does not affect the motion of both primaries, but is affected by their gravitational
attraction as well as SRP.

The units of mass, distance and time are normalized so that the total mass of the system is 1, the Sun -
Earth distance is 1 and the period of its orbit is 2π. In these units the Earth’s mass is µ = 3.0034806×10−6,
and 1 − µ corresponds to the Sun’s mass. A synodical reference system is considered with its origin at
the Sun - Earth system center of mass, and having Earth and Sun fixed on the x-axis (with the positive
x-axis pointing from the Sun to the Earth). The z-axis is perpendicular to the ecliptic plane and the y-axis
completes an orthogonal positive oriented reference system [40]. On the left panel of Figure 1 a schematic
representation of the main forces in the CRTBPS is provided.
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Figure 1: Left: Schematic representation of the CRTBPS model. Right: Schematic representation of the reference frame used
to define the pitch and clock angles α and δ, respectively.

With these assumptions, the equations of motion in the synodical reference frame are:

ẍ− 2ẏ =
∂Ω

∂x
+ ax, ÿ + 2ẋ =

∂Ω

∂y
+ ay, z̈ =

∂Ω

∂z
+ az, (1)

where Ω(x, y, z) =
1

2
(x2+y2)+

1− µ
rps

+
µ

rpe
while rps =

√
(x+ µ)2 + y2 + z2 and rpe =

√
(x+ µ− 1)2 + y2 + z2

are the Sun-sail and Earth-sail distances, respectively, and as = (ax, ay, az) is the acceleration due to the
solar sail. The solar sail acceleration as depends on the sail’s reflectivity properties, given by the lightness
number (β) and the reflectivity coefficient (ρs); and the solar sail’s orientation, which is determined by the
pitch and clock angles (α and δ, respectively). A further detailed discussion on these parameters is given in
the next subsection.

2.1. Solar Sail Acceleration

The solar sail acceleration is produced by the impact of the photons emitted by the Sun on the surface
of the sail, which are reflected and absorbed by the sail material [27, 3]. For a solar sail with an area A, the
force due to the reflection of photons is given by Fr = 2PA〈r̂s, n̂〉2n̂ while the force due to absorption is
Fa = PA〈r̂s, n̂〉r̂s. Where r̂s = (x+ µ, y, z)/rps is the Sun-sail direction, n̂ is the external normal direction
to the sail (both unit vectors), and P = P0(R0/RS)2 is the SRP at a distance RS from the Sun (where
P0 = 4.563 N/m2 is the SRP at R0 = 1 AU). If we denote ρa as the absorption coefficient and ρs as the
reflectivity coefficient (which satisfy ρa + ρs = 1), the solar sail acceleration on a spacecraft of mass m is
given by:

as =
2PA

m
〈r̂s, n̂〉

(
ρs〈r̂s, n̂〉n̂ +

1

2
(1− ρs)r̂s

)
. (2)

Note that ρs = 1 corresponds to a perfectly reflecting solar sail and ρs = 0 to a perfect solar panel where
the photons are absorbed. According to [31, 17, 16] , a solar sail with a highly reflective aluminum-coated
side has an estimated reflectivity coefficient of ρs ≈ 0.88. However, in this paper the solar sail is assumed to
be flat and perfectly reflecting (ρs = 1). In future studies more accurate models for the solar sail acceleration
including imperfections of the solar sail material will be considered, to allow an assessment of how this affects
the transfer trajectories.

2.1.1. Sail Lightness Number

Notice that SRP is proportional to the inverse square of the distance to the Sun (i.e., P = P0(R0/R)2).
Therefore it is common to rewrite the term 2PA/m in Eq. 2 as a correction of the Sun’s gravitational
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attraction: β(1 − µ)/r2ps, where β corresponds to the sail lightness number and accounts for the sail’s

efficiency. Following McInnes [27] it can be seen that, β = σ∗/σ, where σ∗ = 2P0R
2
0/(Gmsun) = 1.53 g/m

2

(with G the universal gravitational constant and msun the mass of the Sun) and σ = m/A is the solar
sail mass-to-area ratio. The parameter β can then be seen as the ratio between the maximum propulsive
acceleration generated by the sail at a given heliocentric distance (i.e. with a Sun-facing attitude) and the
local Sun gravitational attraction. Another parameter used to describe the sail efficiency is through the
characteristic acceleration (a0), which represents the acceleration experienced by the sailcraft at 1 AU when
the sail is oriented perpendicular to the Sun-sail line. The characteristic acceleration and the sail lightness
number are related by: a0 = βGmsun/R

2
0.

Table 1 presents, for different values of the sail lightness number (β), the corresponding mass-to-area
ratio (σ), the characteristic acceleration (a0) and the required solar sail size for a 10 kg sailcraft. The near-
term solar sail demonstration missions LightSail-12 and NEA-Scout (will) achieve a sail lightness number of
β = 0.011 [2] and β = 0.01 [38], respectively, while future mission concepts like the Geostorm or Sunjammer
concepts may achieve β = 0.036 [18].

Table 1: Relation between the sail lightness number β and the satellite’s mass-to-area ratio (σ), the characteristic acceleration
(a0), and the required sail area for a satellite with 10 kg of total mass.

β σ (g/m2) a0 (mm/s2) Area (m2)
0.01 153.0 0.059935 ≈ 8× 8
0.02 76.5 0.119869 ≈ 12× 12
0.03 51.0 0.179804 ≈ 14× 14
0.04 38.25 0.239739 ≈ 16× 16
0.05 30.6 0.359608 ≈ 20× 20

2.1.2. Sail Orientation

The sail orientation is given by the normal direction to the surface of the sail (n̂) and is parameterised
by two angles α and δ that measure the displacement between n̂ and r̂s = (x − µ, y, z)/rps. Following
McInnes [26], the orthonormal reference frame {r̂s, p̂, q̂} centered at the sailcraft center of mass is considered

(where p̂ = r̂s×ẑ
|̂rs×ẑ| , q̂ = (r̂s×ẑ)×r̂s

|(r̂s×ẑ)×r̂s| and ẑ = (0, 0, 1)) and the normal vector to the sail is defined as

n̂ = cosα r̂s + sinα cos δ q̂ + sinα sin δ p̂. With this definition α corresponds to the pitch angle (angle
between n̂ and r̂s) and δ to the clock angle (angle between q̂ and the projection of n̂ on a plane orthogonal
to r̂s). Figure 1 (right) shows a schematic representation of the definition of these two sail angles.

Finally, following these definitions, the explicit expressions for the normal vector to the surface of the
solar sail, n̂ = (nx, ny, nz), are:

nx =
x− µ
rps

cosα− (x− µ)z

r2rps
sinα cos δ +

y

r2
sinα sin δ,

ny =
y

rps
cosα− yz

r2rps
sinα cos δ − x− µ

r2
sinα sin δ,

nz =
z

rps
cosα+

r2
rps

sinα cos δ,

(3)

where r2 =
√

(x− µ)2 + y2. Notice that n̂ cannot point towards the Sun, hence 〈n̂, r̂s〉 = cosα ≥ 0, which
implies that α ∈ [−π/2, π/2] while δ ∈ [0, π].

2.2. Properties of the CRTBPS

From a mathematical perspective, the Sun - Earth - sail CRTBPS is a perturbation of the Sun - Earth
CRTBP, where the perturbation depends on the sail parameters (β, ρs, α, δ). For a perfectly reflecting solar

2ESA eoPortalDirectory, LightSail-1, https://earth.esa.int/web/eoportal/satellite-missions/l/lightsail-1, Accessed 12 April
2019
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sail (ρs = 1), Eq. 1 can be rewritten as [26, 5]:

ẍ− 2ẏ =
∂Ω̃

∂x
+ β

1− µ
r2ps

cos2 α

(−(x− µ)z

r2rps
sinα cos δ +

y

r2
sinα sin δ

)
,

ÿ + 2ẋ =
∂Ω̃

∂y
+ β

1− µ
r2ps

cos2 α

( −yz
r2rps

sinα cos δ − x− µ
r2

sinα sin δ

)
,

z̈ =
∂Ω̃

∂z
+ β

1− µ
r2ps

cos2 α

(
r2
rps

sinα cos δ

)
,

(4)

where Ω̃(x, y, z) =
1

2
(x2 + y2) + (1− β cos3 α)

1− µ
rps

+
µ

rpe
.

It is well-known that the classical CRTBP (no solar sail) is Hamiltonian, but when the perturbation due
to the solar sail is included, the Hamiltonian structure of the system breaks down unless α = 0 (i.e., the
solar sail is oriented perpendicular to the Sun-sail line) or α = ±π/2 (i.e., no sail effect). Furthermore, the
system is time reversible for α 6= 0, δ = 0 (i.e., the orientation of the solar sail varies vertically with respect
to the Sun-sail line) [8, 5]. In these two particular cases, for a fixed sail orientation, the Lyapunov Center
Theorem for reversible systems ensures the existence of families of periodic and quasi-periodic orbits around
an equilibrium point [34, 23].

As in the CRTBP, one can define the Jacobi function as:

Jc = ẋ2 + ẏ2 + ż2 − 2Ω̃(x, y, z), (5)

where for β = 0 (i.e., no sail) and for β 6= 0, α = 0 (a sail perpendicular to the Sun-sail line), this function
corresponds to the Jacobi constant of the CRTBP or CRTBPS (Hamiltonian case). If α 6= 0 this function
is not constant but it can still be used to classify types of motion [7, 8].

Let us note that the system also has the following symmetries:

S1 : (t, x, y, z, α, δ) 7→ (−t, x, −y, −z, −α, δ),
S2 : (t, x, y, z, α, δ) 7→ (−t, x, −y, z, α, −δ), (6)

which can be useful to reduce the search space, when computing equilibrium points and periodic orbits or
when describing the systems dynamics.

2.2.1. Equilibrium Points

It is well-known that when SRP is discarded (β = 0) the Sun - Earth CRTBP has five equilibrium
points [40], and that all of them lie in the ecliptic plane (z = 0). Three of them, known as the collinear
points L1,2,3, lie on the line joining the two primaries (y = 0). The other two, known as the triangular points
L4,5, lie in the ecliptic plane, and form an equilateral triangle with the two primaries (i.e., their distance
to both Earth and Sun is 1). The three collinear points are all linearly unstable (saddle×center×center),
whereas the two triangular points are linearly stable (center×center×center).

If the sail is oriented perpendicular to the Sun-sail line (α = 0) the system presents a similar phase space
portrait as for β = 0: there are also five equilibrium points SL1,...,5 in the ecliptic plane, siblings to the
classical L1,...,5 which are displaced towards the Sun [26]. The three collinear points (SL1,2,3) still lie on
the Sun - Earth line, and are linearly unstable (saddle×center×center). However, the two triangular points
(SL4,5) no longer form an equilateral triangle. While their distance to the Earth is always 1, the distance
to the Sun is a function of the parameter β, namely (1 − β)1/3. However, SL4,5 are also linearly stable for
all β.

Recall that there is no explicit expression for the three collinear equilibrium points, but that their
position can be found by solving a quintic. Defining, γ1,2 as the distance from SL1,2 to the Earth, and γ3
as the distance from SL3 to the Sun, it can be seen that the γi are the only positive solution to the quintic
equations [40, 26]:

γ51 + (3− µ)γ41 + (3− 2µ)γ31 − (µβ − β + µ)γ21 − 2µγ1 − µ = 0, (7)

γ52 − (3− µ)γ42 + (3− 2µ)γ32 + (µβ − β − µ)γ22 + 2µγ2 − µ = 0, (8)

γ53 + (2 + µ)γ43 + (1 + 2µ)γ33 − (1− µ)(1− β)γ23 − 2(1− µ)(1− β)γ3 − (1− µ)(1− β) = 0, (9)
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and SL1 = (1−µ− γ1, 0, 0), SL2 = (1−µ+ γ2, 0, 0) and SL3 = (−µ− γ3, 0, 0). Contrary, there is an explicit
expression for the triangular points for all β:

SL4,5 = (x4,5, y4,5, 0) :=

(
−µ+

(1− β)2/3

2
,±(1− β)1/3

[
1− (1− β)2/3

4

]1/2
, 0

)
. (10)

Finally, if the sail orientation changes (α 6= 0 or/and δ 6= 0) the position of the equilibrium points
are artificially displaced. For instance, if δ = ±π/2 and α varies, the equilibrium points are displaced to
one side or the other of the Sun-sail line inside the ecliptic plane, while if δ = 0 or π and α varies, the
equilibrium points are displaced above or below the ecliptic plane, where all the displaced equilibria lie in a
plane perpendicular to z = 0 containing Li and SLi. Finally, for any other fixed value of δ = δ∗ and varying
α, the equilibrium points are displaced on an inclined plane with respect to the ecliptic containing Li and
SLi [29, 4, 8].

3. Non-Linear dynamics around equilibria

The main goal of this paper is to find feasible transfer trajectories to the vicinity of the L4 and L5 points,
taking advantage of the unstable invariant manifolds of the displaced SL1 and SL2 equilibrium points. It
is true that the unstable invariant manifold structure around a displaced libration point is more complex,
as it is composed of the unstable manifolds of all the periodic and quasi-periodic orbits related to the
equilibrium point. Hence, one could consider any of these other unstable manifolds to find transfer orbits.
However, for this preliminary work, we have only focused on the unstable manifolds related to the displaced
SL1 and SL2 points, as this already offers a broad range of possibilities compared to the classical (no solar
sail) case. As for the vicinity of L4 and L5, it is well-known that there exists a large Region of Practical
Stability (RPS) where stationary spacecraft will remain for more that 1000 years with no need of station
keeping maneuvers, which makes this location ideal for a space-weather observatory. This section analyzes
the non-linear dynamics around the different SLi equilibrium points and how these are affected by the sail
parameters: β, α and δ.

3.1. SL1 and SL2 equilibrium points

Let us first focus on the dynamics close to the displaced collinear points SL1 and SL2, the equilibrium
points for β 6= 0 and α = 0 (solar sail oriented perpendicular to the Sun-sail line). Recall that as β
increases these equilibrium points are shifted towards the Sun, and that the linear dynamics for SL1 and
SL2 is always center×center×saddle. Table 2 summarizes the position and the eigenvalues of SL1/SL2 for
β = 0.01, . . . , 0.05. As the system is Hamiltonian for α = 0, the two center direction give rise to two families
of periodic orbits, the well-known planar and vertical Lyapunov orbits. Moreover, the coupling between the
two oscillatory motion gives rise to the Lissajous and halo family of orbits. All these orbits are also known
as libration point orbits (LPOs).

This paper focuses on the dynamics given by the saddle component, as it gives rise to the stable and
unstable manifolds which together with the stable and unstable manifold of the LPOs configure the set of
re-entry and escape trajectories related to the equilibrium point’s vicinity. Note that as β increases the
instability rate of SL1 decreases while the instability rate of SL2 increases, which has a direct effect on the
escape rates from the vicinity of the equilibrium point.

The unstable manifolds of the displaced SL1 and SL2 equilibria are perfect candidates for providing
trajectories to reach the L4/L5 vicinity. To illustrate this, the stable and unstable manifolds related to
SL1 and SL2 for different values of β have been computed. This gives an idea of the general trend of the
invariant manifolds and how changing the efficiency of the solar sail affects them. Figure 2 shows the stable,
W s(SLi), and unstable, Wu(SLi), manifolds for β = 0 (left), 0.01 (middle) and 0.03 (right). A general view
and their relative position with respect to a subset of the RPS appears in the top plots. The bottom plots
show a zoomed-in image close to the Earth. Note that all these invariant manifolds have been computed up
to tf = 10 years. Hence, the longer the unstable manifold path is, the faster the transfer to L4/L5 can be.
These results are consistent with the values presented in Table 2.
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Table 2: Position of the displaced equilibrium points SL1 = (xL1
, 0, 0) and SL2 = (xL2

, 0, 0) along the x-axis, and values of
the three pair of eigenvalues ±λ, ±iω1 and ±iω2, for β = 0.01(0.01)0.05.

β xL1 λ ω1 ω2 xL2 λ ω1 ω2

0.01 0.98873101897 2.13994 1.8517 1.7749 1.00908250142 2.88718 2.3061 2.2399

0.02 0.98716671573 1.78196 1.6484 1.5679 1.00827979413 3.30472 2.5719 2.5113

0.03 0.98525423949 1.46959 1.4821 1.4010 1.00762463476 3.72982 2.8482 2.7927

0.04 0.98299017728 1.20876 1.3536 1.2762 1.00708319765 4.15761 3.1307 3.0797

0.05 0.98040996743 9.98326 1.2586 1.1886 1.00662972805 4.58492 3.4162 3.3691
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Figure 2: Stable W s
i = W s(SLi) (red), and unstable Wu

i = Wu(SLi) (blue) manifolds of SL1 (solid) and SL2 (dashed) for
β = 0, 0.01, 0.03. Top: general view and relation with the region of practical stability (black). Bottom: zoom close to the
Earth.

It is interesting to note that, for β = 0, the vicinity of L4 can only be reached from L1 and the vicinity
of L5 only from L2. Instead, the extra acceleration produced by the solar sail (β 6= 0) allows us to reach
both the vicinity of L4 and L5 from L1. This is very convenient from a mission prospective. For instance,
two sailcraft could be considered, one aiming for L4 and the other for L5, and it would allow the use of a
single launch vehicle to reach the L1 neighborhood and then inject each one to a different invariant manifold.
On the other hand, from L2 for all values of β only the L5 vicinity can be reached, as one of the unstable
invariant manifolds branches gets trapped around the Earth.

Given that solar sails are orientable surfaces, it is interesting to investigate how a change in the sail
orientation can affect the trajectories starting from an initial condition along the unstable manifolds in
Figure 2. Recall that, when the sail orientation is changed, the equilibrium points are displaced, as well
as the location of its associated stable and unstable manifolds [9, 6]. Hence, the trajectories will escape
along a new unstable direction. This can have interesting implications on the trajectories starting from
initial conditions along the SL1 and SL2 unstable manifolds. Figure 3 shows three trajectories with different
fixed values of α starting from the same initial condition p0 along the unstable direction (v̂u1 ) of the SL1

equilibrium point (i.e. p0 = SL1±hv̂u1 and h = 10−4). Here the sail orientation with respect to the Sun-sail
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line is constant throughout the trajectory. Notice that for each of the sail orientations the final trajectories
are completely different. For instance, for α = 20◦ (middle) the behavior is quite similar to the one for α = 0
(Figure 2 middle) where each leg of the unstable manifold leads to different regions of the phase space, in
particular the vicinity of L4 and L5. On the other hand, for α = 15◦ (left) the two legs of the unstable
manifold move close to the Earth and then move towards the L5 vicinity, whereas for α = −20◦ (right) the
two legs of the unstable manifolds are directed towards the L4 vicinity. This illustrates the richness of the
dynamics around the equilibrium points when the sail orientation changes.
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Figure 3: Propagation of initial conditions on the SL1 unstable manifold for β = 0.01, for α = 15◦ (left), α = 20◦ (middle)
and α = −20◦ (right).

Figure 4 shows the same analysis for initial conditions p0 along the unstable direction (v̂u2 ) of SL2 (i.e.,
p0 = SL2 ± hv̂u2 and h = 10−4). Notice that for different values of α, the trajectories can either go towards
the Earth or head towards L5. Given that SL2 is displaced towards the Earth as β increases, it is harder
to find escape trajectories towards L4 as one of the legs gets entangled around Earth, where the dynamics
are very chaotic. This does not mean that there are no transfers from SL2 to L4, but that the set of sail
orientations that enable such paths is small. From simulations we have observed that in most cases these
natural transfers take long excursions towards L5 before reaching the L5 vicinity.
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Figure 4: Propagation of initial conditions on the SL2 unstable manifold for β = 0.01, for α = −25◦ (left) and α = 25◦ (right).

3.2. SL4 and SL5 equilibrium points

As mentioned before, the triangular Lagrangian points SL4/SL5 of the Sun - Earth CRTBPS are totally
elliptic equilibria for all β. Under generic conditions, the KAM theorem applies around these equilibria and
most of the initial conditions in a small enough neighborhood of SL4/SL5 lie on 3D invariant tori. Hence, a
region of stability, understood in a practical sense, is expected to be found close enough to SL4/SL5.
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Despite the fact that the available theory of Hamiltonian dynamical systems gives very valuable infor-
mation about the evolution of the system around SL4/SL5, it is not enough when it comes to describing the
shape of the full region where the invariant tori lie. Furthermore, the description of the invariant objects
that conform the boundary of this region is still an open and hard mathematical problem [37]. Even with
the techniques available nowadays, only brute-force explorations have been useful for giving the most basic
descriptions.

In this section, these RPS around SL4/SL5 are studied for β = 0.01, 0.02, . . . , 0.05 and α = 0. An
initial condition (i.e., an initial position for the solar sail) close to SL4/SL5 with zero synodical velocity
ẋ = ẏ = ż = 0 is regarded as practically stable if the corresponding trajectory remains close to SL4/SL5

for a large time span. Hence, the RPS is the set of practically stable points, and can be mathematically
defined as the subset of points in a box R (in appropriate coordinates) that contains SL4/SL5, such that
the propagation forward in time of any of these points in R, initially with ẋ = ẏ = ż = 0, does not leave a
larger set R′ after a large number of years T � 0. Figure 5 shows the choice of R and R′ in the CRTBPS
around L4. The boundary of R′ defines the escaping criterion: if a trajectory crosses this boundary at some
time, the initial point is considered not to belong to the RPS. Note that, since we are assuming that the
trajectories start with zero synodical velocity, the RPS is a 3D set. However, in this paper only the RPS in
the ecliptic plane is considered, i.e., z = 0.

The triangular points SL4/SL5 have zero synodical velocity and the RPS is understood as a set of initial
conditions that remain close to these points for a sufficiently long time span. For this reason the initial
conditions in the RPS are chosen to satisfy ẋ = ẏ = ż = 0. One expects that, for small enough initial
synodical velocity, one would also find an analogous RPS, but certainly smaller; and the size and shape of
such an analogous region should be studied on a case by case basis. Depicting and studying the region as
done provides a global picture of up to which extent there are orbits that oscillate around the triangular
points. Moreover, this paper focuses on justifying that transfers to the triangular points are, in fact, feasible,
but for concrete applications one would target a specific invariant object, e.g. a periodic orbit inside the
RPS.

To study the RPS, one relies on simulations, and for that one has to fix a maximal number of years T .
The shape and size of the detected RPS depends strongly on the choice of T . Since we systematically deal
with numerical approximations with some fixed resolution, one expects to be able to find, for each choice
of the systems parameters, a value T = Tmax such that the differences with the detected RPS for Tmax and
any T > Tmax is negligible. For the sets of parameters studied here, we have propagated up to Tmax = 104

years. Recall that a generic trajectory close to a totally elliptic equilibrium point of a Hamiltonian system
with three or more degrees of freedom will eventually escape due to the so-called Arnold diffusion, but that
this would take exponentially long times. This concerns the mathematical problem within, but for mission
applications, a study with T = 103 years suffices.

3.2.1. Approximation of the RPS

Due to the symmetries of the system, it is sufficient to study the RPS around one of the two triangular
equilibria, so in what follows the analyses are restricted to the dynamics around SL4. The most efficient
way to approximate the RPS is by using a brute-force exploration of the region close to SL4 for some value
of T = T0, and then perform a sequence of refinements for larger values of T > T0 by only checking the
boundary of the first approximation. Due to the shape of this region in x, y coordinates (see Figure 6 left),
it is convenient to consider polar coordinates (r, θ) ∈ (−(1 − β)1/3,∞) × [−0.5, 0.5) (measured in AU and
rad/(2π), respectively) whose origin of coordinates corresponds to the position of SL4:

x = µ+ (r + r4) cos(2πθ + θ4), y = (r + r4) sin(2πθ + θ4), z = 0, (11)

where r4 =
√

(x4 + µ)2 + y24 and θ4 = arctan(y4/(x4 + µ)) are the polar coordinates of SL4 (see Eq. 10).
Note that positive angles are counted counterclockwise. As a result, the points in the RPS closest to the
Earth correspond to the smallest (negative) values of θ.

Below, the method used to approximate the RPS is described (we refer to Refs. [37, 10] for a more
detailed exposition).
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Step 1: First approximation. Fix T = T0 and an equidistant grid of points in some adequate box R in
(r, θ). Each point in the grid defines an initial condition (x(r, θ), y(r, θ), 0, 0, 0, 0) according to Eq. 11,
and these are integrated for T = T0 years. The escaping criterion here is to cross the hypersurface
y = −0.5 or to collide with one of the two primaries [12]. So, if for some t < 2πT0 it happens that
y < −0.5 or rps < 10−4 or rpe < 10−4, the initial condition is considered not to belong to the RPS.
Otherwise, if the trajectory is integrated until t = 2πT0 without this happening, we consider that the
initial condition belongs to the RPS.
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Figure 5: Schematic view of the regions R and R′ related to the CRTBP phase space. Here R = [−0.08, 0.08] × [−0.15, 0.35]
in polar coordinates (r, θ) (Eq. 11) and R′: y ≥ −0.5 is the region in which the trajectory has to remain for T years for it to
be considered as stable in a practical sense.

Step 2: Successive refinements. The first refinement consists of considering T1 > T0 and of integrating
again the points in the grid that are boundary points. Boundary points are points that belong to the
RPS for T = T0 such that at least one of its adjacent neighbors escaped. These points are classified
according to the same escaping criterion but now with T1 instead of T0: if for some t < 2πT1 it
happens that y < −0.5 or collides with one of the two primaries, it is considered an escaping point
and non-escaping otherwise. Note that every time a boundary point escapes for T1 the shape of the
boundary changes and more boundary points are generated, so this process has to be repeated until
none of the points on the boundary escapes in at least T1 years.

This process can be repeated for a sequence of increasing values of T , T2 < T3 < · · · < Tn until the
desired Tmax is reached.

This method substantially reduces the computational cost to determine the RPS, since it avoids reiter-
ating points closer to SL4, where one expects exponentially long escape times, and only the fastest escaping
initial conditions are studied.

3.2.2. A common target region for β ≤ 0.05

For realistic values of β one does not expect the shape and size of the RPS to differ much from the non-sail
case β = 0. Therefore, this section studies the evolution of the RPS as β increases. To do so, a 1000× 1000
grid in (r, θ) ∈ R = [−0.0008, 0.0008] × [−0.35, 0.15] is considered, for the values of β = 0.01, . . . , 0.05.
Figure 5 shows a depiction of R that is 100 times wider. It is worth noting that for all the cases that have
been considered Tmax = 104 years3. For smaller values of Tmax the region appears to be much larger and
present a less defined boundary. Figure 6 shows the RPS for β = 0.01 and β = 0.05. In the left plot, the
RPSs are displayed in actual x, y synodic coordinates. If compared to Figure 5, one can see that the RPSs
are contained in a set as the one displayed in the region labeled as R in the sketch. In the right plot a

3The computation for each value of β takes approximately 20h of CPU time.
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detailed view of these two cases in (r, θ) coordinates is shown. Again, comparing with the sketch of Figure 5,
this right plot shows the shape of the RPS in R, choosing adequate coordinates in it (say, straightening the
region out). In this right plot, the fact that these are centered in SL4 allows for comparison of the regions
for different values of β between each other.
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Figure 6: RPS around SL4 for β = 0.01 and β = 0.05. Left: Original coordinates (x, y). Right: Detail in (r, θ) coordinates.

A global picture of the obtained results can be described as follows: in all the studied cases, it can
be observed that the RPS is extremely narrow in r compared to θ. More concretely, the regions have
approximately a width of 0.0016 AU and a length of π AU, a difference of 3 orders of magnitude. Also, the
region moves towards the position of the Sun as β increases, as does the SL4 point (see Eq. 10). Moreover,
for the studied values of β, the area of the RPS seems to decrease as β increases as it can be seen on the
detail in the right plot in Figure 6. Namely for β = 0.01 the area of the RPS is of the order of 4×10−4 AU 2,
or 8.97× 1012 km 2, while for β = 0.05 this area has decreased to 3.95× 10−4 AU 2, or 8.83× 1012 km 2. The
behavior of the area of the RPS as a function of β is studied in [10].

Despite the fact that the area of the RPS decreases as β increases, the size and shape of the regions for
the considered values of β is very similar. Hence one can define a prospective target region (that is a subset
of the full RPS) for trajectory design around the SL4 point, that is the same for all studied values of β.

According to KAM and Nekhorosev theories, the RPS around SL4/SL5 exist due to the presence of nested
3D invariant tori that collapse at these two equilibria. The trajectory of an orbit on one of these 3D tori, or
very close to it, will be seen as oscillating in the x, y projection. The amplitude of these oscillations will tend
to 0 as the chosen torus is closer to SL4/SL5. If a trajectory is designed to arrive to the boundary of the
RPS, that trajectory would oscillate along the whole RPS, experiencing excursions in x and y coordinates
with an amplitude of order up to 2 AU and 1 AU, respectively. Hence, the common target region should
be chosen so that these oscillations have smaller amplitudes, or equivalently, that they remain closer to the
triangular points along the orbit.

These oscillatory motions are measured by keeping track of how much the coordinates (r, θ) vary along
the trajectories starting from initial conditions inside the RPS. So, during the course of the integration, the
maximal (M) and minimal (m) values of r and θ attained during the orbit have been computed, and are
denoted as rM, rm, θM and θm. The observables to take into account are

∆r = rM − rm, ∆θ = θM − θm.
For all the studied values of β ∈ [0, 0.05], and all initial conditions that belong to the RPS, it has been

observed that ∆r ∈ [0, 0.01] AU and ∆θ ∈ [0, 0.45] rad/(2π). As expected, the initial conditions with smaller
∆r and ∆θ are those closer to r = 0 and θ = 0, i.e., closer to SL4, while the outermost points of the RPS
are those that experience wider oscillations: during the propagation of the initial conditions in the RPS, the
r coordinate can move over 107 km and the θ coordinate spans the first two quadrants in the x, y plane.

Figure 7 shows how the amplitude oscillations vary. Each of the six regions in the plots correspond
to initial conditions whose trajectories oscillate in ∆r (right) and ∆θ (left) within some interval. These
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intervals have been labeled from 1 to 6 and group a range of oscillations: ∆ri ∈ [0.0017 · (i− 1), 0.0017 · i)
and ∆θi ∈ [0.075 · (i− 1), 0.075 · i).
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Figure 7: Maximum oscillations in ∆r (left) and ∆θ (right) of orbits starting at the RPS for β = 0.01 and integrated over T = 103

years. Each shade of gray indicates an interval of oscillations: ∆r ∈ [0.0017 · (i−1), 0.0017 · i) and ∆θ ∈ [0.075 · (i−1), 0.075 · i)
for i = 1, . . . , 6. The vertical (resp. horizontal) red dotted lines correspond to θ = ±0.065 (resp. r = ±0.0002).

Regions where the probe’s trajectory oscillates in a controlled manner are of interest for mission appli-
cations. Hence, for the optimization problem in the forthcoming sections, the set of target points that has
been chosen to exemplify is a region that in the left and right plots of Figure 7 is close to SL4: approximately
the region labeled with a 2. Other target region could be considered depending on the mission requirements,
and the analysis in the forthcoming sections would apply analogously. As will be seen, if the targeted region
is closer to SL4 the time required to reach this region will be larger. Analogously, for wider target regions
the time to reach the region decreases. These orbits experiment oscillations of at most ∆r < 0.034 AU and
∆θ < 0.15 rad/(2π) for integrations up to T = 1000 years. A good approximation of this region is the
interior of the ellipse:

R :

{
(r, θ) ∈ R2 |

(
r

rmax

)2

+

(
θ

θmax

)2

≤ 1

}
, (12)

where rmax = 0.0002 and θmax = 0.065. Despite being a relatively elongated set of target orbits, the
optimization problem for a smaller set by reducing the value of θmax will also be studied at the end of
Section 4.4.2.

Finally, to illustrate the behavior of these orbits inside the RPS, two orbits within region R for β =
0.01 have been propagated. One starting at (r0, θ0) = (0, 0.0325) and another one starting at (r0, θ0) =
(0.0001, 0). These correspond to the left and right plots in Figure 8. Note that to be able to see oscillations,
the integration has been performed up to T = 500 years. Since the width of the region in (x, y) coordinates
is very narrow, it is convenient to use again the (r, θ) coordinates to visualize the motion of the probe.

Both plots of Figure 8 show some regularity in the motion. It is plausible to think that these orbits are
close to a 3D KAM invariant torus. Qualitatively, these orbits display distinctive features. On the left plot,
the projection in the (r, θ) plane of orbit starting at r = 0 oscillates both in r and θ with seemingly constant
amplitudes. While on the right, for r 6= 0 the amplitude of the oscillations in r change much more along the
propagation. These oscillations depend on how close to which 3D KAM torus the orbit evolves, a problem
which requires further investigations and is left for future contributions.

4. Transfer to SL4 and SL5 RPS

As previously mentioned, in this paper, we propose to use the displaced L1 and L2 points as gate-ways for
transfers towards the target subset R in the RPS at SL4/SL5. To obtain time-optimal transfers a two-step
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Figure 8: Examples of orbits inside the RPS for β = 0.01. Left: (r0, θ0) = (0, 0.0325). Right: (r0, θ0) = (0.0001, 0).

process has been performed. First, transfer trajectories taking advantage of the unstable manifolds related
to the displaced L1 and L2 are generated. These candidates trajectories are constructed as a concatenation
of piece-wise arcs, where the sail orientation is kept constant throughout each of the arcs. Second, these
solutions are used as an initial guess to find time-optimal transfer trajectories between the displaced L1/L2

points and the subset R of the SL4/SL5 RPS.

4.1. Finding an initial guess

A simple transfer strategy to reach R ⊂ RPS at SL4,5 is proposed, which only requires three maneuvers:
(1) set α = α0 and travel along the unstable manifold related to an equilibrium point from the SL1/SL2

families; (2) when a given Poincaré section Σ1 is reached, the sail orientation is set to α = α1 to insert
the solar sail on a transfer trajectory that reaches the target region R around SL4,5; and (3) once the sail
reaches R the sail is set perpendicular to the Sun-sail line (α = 0◦) to remain there. The Poincaré section
used is Σ1 = {y = ±(x− µ)/

√
3}, a hyper-plane at the mid-distance between the Sun - Earth line and the

SL4,5-Sun line. Note that this particular hyper-plane cuts through the xy plane ±30◦ from the xz plane; a
hyper-plane that is at the same distance from L1,2 as from L4,5. Other Poincaré sections could be considered
but from previous explorations [6] this section sufficiently recovers transfer trajectories. Figure 9 shows a
schematic representation of this three-step strategy.

Figure 9: Schematic representation of a three-step transfer strategy from the SL1,SL2 vicinity to a subset of the SL4 (left)
and SL5 (right) regions of practical stability.

To generate these transfer trajectories, a brute-force search has been performed. For a fixed β, different
initial conditions (x0) are taken along the two directions of the unstable vector (v̂u1,2) related to SL1 and
SL2 respectively (i.e., x0 = SL1,2 ± hv̂u1,2 and h = 10−5, 5 × 10−5, 10−4). For each initial condition (x0) a
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set of different fixed sail pitch angles αi ∈ [−65◦, 65◦] is considered, and integrated (forward in time) until
the trajectory reaches Σ1. Additionally, a grid of initial conditions belonging to the subset R of the SL4,5

RPS are taken (i.e., x = (r + r4,5) cos(2πθ + θ4,5) − µ, y = (r + r4,5) sin(2πθ + θ4,5), z = ẋ = ẏ = ż = 0
where (r, θ) satisfy ( r

rmax
)2 + ( θ

θmax
)2 ≤ 1 with rmax = 0.0002 and θmax = 0.065). Again for each point in the

region the trajectory is integrated (backwards in time) for different fixed sail orientations (αj ∈ [−65◦, 65◦])
until the trajectory reaches Σ1. In both cases, if the trajectory comes too close to Earth (rpe < 10−4 AU)
or takes more than 10 years to reach Σ1 the integration is stopped and the trajectory discarded.

Finally, a comparison between the two sets of points, the ones arriving from SL1,2 with those arriving
from SL4,5 on the section Σ1, is performed in order to determine intersections (or quasi-intersections) in
position and velocity. A first filtering process has been performed where all trajectories whose difference
in position at Σ1 is larger than 5 × 10−4 AU and that require a sail orientation change (∆α) larger than
60◦ at Σ1 have been discarded. All the resulting trajectories, although they have a discontinuity at Σ1,
are candidate trajectories to be refined with a shooting method, or can be used as an initial guess for
an optimization problem. Other values for the errors in position and orientation change at Σ1 could be
considered for the filtering process, resulting in a different set of candidate trajectories for the optimization
process. The instant attitude change at the section will be smoothened out by the optimizer in the next
step, where large sudden changes are not recommended.

The brute-force search process described above has been performed for β = 0.01 and transfer trajectories
from: (a) SL1 to SL4, (b) SL1 to SL5, (c) SL2 to SL4 and (d) SL2 to SL5. Table 3 summarizes for each of
the four types of transfers analyzed: the required change in the sail orientation ∆α at Σ1; the transfer time
to reach R; and the difference in velocity ∆v at Σ1. Notice that there is a larger set of possible transfer
trajectories from SL1 to both SL4 and SL5, than there is when starting from SL2. Furthermore, the solutions
starting at SL1 show a larger range of transfer times and ∆v-values at the section.

Table 3: Filtered initial guess results

# filtered ∆α (min-max) Estimated transfer times Estimated ∆v at Σ1

SL1 to SL4 15774 20◦ − 60◦ ranges from 681 to 1530 days from 270 to 600 m/s
SL1 to SL5 1557 20◦ − 55◦ ranges from 1250 to 4000 days from 500 to 150 m/s
SL2 to SL4 93 20◦ − 45◦ ≈ 3568 days ≈ 500 m/s
SL2 to SL5 1414 35◦ − 50◦ ≈ 988 days ≈ 600 m/s

From all the trajectories in Table 3 and each of the SL1,2 to SL4,5 sequences, two candidate trajectories
have been selected as initial guesses for solving the time-optimal problem: one which presents the smallest
transfer time and one with the smallest discontinuity in velocities at Σ1. Figure 10 shows the candidate
transfer trajectories with minimum transfer time from the SL1 unstable manifold to SL4 (green) and SL5

(purple). Looking at the behavior of these trajectories close to Earth (Figure 10 right) notice how the
transfer trajectory towards SL5 performs a fly-by close to Earth to reach the vicinity of SL2 before it starts
the excursion towards SL5. This explains the difference in transfer times seen in Table 3 where the transfer
trajectories from SL1 to SL4 take between 681 to 1530 days and the transfers from SL1 to SL5 take between
1298 to 4000 days. Figure 11 shows the minimum transfer time candidate starting from the SL2 unstable
manifold to SL4 (green) and SL5 (purple). Notice that here the transfer trajectory toward SL4 performs a
long excursion passing close to SL5. This is due to how the trajectories have been constructed and due to
the fact that the first leg from the unstable manifolds around SL2 either goes towards the Earth or moves
towards SL5. This large excursion explains the long transfer times seen in Table 3, where the transfer to
SL4 takes 3 times longer than the transfer time to SL5.

4.2. Optimized solutions

While the results of Section 4.1 provide valuable insights in the capability of solar sails to transfer between
the displaced L1 and L2 points and the region R at L4/L5, the trajectories obtained are sub-optimal from
a transfer time perspective. In addition, the small discontinuity in the state vector at the Poincaré section
renders the trajectories unfeasible in practice. However, these solutions do provide an excellent initial guess
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Figure 10: Selected initial guess transfer trajectories from the SL1 unstable manifold to the RPS around SL4 (green) and SL5

(purple). Left: full trajectories, Right: zoom close to Earth.
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Figure 11: Selected initial guess transfer trajectories from the SL2 unstable manifold to the RPS around SL4 (green) and SL5

(purple). Left: full trajectories, Right: zoom close to Earth.

to find time-optimal transfers between the SL1/SL2 points and the SL4/SL5 stability regions. Therefore,
the accompanying optimal control problem needs to be defined and solved.

The goal is to find the time history of the states of the sailcraft, x(t) = (x, y, ẋ, ẏ), and its control,
u(t) = α, that minimize the transfer time from SL1/SL2 to the subset R of the RPS around the triangular
points. Therefore, the objective is defined as:

J = tf − t0, (13)

where tf and t0 are the final and initial time of the trajectory. The dynamics to be satisfied are given by
Eq. 1 restricting the motion to the ecliptic plane (z = ż = 0). The start of the transfer needs to coincide
with the displaced L1 or L2 points whose state vectors are given by xSL = (xSL, 0, 0, 0). The values for xSL
for a range of solar sail lightness numbers are given in Table 2. Hence, the boundary condition on the initial
state vector is defined as:

x0 = x(t0) = xSL. (14)

Furthermore, the end point of the trajectory needs to coincide with the region R at SL4 or SL5, and the
sailcraft needs to arrive at that point with zero synodical velocity. To allow the optimizer to select the best
arrival location within R, two static parameters have been defined, k = (r, θ), where r and θ represent the
polar coordinates of the arrival location around the triangular Lagrange point as described in Section 3.2.
In order for these polar coordinates to lie within R the following constraints are applied. The first (and
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equal to Eq. 12) is: (
r

rmax

)2

+

(
θ

θmax

)2

≤ 1, (15)

with rmax = 0.0002 and θmax = 0.065. Then, to ensure that the final state vector matches this arrival
location, the polar coordinates r and θ are transformed into Cartesian position coordinates, (xR, yR) using
Eq. 11. This enables the definition of the following additional constraint on the final state vector:

xf = x(tf ) = (xR, yR, 0, 0). (16)

Equations 14 to 16 define the set of event constraints.
Finally, the bounds on the states, control and parameters need to be defined. Note that the bounds on

the states are case-specific. For example, for the transfer from SL1 to SL5 we defined them as:

(0,−1,−0.25,−0.25) ≤ x(t) ≤ (1.2, 0.1, 0.25, 0.25). (17)

The bounds on the control (i.e., on the pitch angle) are given as constraints on the sail orientation (Eq. 3):

−π/2 ≤ u(t) ≤ π/2 (18)

Notice that no limitations on the steering capabilities are introduced, but these may be considered in future
studies. Finally, the bounds on the parameters are:

(−rmax,−θmax) ≤ k ≤ (rmax, θmax). (19)

In this paper, the optimal control problem defined in Eqs. 13 - 19 is solved by using PSOPT[1], which is
a particular implementation of a direct pseudospectral method in C++. This method discretizes the states,
x(t), and controls, u(t), at a predefined number of nodes and uses Legendre polynomials to approximate and
interpolate the dependent variables at those nodes. To solve the resulting non-linear programming problem,
PSOPT is interfaced to IPOPT (Interior Point OPTimizer) [44], an open source C++ implementation
of an interior point method for large scale problems. PSOPT includes options for mesh refinements and
automatic scaling through the ADOL-C (Automatic Differentiation by OverLoading in C++) [15] library for
the automatic differentiation of the objective, dynamics and constraint functions. In order to initialize the
optimization, PSOPT requires an initial guess, for which the minimum-time trajectories from Section 4.1
are employed.

Results have been obtained for the same sets of transfers studied in Section 4.1: from SL1 to the region
R at SL4 and SL5 and similarly from SL2. Let us first analyze the results for a transfer from SL1 to SL4

and β = 0.01 which appear in Figure 12. The transfer itself is shown in the top-left plot with a zoomed
view of the initial and final conditions in the top-right plot. These figures show that the optimizer converges
to a solution that targets the outer edge of the stability region closest to Earth where k = (0, 0.065). This
shortens the distance to be traveled and therefore minimizes the time of flight to 669 days, reducing the
time of flight compared to the solution in Section 4.1 by 12 days or 1.7%. Details on the control profile are
provided in the two bottom plots of Figure 12, which show the solar sail normal vector and solar sail pitch
angle, respectively. Both plots show a relatively smooth control profile, though requiring rapid changes
to orientations where the sail is “switched off”, i.e., when α = 90 deg. As already mentioned, future
investigations will explore options to constrain the solar sail steering capabilities, e.g., similar to the work
by Heiligers et al. [20]. Such limitations will come at a cost in terms of an increase in the time of flight.

Using the result from Figure 12 as an initial guess, a continuation on the value for β can be initiated
to obtain results for lightness numbers larger than β = 0.01. Note that a change in β requires a change in
the location of the displaced Lagrange points and therefore a change in the boundary conditions given by
Eq. 14 and Eq. 16. The transfer times for each of the transfers are summarized in the first row of Table 4.
The top plots of Figure 13 furthermore show the transfer trajectories from SL1 to SL4. The zoomed image
on the right hand-side shows the shift in both SL1 and the region R around SL4 as a function of β. The
trend in the transfer time and a function of β is plotted in Figure 14 as a solid blue line. There it can seen
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Figure 12: Top left: time-optimal transfer trajectory from SL1 to R at SL4. Top right: details of initial and final conditions.
Bottom left: transfer trajectory including solar sail normal vector. Bottom right: control profile u(t).

that by increasing the lightness number to β = 0.05, the transfer time can be reduced to 320 days, which is
less than half the transfer time for β = 0.01 (see also Table 4).

A similar analysis has been conducted for the transfers from SL1 to SL5 and from SL2 to SL4/SL5,
which can be seen in the bottom row of Figure 13 and Figure 15, respectively. The corresponding times
of flight are summarized in Table 4 and Figure 14. Comparing the transfer from SL1 to SL4 with the one
from SL1 to SL5 shows a significantly longer time of flight for the latter as the optimizer only finds feasible
trajectories that pass by the L2 point. A similar comparison and conclusion can be drawn for the transfer
from SL2 to SL4 that can only be achieved by passing by the L1 point. The significant reduction in time
of flight between the initial guess and β = 0.01 for the SL1 to SL5 transfer is mainly due to the fact that
the optimizer targets the edge of the stability region, while the initial guess enters the stability region much
closer to the SL5 point. Furthermore, for the SL2 to SL4 transfer, the improvement is due to the fact that
the optimized transfer no longer has to pass by the L5 point (see Figure 11 left) and can instead directly
connect the SL2 and SL4 points. Finally, the results for varying values of the lightness number in Figure 14
show similar reductions in times of flight between β = 0.01 and β = 0.05 as for the transfer from SL1 to
SL4: between 44.4% and 67.2%.

To verify that the trajectory will stay close to the RPS after the transfer phase, the final condition of the
SL1 to SL4 transfer has been propagated for 50 years. Figure 16 shows these propagations for each of the
lightness numbers considered in this study. Each plot shows, in red, the trajectory after the arrival at the
RPS and the RPS, in black. These results show that the conditions at the end of the transfer are adequately
met and the motion remains confined to the RPS. Similar results have been obtained for the other transfers
(SL1 to SL5 and SL2 to SL4/5).

A final analysis has been carried out for the time-optimal transfers from SL1/SL2 to SL4/SL5, considering
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Table 4: Transfer times for the initial guess and optimized solutions.

Initial guess Optimized Optimized Optimized Optimized Optimized
β = 0.01 β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05

SL1 - SL4 681 669 458 386 345 320
SL1 - SL5 1298 986 703 602 563 538
SL2 - SL4 3568 1430 843 630 532 469
SL2 - SL5 988 888 645 564 522 494
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Figure 13: Time-optimal transfers from SL1/SL2 to R at SL4. Plots on the right are close-ups of the trajectories on the left.
Top row: SL1 to SL4 transfer, Bottom row: SL2 to SL4 transfer.

the effect of reducing the size of R. This size can be varied by changing the bounds on the parameter
θmax, see Eq. 19. Results are created using a continuation method where now the lightness number is
kept fixed and the value of θmax is slowly reduced. Figure 17 shows the results for β = 0.01 and θmax =
[0.065, 0.06, 0.055, . . . 0.005] for the transfer from SL1 to R at SL4. Notice that, the smaller the value of θmax,
the smaller the stability region is. The RPS for the smallest value for θmax (θmax = 0.005) is shown in the
right plot of Figure 17. Through the continuation, the optimizer can easily adapt to the change in stability
region size and always converges to a solution where the transfer enters the region of practical stability at
the point closest to Earth, which is clearly demonstrated in the right plot of Figure 17. The effect on the
time of flight appears in the left plot in Figure 14, which shows an approximately linear relation between
the time of flight and θmax. For θmax = 0.005 the transfer time is increased to 806 days compared to 669
days for the nominal value of θmax = 0.065.
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Figure 15: Time-optimal transfers from SL1/SL2 to R at SL5. Plots on the right are close-ups of the trajectories on the left.
Top row: SL1 to SL5 transfer, Bottom row: SL2 to SL5 transfer.

5. Conclusions

In this paper the use of solar sails to enable transfer trajectories from the displaced L1/L2 equilibrium
points to the RPS that appears in the vicinity of L4/L5 has been analyzed. A preliminary analysis has been
performed studying the dynamical implications of these regions due to changes in the solar sail parameters.
This knowledge has then been used to find simple piece-wise trajectories that transfer from one region to
the other. Finally, time-optimal transfers have been obtained by means of a pseudospectral optimization
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method using these piece-wise simple trajectories as initial guesses.
Looking at the dynamics around L1/L2, it has been derived that when the sail is oriented perpendicular

to the Sun-sail line (α = 0), both equilibrium points, and all the invariant objects around them, are shifted
towards the Sun. The local stable and unstable manifolds display a similar qualitative behavior, but as we
leave the vicinity of the equilibrium point, the dynamics experiences significant changes. For instance, in
the classical (no solar sail) circular restricted three body problem (CRTBP) a branch of the L1 unstable
manifolds extends towards the L4 neighborhood, while the other branch gets trapped around the Earth.
This impedes the design of transfer trajectories to L5 using the invariant manifold of L1. But it is remarkable
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that, as the sail lightness number increases, the branch that was trapped close to the Earth for β = 0 now
manages to escape, providing transfers towards the L5 neighborhood. Moreover, when the sail orientation
changes, the manifold behavior becomes richer and we can take advantage of that.

Concerning the dynamics around L4/L5, since these are totally elliptic equilibria for the CRTBP, there
is a region of practical stability around them. That is, orbits starting close enough to L4/L5 with zero
synodical velocity will remain close to these equilibria for extremely long times. Hence, no station-keeping
strategies are required. It has been shown that this behavior is preserved once the effect of SRP is added.
We have studied the variation of the size of this region as β varies, and also how orbits, that start there,
evolve over time. Hence, it makes sense to define a target region inside the RPS that can be written in
closed form depending on the solar sail lightness number.

Combining the non-linear dynamics around L1/L2 and L4/L5 for β 6= 0 and α 6= 0, different two-
maneuver trajectories that transfer from one region to the other can be found. The idea is to match a
trajectory leaving the displaced SL1 and SL2 equilibria along the unstable manifolds with a fixed sail orien-
tation α0 with a trajectory reaching the RPS at the displaced SL4/SL5 with another fixed sail orientation
α1. The change from one orientation to the other is performed at a Poincaré section at the mid-distance
between the two points (Σ1 = {y = ±(x+ µ)/

√
3}). Using this simple approach we have been able to find,

for β = 0.01, transfer trajectories joining all of the different regions: (a) from SL1 to RPS at SL4, (b) from
SL1 to RPS at SL5, (c) from SL2 to RPS at SL4 and (d) from L2 to RPS at L5. From all the trajectories
that have been explored, a larger variety of transfer options has been found starting from SL1 towards both
SL4/SL5 RPS, than starting from SL2. Moreover, in general, the transfer times from SL1 are smaller than
from SL2, although these trajectories are not time-optimal, as they have been found using a simple shooting
method.

Therefore, using these manifold-type trajectories as initial guess in a direct pseudospectral optimization
method, time-optimal transfers between the SL1/SL2 points and the RPS at SL4/SL5 have been found. For
β = 0.01, the transfer times range between 669 and 1430 days. All transfers converged to a solution where
the sailcraft enters the RPS at the point closest to Earth as this constitutes the shortest path. As such,
improvements in the time of flight with respect to the initial guess of 1.7% to 59.9% have been achieved,
depending on which of the four transfers is considered. The largest improvement of 59.9% is achieved for the
transfer from SL2 to SL4 for which manifold-type trajectories can only be found by passing by the L5 point,
while the time-optimal solution shows a direct transfer between SL2 and SL4. Finally, it has been shown
that by increasing the lightness number from a near-term value of β = 0.01 to a maximum far-term value
of β = 0.05, further reductions in the time of flight of 44.4% to 67.2% to 320 - 538 days can be achieved.
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