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1. Introduction

The intrinsic limitations of the Black–Scholes model in describing real markets behaviour are very 
well known. Among the main assumptions underlying this model, the most relevant ones are probably 
constant volatility and no transaction costs. In this paper, we are going to consider the pricing problem 
of a European option in a model in which both proportional transaction costs are taken into account and 
the volatility is assumed to evolve according to a stochastic process of the Ornstein–Uhlenbeck type. 
To analyse this situation we shall follow a utility maximization procedure, following the seminal paper 
of Davis et al. (1993).

If one uses the following utility function U :

U(x) = 1 − exp (−γ x),

where γ expresses the risk aversion of the investor, one gets, as the result of this analysis, a non-linear 
partial differential equation (PDE) for the expected value of the utility-maximized wealth held in the 
underlying asset of the option.

The pricing of a European option in the presence of small transaction costs was considered in 
Whalley & Wilmott (1997), where a correction term to the Black and Scholes pricing formula was



derived. This correction term was found to be O(ε2/3), where ε denotes the asymptotic expansion 
param-eter. Moreover in Whalley & Wilmott (1997) it was found that the optimal hedging strategy 
consists in not transacting when the process driving the stock price is in a strip around the classical 
Black and Scholes delta—hedging formula, and in rebalancing the portfolio (selling or buying stocks) 
to keep the process inside the strip of no transaction. The width of the no transaction strip was found to 
be O(ε2/3). In Whalley & Wilmott (1997), the volatility has been supposed to be constant.

A wide literature is available on the optimal consumption-investment problem for models with 
trans-action costs: we just mention two pioneer contributions on the subject, the paper by Davis & 
Norman (1990), and the paper by Cvitanic & Karatzas (1996). More recently, �ksendal & Sulem 
(2002) inves-tigated the optimal consumption problem in a model including both fixed and 
proportional transac-tion costs, while Muthuraman & Kumar (2006) studied the optimal investment 
problem in a multi-dimensional setting. The problem of hedging contingent claims for models with 
transaction costs has been investigated in several papers: Albanese & Tompaidis (2008), Clewlow & 
Hodges (1997), Kallsen & Muhle-Karbe (2013) and Zakamouline (2006a,b).

The pricing of a European option with fast mean-reverting stochastic volatility was considered in 
a series of papers (see e.g. Fouque et al., 2000, 2003, 2001, 2011; Fouque & Lorig, 2011). In the 
above-mentioned papers, the authors found the pricing formula whose leading order term is the classical 
Black and Scholes formula with averaged volatility. The correction term was order the square root of 
the characteristic time scale of the process driving the volatility. An optimal consumption-investment 
problem has been investigated in a paper by Bardi et al. (2010) where a rigorous asymptotic analysis is 
performed and where the solution is characterized in the limit of fast volatility dynamics.

In a recent paper, Mariani et al. (2012) proposed a numerical approximation scheme for European 
option prices in stochastic volatility models including transaction costs based on a finite-difference 
method. The stochastic volatility dynamics assumed there is a slight generalization of that proposed by 
Hull & White (1987), since they consider a drift coefficient which is a general (regular) deterministic 
function of both the time and the underlying asset price, while their diffusion coefficient is linear in the 
instantaneous volatility.

In the present paper, we propose a different approximation method for European option pricing in 
stochastic volatility models with transaction costs, based on an asymptotic analysis which follows the 
approach pioneered by Fouque et al. (2001). The model we consider for the stochastic volatility 
dynam-ics is of Ornstein–Uhlenbeck type. This model has been originally proposed by Stein & Stein 
(1991). We provide closed-formulas for the first terms appearing in the asymptotical expansion for 
European option prices in the limit of fast volatility and small transaction costs. In the present paper, 
we are not going to provide existence and uniqueness results for the stochastic optimal control problem 
arising in our pricing methodology, neither we shall discuss rigorously the questions related to 
asymptotic expansion convergence to the solution required.

The goal of the present investigation is to show how the approach pioneered by Davis et al. (1993) 
can be extended to stochastic volatility models. To this end we combine with a suitable scaling the 
asymptotic technique introduced by Whalley & Wilmott (1997) with that proposed by Fouque et al.
(2001) in order to obtain quite explicit results. The existence and uniqueness of the solution for the 
singular control problem arising in American option pricing and in the same modelling framework 
considered in the present paper has been proved by Cosso & Sgarra (2013). We point out that a recent 
paper by Bichuch (2011) deals with contingent claim pricing in models with (proportional) transaction 
costs via an asymptotic analysis based on the pioneer work by Whalley & Wilmott (1997) by providing 
a rigorous derivation of the asymptotic expansion together with lower and upper bounds for the value 
function involved. In a previous paper, the same author presented a rigorous asymptotic analysis for



an optimal investment problem, in the case of a power utility function, in finite time for a model with 
proportional transaction costs (Bichuch, 2012). An approximate hedging strategy construction has been 
also proposed quite recently in a paper by Lepinette & Quoc (2012) for a local volatility model with 
proportional transaction costs.

The plan of the paper is the following: in Section 2 we introduce the model considered. In Section 3 
we formulate the European option pricing problem as a stochastic control problem, and present the 
associated HJB equation. In Section 4, the asymptotic analysis is performed, by assuming small trans-
action costs and fast mean-reverting volatility. In Section 5, the price of the option is computed and in 
Section 6, the numerical results and the conclusions are provided. For the reader’s convenience, in 
Appendix A the source term of the equation obtained through the asymptotic analysis at O(ε) is cal-
culated; in Appendix B the averages with respect to the Ornstein–Uhlenbeck invariant measure using 
the stochastic volatility proposed by Chesney & Scott (1989) are presented; finally, in Appendix C the 
derivatives, which appears in the obtained corrected pricing formula, with respect to the stock price of 
the classical Black and Scholes solution are recalled and collected.

2. A stochastic volatility model with transaction costs

We suppose to have the following multi-dimensional stochastic process:

dB = rB dt − (1 + λ)S dL + (1 − μ)S dM , (2.1)

dy = dL − dM , (2.2)

dS = S(α dt + f (z) dW), (2.3)

dz = ξ(m − z) dt + β(ρ dW +
√

1 − ρ2 dZ). (2.4)

In the above equations B and S are the risk-free (the ‘Bond’) and the risky asset (the ‘Stock’), 
respectively, r is the risk-free interest rate, α is the drift rate of the stock, λ and μ are the (propor-
tional) cost of buying and selling a stock, f is the volatility function, that we shall suppose to depend on 
the stochastic variable z, which is sometimes called the volatility driving process. L(t) and M (t) are the 
cumulative number of shares bought or sold, respectively, up to time t. Both  L(t) and M (t) are 
assumed to be right continuous with left-hand limits, non-negative and non-decreasing Ft-adapted pro-
cesses, where Ft denotes the filtration generated by (Wt, Zt). Moreover, by convention, we shall assume 
L(0) = M (0) = 0. We keep the notations introduced in Davis et al. (1993) and Whalley & Wilmott 
(1997), where the reader can find a detailed justification for the transaction costs model just intro-
duced. The set T of trading strategies π(t), in the present setting, consists of all the two-dimensional, 
right-continuous, measurable processes (Bπ (t), yπ (t)) which are the solution of (2.2) and for which 
some pair of right-continuous, measurable, Ft-adapted, increasing processes L(t), M (t) exist, such
that (Bπ (t), yπ (t), S(t)) ∈ EΓ ∀t ∈ [0, T], where EΓ = (B, y, S) ∈ R × R × R

+ : B + c(y, S) >−Γ , with
Γ positive constant and c(y, S) the liquidated cash value of the position y, i.e. the residual cash value
when a long position (y> 0) is sold or a short position (y< 0) is closed. Conventionally, we assume
c(0, S)= 0. In what follows we shall always suppose f (z) to be a function bounded away from 0:

0<m1 � f (z)� m2 <∞, ∀z.

The process followed by the stochastic variable z is a Ornstein–Uhlenbeck process with average m.
The parameter ξ is the rate of mean-reversion volatility.



The Brownian motions W and Z are uncorrelated and ρ is the instantaneous correlation coefficient 
between the asset price and the volatility shocks. Usually one considers ρ < 0, i.e. the two processes 
are anti-correlated (e.g. when the prices go down the investors tend to be nervous and the volatility 
raises). For more details see Fouque et al. (2001) and Jonsson & Sircar (2002).

If we suppose to deal with trading strategies absolutely continuous with respect to time, we can 
write our stochastic dynamics in the following compact form:

L =
∫ t

0
l ds, M =

∫ t

0
m ds.

Therefore the process we are dealing with can be written in the following form:

dB = [rB − (1 + λ)Sl + (1 − μ)Sm] dt, (2.5)

dy = (l − m) dt, (2.6)

dS = S(α dt + f (z) dW), (2.7)

dz = ξ(m − z) dt + β(ρ dW +
√

1 − ρ2 dZ). (2.8)

Remark 2.1 The assumption of absolute continuity with respect to time on the processes L(t), M (t) was 
made in order to write our dynamics in a simpler form, but it can be relaxed. Following the treatment 
presented in Davis et al. (1993), all the results we are going to mention hold true for L(t) and M (t) right 
continuous with left-hand limits, non-negative, non-decreasing and Ft-adapted.

If we denote the value at time t of a portfolio of the writer of a European option with strike price K, 
after following the strategy π , by  Φw(t, Bπ (t), yπ (t), S(t), z(t)), its final value is given by:

Φw(T , Bπ (T), yπ (T), S(T), z(T))= Bπ (T)+ I(S(T)<K)c(y
π (T), S(T))

+ I(S(T)>K)[c(y
π (T)− 1, S(T))+ K]. (2.9)

On the other hand, the final value of a portfolio which does not include the option (denoted by Φ1)
is simply

Φ1(T , Bπ (T), yπ (T), S(T), z(T))= Bπ (T)+ c(yπ (T), S(T)). (2.10)

3. The optimal control problem for European option pricing

The purpose of this section is to briefly recall the basic ideas of Utility Indifference Pricing and to 
resume, in a synthetic way, the framework proposed by Davis et al. (1993) for European option pricing 
in market models with transaction costs. We define the following value functions:

Vj(B)= sup
π∈T

E(U(Φj(T , Bπ (T), yπ (T), S(T), z(T)))) (3.1)

for j = 1, w. U : R → R is the utility function, which is required to be concave and increasing and satis-
fying U(0)= 0. Note how these value functions depend on the initial endowment B.



Following Davis et al. (1993) we now define:

Bj = inf{B : Vj(B)� 0}.

In the present setting the price of the option C, i.e. the amount of money that the writer has to receive
to accept the obligation implicit in writing the option, will therefore be:

C = Bw − B1. (3.2)

For this price the investor would in fact be indifferent between the two possibilities of going into
the market to hedge the option, or of going into the market without the option. We point out that the
present approach, named Utility Indifference Pricing, provides just a criterion to select one price, among
the infinitely many compatible with the no-arbitrage requirement, since the present market model is
incomplete.

We can define the following function that will be useful in the sequel

Ψj(T , Bπ (T), yπ (T), S(T), z(T))=Φj(T , Bπ (T), yπ (T), S(T), z(T))− Bπ (T). (3.3)

We have to find an equation for Vj. In what follows we shall suppress the index j and denote Vj with
V . The problem we are dealing with is a stochastic control problem, where the control is the trading
strategy m and l.

By following step by step the procedure illustrated in Davis et al. (1993, pp. 476–477), including the 
dependence of just one more state variable, it is possible to show that V must satisfy an HJB equation. 
A rigorous derivation of the (HJB) equation and the existence and uniqueness proof of a solution in the 
same modelling context, but for the more complex case of American option pricing, can be found in 
Cosso & Sgarra (2013).

Proposition 3.1 Let the stochastic process be described by (2.5–2.8), then the value function V defined 
before must satisfy the following (HJB) equation:

max{(∂yVj − (1 + λ)S∂BVj), −(∂yVj − (1 − μ)S∂BVj),

∂tVj + rB∂BVj + αS∂SVj + ξ(m − z)∂zVj

+ 1
2 [f (z)]2S2∂SSVj + 1

2
β2∂zzVj + βfSρ∂SzVj} = 0. (3.4)

We now consider the case of the exponential utility function U(x)= 1 − exp (−γ x). We note, just
in passing by, that this gives for Vj the following expression:

Vj = 1 − inf{E[exp (−γB(T)) exp (−γΨj)]},

where Ψj has been previously introduced.
In the above maximization problem let us change the variables passing Vj −→ Qj:

Vj = 1 − exp
(
−γ
δ
(B + Qj)

)
,

where
δ≡ exp [−r(T − t)].



Note that with the above expression for Vj, the price of the option C, as given in (3.2), now 

becomes C = Q1 − Qw (3.5)

and we can state the auxiliary result:

Proposition 3.2 The maximization problem for Vj is equivalent to the following minimization problem
for Qj:

min
{
(∂yQj − (1 + λ)S), (−∂yQj + (1 − μ)S), ∂tQj − rQj + αS∂SQj + ξ(m − z)∂zQj

+ 1

2
[f (z)]2S2

[
∂SSQj − γ

δ
(∂SQj)

2
]

+ 1

2
β2

[
∂zzQj − γ

δ
(∂zQj)

2
]

+ βfSρ
[
∂SzQj − γ

δ
∂SQj∂zQj

]}
= 0. (3.6)

As shown in the papers by Davis et al. (1993) and Whalley & Wilmott (1997), the European option 
pricing problem is a free boundary problem and the (S, y, z) space divides into three regions, the Buy 
region, the Sell region and the No Transaction (NT from now on) region. The NT region is separated 
from the other two regions by two (unknown) boundaries and the optimal policy of the option writer 
consists in maintain his portfolio in the NT region; when an eventual movement of the asset price forces 
the portfolio to hit one of the two boundaries, he must trade so as to stay inside the NT region. In the 
Buy region the following condition must hold

min(∂yQj − (1 + λ)S)= 0, (3.7)

while in the Sell region the following holds:

min(∂yQj − (1 − μ)S)= 0. (3.8)

The NT region is characterized by the following equation:

∂tQj − rQj + αS∂SQj + 1

ε
(m − z)∂zQj + 1

2
[f (z)]2S2

[
∂SSQj − γ

δ
(∂SQj)

2
]

+ 1

ε
ν2

[
∂zzQj − γ

δ
(∂zQj)

2
]

+ 1√
ε
ν
√

2fSρ
[
∂SzQj − γ

δ
∂SQj∂zQj

]
= 0. (3.9)

Some continuity conditions for the unknown function Q and its first and second derivatives across
the free boundaries must be imposed in order to solve the free boundary problem. We shall present them
in next section.

4. Small transaction costs and fast mean-reverting volatility: the asymptotic analysis

We now suppose small transaction costs and fast mean-reverting volatility. Moreover, we will assume
that the transaction costs are much smaller than the rate of mean reversion:

λ= λ̄ε2, μ= μ̄ε2, ξ = 1

ε
, β =

√
2ν√
ε

.



Buying and selling costs are assumed to be the same for simplicity in the following, whenever anything 
different will be specified.

We believe that our asymptotic assumptions are consistent with a situation where a large investor, 
facing very small transaction costs, is involved. In fact, in the empirical study (Fouque et al., 2000), it 
is found that ε ∼ .005. In the literature (Whalley & Wilmott, 1997; Davis et al., 1993; Zakamouline,
2006a), typically it is assumed 0.2% � λ � .01%.

In the absence of transaction costs and with a deterministic volatility ε = 0, the investor would con-
tinuously trade and get a perfect hedge staying at y = y∗, the ‘B&S’ hedging strategy. When transaction 
costs are present there is a strip of small thickness around y = y∗ where he does not transact. To resolve 
this strip we introduce the inner scaled coordinate Y

y = y∗ + εaY and ∂y −→ ε−a∂Y . (4.1)

The unknown boundaries between the NT region and the buy and sell regions are located at:

y = y∗ + εaY+ and y = y∗ − εaY−.

It is very important from the practical hedger point of view to determine Y+ and Y−. 
We impose the following matching conditions (see e.g. Whalley & Wilmott, 1997)

QNT(Y = Y±)= Q(y = y∗ ± εaY±) continuity,
∂Y QNT(Y = Y±)= εa∂yQ(y = y∗ ± εaY±) continuity of the first derivative,
∂YY QNT(Y = Y±)= ε2a∂yyQ(y = y∗ ± εaY±) smooth pasting boundary condition.

These boundary conditions will force, in the asymptotic analysis below, a = 1
3 . Therefore the NT

strip will have a thickness O(ε1/3).

(4.2)

(4.3)

In the buy region (Y < Y−) we have (3.7) and a solution is

Q = (1 + λ)Sy + H−(t, S, λ).

In the sell region (Y > Y+) we have (3.8), which solves to

Q = (1 − μ)Sy + H+(t, S, λ).

Here H+(t, S, λ) and H−(t, S, λ) are arbitrary functions not depending on y.

In the NT region we have (3.9), whose solution will be obtained and illustrated in the following 
sections.

4.1 The solution in the NT region

As we mentioned before, in the NT region we use the rescaled variable Y defined by (4.1). The change 
of variable leads to the following transformation rules for the derivatives:

∂y −→ ε−1/3∂Y ,

∂S −→ ∂S − ε−1/3y∗
S∂Y ,

∂t −→ ∂t − ε−1/3y∗
t ∂Y ,

∂z −→ ∂z − ε−1/3y∗
z ∂Y .



By writing the solution in the NT region in the following form:

QNT = S(y∗ + ε1/3Y )+ U0(S, t, z)+
13∑

i=1

εi/6Ui(S, t, z)+ ε14/6U14(S, t, z, Y )+ · · · , (4.4)

we can easily obtain an expression for all the derivatives of QNT with respect to the variables t, S, z. By
adopting an obvious notation they can be written as follows:

∂tQNT = U0t +
11∑

i=1

εi/6Uit + ε12/6(U12t − y∗
t U14Y )+ · · · ,

∂SQNT = y∗ + U0S + ε1/6U1S + ε2/6(Y + U2S)+
11∑

i=3

εi/6UiS + ε12/6
(
U12S − y∗

SU14Y
) + · · · ,

∂SSQNT = U0SS +
9∑

i=1

εi/6UiSS + ε10/6(U10S + (y∗
S)

2U14YY )+ · · · ,

∂zQNT = U0z +
11∑

i=1

εi/6Uiz + ε12/6(U12z − y∗
z U14Y )+ · · · ,

∂zzQNT = U0zz +
9∑

i=1

εi/6Uizz + ε10/6(U10zz + (y∗
z )

2U14YY )+ · · · ,

∂SzQNT = U0Sz +
9∑

i=2

εi/6UiSz + ε10/6(U10Sz + y∗
Sy∗

z U14YY )+ · · ·

(4.5)

The introduction of the new scaled variables allows to split the description of the Black–Scholes 
delta-hedging strategy from the effects due to transaction costs and stochastic volatility and to consider 
separately their contribution.

To calculate the price of the option we shall use (3.5). The price will have the same asymptotic 
expansion as Qj with j = 1, w, namely

C = C0 + ε1/6C1 + ε1/3C2 + √
εC3 + ε2/3C4 + ε5/6C5 + εC6 + · · · . (4.6)

Each Ci is given by:

Ci = U1
i − Uw

i .

To find the appropriate final conditions for the Ci, we write the final conditions for Q1 and Qw. They
are, respectively:

Q1(T)= y(T)S(T) (4.7)

and

Qw(T)= y(T)S(T)− max(S(T)− K, 0). (4.8)



Given the expression (4.4) one has that the final conditions for the Ui are the following:

U1
i (T)= 0 for i = 0, . . . , 6. (4.9)

Uw
0 (T)= − max(S(T)− K, 0), (4.10)

Uw
i (T) = 0 for i = 1, . . .  , 6.

Remark 4.1 We point out that the final conditions of our original problem have been imposed on the 
leading order term, while the corresponding conditions imposed for lower-order terms are homoge-
neous. This choice seems to be quite natural in the present setting and is also common for asymptotic 
expansions.

4.2 The O(ε−1) up to O(ε−1/6) order equations

To simplify the notation, and following the use in Fouque et al. (2003) and Jonsson & Sircar (2002), 
we define the linear operators Li and the non-linear operator NL:

L0U = (m − z)Uz + ν2Uzz, (4.11)

L1U = −ν
√

2ρ
(α − r)

f
Uz + ν

√
2fSρUSz, (4.12)

L2U = Ut + 1

2
f 2S2USS − rU + rSUS , (4.13)

NLU = −ν2 γ

δ
(Uz)

2. (4.14)

The O(ε−1) equation is simply

L0U0 + NLU0 = 0. (4.15)

The above equation can be considered an ordinary differential equation (ODE) in z for U0:

ν2U0zz + (m − z)U0z − ν2 γ

δ
(U0z)

2 = 0. (4.16)

In Jonsson & Sircar (2002), it is proved that the only solution of an equation of this form is a U 
which does not depend on z. The conclusion we therefore draw is that

U0 does not depend on z.

Analogously, the O(ε−i/6) equations, for i = 1, . . . , 5 are

L0Ui = 0.

The conclusion is

Ui i = 1, . . . , 5 do not depend on z.



4.3 The O(1) equation

The O(1) equation writes

L0U6 + L2U0 + S(α − r)(U0S + y∗S)− 1

2
[f (z)]2S2 γ

δ
(y∗ + U0S)

2 = 0. (4.17)

The above equation will be analysed in Section 4.5.

4.4 The O(ε1/6) equation

The O(ε1/6) equation is

L0U7 + L2U1 + S(α − r)U1S − [f (z)]2S2 γ

δ
U1S(y

∗ + U0S)= 0. (4.18)

Also (4.18) will be analysed in Section 4.5.

4.5 The O(ε2/6) equation

The O(ε2/6) equation is

L0U8 + U2t − r(SY + U2)+ αS(Y + U2S)+ 1

2
[f (z)]2S2

[
U2SS − 2

γ

δ
(y∗ + U0S)(Y + U2S)

]
= 0.

(4.19)

In the above equation there are terms that do not depend on Y , and terms linear in Y . They must be
equal to zero separately. From the terms linear in Y one gets:

y∗ = −U0S + (α − r)δ

f 2Sγ
. (4.20)

The above expression gives the leading order (in the absence of transaction costs) optimal hedging 
strategy. One recognizes the Black and Scholes Delta-hedging strategy. The same result appears in the 
paper by Whalley & Wilmott (1997, formula (3.6)).

By inserting the above expression into the O(1) (4.17), one gets:

L0U6 + ∂tU0 + 1

2
f 2S2∂SSU0 + rS∂SU0 − rU0 + 1

2

δ

γ

(α − r)2

f 2
= 0. (4.21)

(4.22)

The above equation, considered as an ODE for U6, is of the form:

L0U = χ .

In Fouque et al. (2003) it is shown that the solvability condition for (4.22) is

〈χ〉 = 0, (4.23)



where the average 〈·〉 is taken with respect to the Ornstein–Uhlenbeck process invariant measure (see 
Klebaner, 1998 and Fouque et al., 2003, formula (3.3), p. 1652)

〈χ〉 = 1

ν
√

2π

∫
R

χ(z) e−(m−z)2/2ν2
dz. (4.24)

Therefore the solvability condition for (4.21) is

∂tU0 + 1

2
σ̄ 2S2∂SSU0 − rU0 + rS∂SU0 = −δ(α − r)2

2γ

1

τ̄ 2
, (4.25)

where σ̄ is the effective constant volatility

σ̄ 2 = 〈f 2〉,

and τ̄ is defined as
1

τ̄ 2
=

〈
1

f 2

〉
.

Once one imposes to (4.25) the appropriate final condition, which will be different for the investor 
with option liability and the investor without it, then U0 is determined. One can go back to equation 
(4.21) and solve it for U6. Once (4.21) has been solved, and the proper boundary conditions are taken 
into account, it is easy to recognize that the solution for U6 can be written as a superposition of two 
terms, one independent on z (the differential operator L2 contains only terms proportional to the first 
derivatives with respect to z and this term satisfies the homogeneous equation L2U = 0) and one 
depend-ing on (S, z, t), in such a way that we can write

U6 = U (z)
6 (S, z, t)+ Ũ6(S, t), (4.26)

where, U (z)
6 (S, z, t), the part of U6 which depends on z, has the following expression

U (z)
6 (S, z, t)= −L−1

0

[
1

2
S2(f 2 − σ̄ 2)U0SS + 1

2

δ

γ
(α − r)2

(
1

f 2
− 1

τ̄ 2

)]
;

on the other hand, Ũ6 is a function that does not depend on z and that will be determined by the O(ε)
equation in the asymptotic procedure.

We can get a more explicit representation for U (z)
6 , that will be useful in the next subsection. We first

define the functions ϕ(z) and ψ(z) as the solutions of the following problems:

L0ϕ = f 2 − 〈f 2〉, (4.27)

L0ψ = 1

f 2
−

〈
1

f 2

〉
. (4.28)

Therefore the above expression for U (z)
6 can be written as:

U (z)
6 = −

[
1

2
S2U0SSϕ + 1

2

δ

γ
(α − r)2ψ

]
. (4.29)



(4.30)

Let us come back to (4.18). Once substituted the expression (4.20) for y∗, (4.18) reduces to

L0U7 + L2U1 = 0.

Equation (4.30) is a Poisson problem for U7, whose solvability condition reads:

〈L2〉U1 = 0, (4.31)

which is a homogeneous Black–Scholes equation for U1. Given that the final condition is zero, we get
the conclusions

U1 ≡ 0,

U7 = Ũ7(S, t) does not dependent on z.

One can now go back to (4.19), collect all terms independent of Y and get the following equation:

L0U8 + L2U2 = 0.

The above equation is a Poisson problem of the type (4.22). The solvability condition is:

〈L2〉U2 = 0. (4.32)

Note that the above equation is homogeneous in U2. Given that the final condition, both for the
investor with option liability and for the investor without it, is 0, one gets the following conclusions

U2 ≡ 0,

U8 = Ũ8(S, t) is independent of z.

Therefore, the first significant correction to the Black and Scholes value is the O(ε1/2) contribution.

4.6 The O(ε3/6) equation

Using the expression (4.20) for y∗, the  O(ε3/6) equation can be written as

L2U3 + L1U6 + L0U9 = 0. (4.33)

Ũ
˜

Note that in the above equation appears U6, which until now we have derived only up to the function 
6(S, t), to be determined by a higher order asymptotic. However, in (4.33) U6 is hit by the operator L1, 
which cancels U6(S, t).

Therefore, one can consider (4.33) as a Poisson problem for U9, whose solvability condition is

〈L2〉U3 = −〈L1U6〉. (4.34)

The above equation is a Black and Scholes equation for U3 with 0 final condition and with a source
term. We now want to rewrite the source term.



By using for U6 the expression (4.26) the operator L1 cancels the part not depending on z, and taking 
into account the expression (4.29), one can express the source term in (4.34) as

−〈L1U6〉 =
〈
L1

[
1

2
S2U0SSϕ + 1

2

δ

γ
(α − r)2ψ

]〉

= νρ√
2

[
〈f ϕ′〉(S3U0SSS + 2S2U0SS)− (α − r)S2U0SS

〈
ϕ′

f

〉
− δ

γ
(α − r)3

〈
ψ ′

f

〉]
.

Therefore, U3 solves the following Black and Scholes equation

U3t + 1

2
σ̄ 2S2U3SS − rU3 + rSU3S

= νρ√
2

[
〈f ϕ′〉(S3U0SSS + 2S2U0SS)− (α − r)S2U0SS

〈
ϕ′

f

〉
− δ

γ
(α − r)3

〈
ψ ′

f

〉]
(4.35)

with zero final data.

4.7 The O(ε2/3) equation

Since U7 does not depend on z, the O(ε2/3) equation can be written as

L2U4 + L0U10 + ν2(y∗
z )

2U14YY − γ

δ
f 2S2Y 2 = 0. (4.36)

Equation (4.36) can be considered as an ODE in Y for U14. It writes as

U14YY = AY 2 + B, (4.37)

where we have defined the following quantities

A = γ

δ

f 2S2

ν2(y∗
z )

2
,

B = −L2U4 + L0U10

ν2(y∗
z )

2
.

Equation (4.37) solves to

U14 = A

12
Y 4 + 1

2
BY 2 + CY + D, (4.38)

with C and D independent of Y . Now we have to impose the matching conditions.
Being

QBUY = (1 + ε2λ̄)Sy + H−(S, z, t) in the outer buy region
QSELL = (1 − ε2μ̄)Sy + H+(S, z, t) in the outer sell region

(4.39)

and imposing the continuity of the gradient at the two boundaries:

∂Y QNT(Y = −Y−)= ε1/3∂yQBUY(y = y∗ − ε1/3Y−),

∂Y QNT(Y = Y+)= ε1/3∂yQSELL(y = y∗ + ε1/3Y+),



one gets, at O(ε14/6)

∂Y U14(Y = −Y−)= λ̄S, (4.40)

∂Y U14(Y = Y+)= −μ̄S. (4.41)

Therefore, using (4.38), one gets

−A

3
(Y−)3 − BY− + C = λ̄S, (4.42)

A

3
(Y+)3 + BY+ + C = −μ̄S. (4.43)

Moreover, being W in the outer regions linear in y, one imposes the continuity of the second deriva-
tive as follows

∂YY QNT(Y = ±Y±)= 0,

i.e.

A(Y+)2 + B = 0,

A(Y−)2 + B = 0.

From these equations one sees that, at this order, the bandwidth about the Black and Scholes strategy is
symmetric, i.e.

Y+ = Y− =
(

−B

A

)1/2

. (4.44)

Subtracting the two equations (4.42) and (4.43) to eliminate C, and using the above expressions for Y±, 
one gets

4

3
(−B)3/2A−1/2 = (λ̄+ μ̄)S.

After some manipulations, and using the expressions for A and B, (4.37) leads to the following equation:

L0U10 + L2U4 =
[

3

4
(λ̄+ μ̄)fS2

√
γ

δ
ν2(y∗

z )
2

]2/3

. (4.45)

One can also find an expression for the amplitude of the NT region

Y+ = Y− =
[

3

2

1

f 2S

δ

γ
ν2(y∗

z )
2

]1/3

. (4.46)

Equation (4.45) is a Poisson problem of the type of (4.22). The solvability condition gives an
equation for U4:

〈L2〉U4 =
〈[

3

4
(λ̄+ μ̄)fS2

√
γ

δ
ν2(y∗

z )
2

]2/3
〉

. (4.47)



Note also that, adding the two equations (4.42) and (4.43), one gets that C = 0. Therefore

U14 = A

12
Y 4 + 1

2
BY 2 + D, (4.48)

which will be useful in Section 4.9.

4.8 The O(ε5/6) equation

The O(ε5/6) equation writes as:

L0U11 + L2U5 −
√

2
∂U6

∂z

γ

δ
νρf (z)SY − ∂U3

∂S

γ

δ
f (z)2S2Y + ∂2U15

∂Y 2

(
∂y∗

∂z

)2

ν2 = 0. (4.49)

This equation can be considered as an ODE for U15:

∂2U15

∂Y 2
= ĀY + B̄,

where we have denoted

Ā =
(√

2
∂U6

∂z

γ

δ
νρf (z)S − ∂U3

∂S

γ

δ
f (z)2S2

)/
(ν2y∗2

z ),

B̄ = −L0U11 + L2U5

ν2y∗2
z

.

Integrating (4.49) with respect to Y and using the boundary conditions:

U15Y (Y
+)= U15Y (−Y−)= 0

which are needed to ensure the continuity of the gradient, one gets

L0U11 + L2U5 = 0. (4.50)

The above equation is a Poisson problem for U11, whose solvability condition reads

〈L2〉U5 = 0. (4.51)

This is a homogeneous Black–Scholes equation for U5. Given that the final condition is zero, we get
the conclusions:

U5 ≡ 0,

U11 = Ũ11(S, t) does not depend on z.



4.9 The O(ε) equation

Collecting the O(ε) terms one gets

L2U6 + L1U9 + L0U12 − 1

2
f 2S2 γ

δ
(U3S)

2 − ν
√

2fSρ
γ

δ
U3SU6z − y∗

z (m − z)U14Y

− γ

δ
f 2YS2U4S + ν2

[
−y∗

zzU14Y − 2y∗
z U14Yz + (y∗

z )
2U16YY − γ

δ
(U6z)

2
]

= 0. (4.52)

The above equation can be considered as an ODE in Y for U16:

∂2U16

∂Y 2
= ÃY + B̃,

where we have defined

Ã = γ

δ

f 2S2U4S

ν2(y∗
z )

2
,

B̃ = −
[
L0U12 + L1U9 + L2U6 − 1

2
f 2S2 γ

δ
U2

3S − ν
√

2fSρ
γ

δ
U3SU6z

− ν2
(

y∗
zzU14Y + 2y∗

z U14Yz + γ

δ
U2

6z

)
+ U14Y y∗

z (m − z)
]/

(ν2(y∗
z )

2).

Note that Ã does not depend on Y and in B̃ the Y -dependent terms appear only with their derivatives
in Y .

We integrate (4.52) from −Y− to Y+. 
Let us use the boundary conditions:

U16Y (Y
+)= U16Y (−Y−)= 0.

Moreover, being Y+ = Y− and from the expression (4.48) it follows that

∫ Y+

−Y−
U14Y dY = 0.

By integrating (4.52) we get:

L0U12 + L1U9 + L2U6 = 1

2
f 2S2 γ

δ
(U3S)

2 + ν
√

2fSρ
γ

δ
U3SU6z + ν2 γ

δ
(U6z)

2.

The solvability condition for U12 gives the following equation for U6:

〈L2〉U6 = −〈L1U9〉 + 1

2
σ̄ 2S2 γ

δ
(U3S)

2 + ν
√

2Sρ
γ

δ
U3S〈fU (z)

6z 〉 + ν2 γ

δ
〈(U (z)

6z )
2〉. (4.53)

The main results of this section are the following:

1. Equation (4.25) for  U0;

2. Equation (4.31) for  U1 which led us to U1 ≡ 0;



3. Equation (4.32) for  U2 which led us to U2 ≡ 0;

4. Equation (4.35) for  U3;

5. Equation (4.47) for  U4;

6. Equation (4.51) for  U5 which led us to U5 ≡ 0;

7. Equation (4.53) for  U6;

8. The expression (4.20) for  y∗, the centre of the NT region.

9. The expression (4.46) for the boundaries of the NT region.

5. The option pricing

To calculate the price of the option we now use (3.5), and the asymptotic expansion (4.6) together with 
the appropriate final conditions for the Ci, which, as we discussed in the previous section, can be 
obtained by the final conditions for the Ui, (4.9–4.11). Here we can state our main result, which will be 
proved in detail in the following subsections:

Proposition 5.1 The first seven terms of the asymptotic expansion (4.6) in powers of the adopted 
parameter ε for the European Call option price in the Utility Indifference framework introduced by 
M.A.H. Davis, V.G. Panas and T. Zariphopoulou are provided by formulas (5.3), (5.4), (5.5), (5.8),
(5.9), (5.10) and (5.15) written below.

5.1 The leading order price

In order to compute the leading order price we have to calculate U1
0 and Uw

0 where they both satisfy
(4.25). Given the respective final conditions (4.9) and (4.10) one has that

U1
0 = (T − t)

δ(α − r)2

2γ

1

τ̄ 2
, (5.1)

Uw
0 = (T − t)

δ(α − r)2

2γ

1

τ̄ 2
− CBS, (5.2)

where CBS is the classical pricing formula for a European call option, i.e.

CBS(S, t)= SN(d1)− K e−r(T−t)N(d2),

where

d1 = log(S/K)+ (r + (1/2)σ̄ 2)(T − t)

σ̄
√

T − t
, d2 = d1 − σ̄

√
T − t,

and N(z) is the normal cumulative distribution function.
From the above expressions for Uj

0 one obtains

C0(S, t)= CBS(S, t). (5.3)



5.2 The O(ε1/6) correction

The equation for U1
1 and U1

w is (4.31), a homogeneous Black and Scholes equation. In both cases, the
final condition is homogeneous. Therefore U1

1 ≡ 0 and Uw
1 ≡ 0 and

C1(S, t)= 0. (5.4)

5.3 The O(ε1/3) correction

As for the O(ε1/6) terms, the equation for U1
2 and Uw

2 is the homogeneous Black and Scholes equation
(4.32), with homogeneous final condition, therefore both U1

2 and Uw
2 are zero and

C2(S, t)= 0. (5.5)

5.4 The O(ε1/2) correction

The equation for U1
3 and U3

w is (4.35), in both cases with homogeneous final condition. Using, respec-
tively, the expressions (5.1) and (5.2) in (4.35), one has that

U1
3 = (T − t)

νρ√
2

δ

γ
(α − r)3

〈
ψ ′

f

〉
, (5.6)

Uw
3 = −(T − t)

νρ√
2

[
− δ

γ
(α − r)3

〈
ψ ′

f

〉
− 〈f ϕ′〉(S3CBS

3S + 2S2CBS
SS )

+ (α − r)S2

〈
ϕ′

f

〉
CBS

SS

]
. (5.7)

Therefore

C3(S, t)= −(T − t)
νρ√

2

[
〈f ϕ′〉(S3∂3

S CBS + 2S2∂SSCBS)− (α − r)S2∂SSCBS

〈
ϕ′

f

〉]
. (5.8)

5.5 The O(ε2/3) correction

The equation for U1
4 and Uw

4 is (4.47), in both cases with homogeneous final condition. The source
term for the two problems is the same: in fact y∗

z has the same expression for both problems. Therefore
Uw

4 = U1
4 and

C4(S, t)= 0. (5.9)

5.6 The O(ε5/6) correction

The equation for U1
5 and U5

w is the homogeneous Black and Scholes equation (4.51) with zero final
condition in both cases. Then

C5(S, t)= 0. (5.10)

5.7 The O(ε) correction

To compute the O(ε) correction we have to solve (4.53). It is a Black and Scholes equation with a source 
term. We know that U6 is decomposed in a part dependent on z and a part that does not depend on z,



see (4.26). The same decomposition holds also for C6:

C6 = C(z)
6 + C̃6,

where

C(z)
6 = U (z)1

6 − U (z)w
6 ,

and

C̃6 = Ũ (z)1
6 − Ũw

6 .

We have already computed U6
(z)j, as given in (4.29), we can therefore calculate C(6

z). In fact, using 
(4.29) and the expressions (5.1) and (5.2), one gets

U (z)1
6 = −1

2

δ

γ
(α − r)2ψ , (5.11)

U (z)w
6 = 1

2
S2CBS

SS ϕ − 1

2

δ

γ
(α − r)2ψ , (5.12)

which gives

C(z)
6 = −1

2
S2CBS

SS ϕ.

˜We are now left with the task of computing C6.
The equation for C6 can be derived using (4.53). Subtracting the two equations relative to U1

6 and
Uw

6 one gets

〈L2〉C6 = −[〈L1U1
9 〉 − 〈L1Uw

9 〉] + 1

2
S2σ̄ 2 γ

δ

[
(U1

3S)
2 − (Uw

3S)
2
]

+ ν
√

2Sρ
γ

δ

[
U1

3S〈fU (z)1
6z 〉 − Uw

3S〈fU (z)w
6z 〉

]
+ ν2 γ

δ

[
〈U (z)1

6z )2〉 − 〈(U (z)w
6z )2〉

]
. (5.13)

This equation is a Black and Scholes equation for C6 with source term. In Appendix A, this source 
term is explicitly computed and (5.13) writes as

〈L2〉C6 = (T − t)2Â + (T − t)B̂ + Ĉ, (5.14)

where

Â = −ν
2ρ2

4

γ

δ
S2σ̄ 2

[
〈f ϕ′〉(S3CBS

4S + 5S2CBS
SSS + 4SCBS

SS )− (α − r)

〈
ϕ′

f

〉
(S2CBS

SSS + 2SCBS
SS )

]2

,

B̂ = −ν2ρ2S2

(
〈ϕ′f 〉 − 1

2
(α − r)

〈
ϕ′

f

〉) [
〈f ϕ′〉(S3CBS

5S + 8S2CBS
4S

+ 14SCBS
SSS + 4CBS

SS )− (α − r)

〈
ϕ′

f

〉
(S2CBS

4S + 4SCBS
SSS + 2CBS

SS )

]



− ν2ρ2

2
S3〈f ϕ′〉

[
(S3CBS

6S + 11S2CBS
5S + 30SCBS

4S + 18CBS
SSS)〈f ϕ′〉

−(α − r)(S2CBS
5S + 6SCBS

4S + 6CBS
SSS)

〈
ϕ′

f

〉]

− ν2ρ2

2

γ

δ
S

[
〈f ϕ′〉(S3CBS

4S + 5S2CBS
3S + 4SCBS

SS )(α − r)

〈
ϕ′

f

〉
(2SCBS

SS + S2CBS
3S )

]

×
(

S2CBS
SS 〈ϕ′f 〉 − δ

γ
(α − r)2〈ψ ′f 〉

)
,

Ĉ = ν2 γ

δ

[
−1

4
S4(CBS

SS )
2〈ϕ′2〉 + 1

2

δ

γ
(α − r)2S2CBS

SS 〈ϕ′ψ ′〉
]

− ν2ρ2(α − r)

[
(α − r)S2CBS

SS 〈G′

f
〉 − (S3CBS

SSS + 2S2CBS
SS )

〈
F ′

f

〉]

− ν2ρ2
[
(S4CBS

4S + 5S3CBS
4S + 5S3CBS

SSS + 4S2CBS
SS )〈F ′f 〉 − (α − r)(S3CBS

SSS + 2S2CBS
SS )〈G′f 〉] .

Given the homogeneous final condition, the solution of (5.14) writes as

C6 = (T − t)3

3
Â + (T − t)2

2
B̂ + (T − t)Ĉ. (5.15)

We have used the fact that

L2

(
(T − t)3

3
A + (T − t)2

2
B + (T − t)C

)

= (T − t)2A + (T − t)B + C + (T − t)3

3
L2A + (T − t)2

2
L2B + (T − t)L2C

and the last three terms are zero

L2

(
Sn ∂

nCBS

∂Sn

)
= Sn ∂

n

∂Sn
L2CBS = 0.

In Appendix C, the reader can find the derivatives of CBS with respect to S up to the sixth order. 
In Appendix B, the averages 〈·〉 with respect to the Ornstein–Uhlenbeck process invariant measure are 
explicitly computed using Scott’s model.

6. Numerical illustration of the results

In this section, we present the main results obtained via the asymptotic method. At first, we plot the NT 
region for different values of the volatility, ranging from 5 to 60%, both in the case which does not 
include the option, denoted by the index 1, and in the case which includes the option, denoted by the 
index w. The volatility is chosen as in the Scott model, f (z) = ez.InFig. 1, the curves representing the 
Black and Scholes strategy y∗ in the absence of transaction costs and the hedging boundaries, y = y∗ ± 
ε1/3Y+, are plotted versus S for the first problem. From the expressions (4.20) and (4.46) it follows
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Fig. 1. The NT region in the case which does not include the option. The dotted curve represents the Black and Scholes strategy
y∗ in the absence of transaction costs, the other two curves represent the hedging boundaries. See the text for the choice of
parameters. Parts (a,b,c,d) refer to different numerical values of the initial volatility.

that these curves are, respectively, given by

y∗ = (α − r)δ

e2zSγ
, (6.1)

y = (α − r)δ

e2zSγ
± ε1/3

[
3(λ̄+ μ̄)(α − r)2ν2δ3

e6zS3γ 3

]1/3

. (6.2)

The corresponding curves in the second case are plotted in Fig. 2 and their equations are:

y∗ = CBS
S + (α − r)δ

e2zSγ
, (6.3)
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Fig. 2. The NT region in the case which includes the option. The dotted curve represents the Black and Scholes strategy y∗ in
the absence of transaction costs, the other two curves represent the hedging boundaries. See the text for the choice of parameters.
Parts (a,b,c,d) refer to different numerical values of the initial volatility.

y = CBS
S + (α − r)δ

e2zSγ
± ε1/3

[
3(λ̄+ μ̄)(α − r)2ν2δ3

e6zS3γ 3

]1/3

. (6.4)

Both in Figs 1 and 2, the strike price is K = 0.5, the risk-free interest rate is r = 0.07, the drift rate of 
the stock is α = 0.1, the risk aversion is γ = 1, the mean volatility σ̄ = 0.2, the time to expiry is 0.3,

λ̄= μ̄= 1 and ε= 1
200 .

Finally, in Fig. 3 it is shown the curve representing the classical Black and Scholes price of a Euro-
pean call option with the first correction obtained at O(ε1/2) and the second correction obtained at O(ε).
Here the parameters are chosen as K = 100, r = 0.04, α= 0.1, γ = 1, the time to expiry is 0.25 and
ε= 1

200 . In Fig. 3(a,b) the correlation coefficient is ρ = 0, therefore the Black and Scholes price and the
corrected price at O(ε1/2) coincide as follows from the expression (5.8). The solutions are computed
at two levels of the current volatility σ 2 = 0.165 and σ 2 = 0.66 and in the range around the money
0.9 � S/K � 1.1 the maximum deviation of the asymptotic approximation (at O(ε)) from the price with



(a)
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Fig. 3. Comparison between the classical price for a European call option and the price including the correction up to O(ε1/2) 
and up to O(ε), at two levels of the current volatility. (a, b) The region around the money, with ρ = 0 and (c, d) the region out of 
the money, with ρ = −0.3.

the lower volatility is 2.1% of this price, with the higher volatility is 7.5%. In Fig. 3(c,d) the correlation 
coefficient is ρ = −0.3. We note that in the region out of the money the second correction of the price 
obtained at O(ε) improves the approximation obtained at O(ε1/2). We want to remark that the oscilla-
tory behaviour exhibited in Fig. 2(b–d) by y for small values of S has been already observed by 
Whalley & Wilmott (1997) also in models with constant volatility, although this feature seems to be 
more pro-nounced in the present context. Moreover, the thickness of the NT region in the presence of 
stochastic volatility seems to be bigger than in model with constant volatility. The (ε)1/3 scaling was 
also a relevant feature already established in Whalley & Wilmott (1997) which is exhibited also by the 
present model.
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Appendix A. The source term in the equation for C6

We separately compute the four terms appearing into the source of (5.13) for C6.

A.1 The term 〈L1U1
9 〉 − 〈L1Uw

9 〉
In the source term we have [〈L1U1

9 〉 − 〈L1Uw
9 〉]. We now write 〈L1Uj

9〉 for j = 1, w, and for notational
simplicity we omit the index j.

Consider (4.33) and solve it for U9:

U9 = −L−1
0 (L2U3 + L1U6). (A.1)

One can go back to (4.35) for the term L2U3:

L2U3 = 1

2
S2U3SSL0ϕ + νρ√

2

[
〈f ϕ′〉(S3U0SSS + 2S2U0SS)

− (α − r)S2U0SS
ϕ′

f

〉
− δ

γ
(α − r)3

〈
ψ ′

f

〉]
.

Being L1U6 = L1U6
(z), from (4.26) it follows that

L1U (z)
6 = νρ√

2

[
−f ϕ′(2S2U0SS + S3U0SSS)+ (α − r)S2U0SS

ϕ′

f
+ δ

γ
(α − r)3

ψ ′

f

]
.

Defining F, G and H as the solutions of the following Poisson equations:

L0F(z)= f ϕ′ − 〈f ϕ′〉,

L0G(z)= ϕ′

f
−

〈
ϕ′

f

〉
,

L0H(z)= ψ ′

f
−

〈
ψ ′

f

〉
,

the formula (A.1) writes as

U9 = −1

2
S2U3SSϕ + νρ√

2

[
(S3U0SSS + 2S2U0SS)F(z)− (α − r)S2U0SSG(z)− δ

γ
(α − r)3H(z)

]
.



The first term in the right-hand side of (5.13) is

〈L1U1
9 〉 − 〈L1Uw

9 〉 = ν2ρ2S2(T − t)

(
〈ϕ′f 〉 − 1

2
(α − r)

〈
ϕ′

f

〉)[
〈f ϕ′〉(S3CBS

5S + 8S2CBS
4S

+ 14SCBS
SSS + 4CBS

SS )− (α − r)

〈
ϕ′

f

〉
(S2CBS

4S + 4SCBS
SSS + 2CBS

SS )

]

+ ν2ρ2(α − r)

[
(α − r)S2CBS

SS

〈
G′

f

〉
− (S3CBS

SSS + 2S2CBS
SS )

〈
F ′

f

〉]

+ ν2ρ2

2
S3(T − t)〈f ϕ′〉

[
(S3CBS

6S + 11S2CBS
5S + 30SCBS

4S + 18CBS
SSS)〈f ϕ′〉

− (α − r)(S2CBS
5S + 6SCBS

5S + 6SCBS
4S + 6CBS

SSS)

〈
ϕ′

f

〉]

+ ν2ρ2
[
(S4CBS

4S + 5S3CBS
4S + 5S3CBS

SSS + 4S2CBS
SS )〈F ′f 〉

− (α − r)(S3CBS
SSS + 2S2CBS

SS )〈G′f 〉] .

A.2 The term (U1
3S)

2 − (Uw
3S)

2

Using the expressions (5.6) and (5.7), respectively, for U1
3 and Uw

3 , it follows that

(U1
3S)

2 − (Uw
3S)

2 = −ν
2ρ2

2
(T − t)2

[
〈f ϕ′〉(S3CBS

4S + 5S2CBS
SSS + 4SCBS

SS )

− (α − r)

〈
ϕ′

f

〉
(S2CBS

SSS + 2SCBS
SS )

]2

.

A.3 The term U1
3S〈fU (z)1

6z 〉 − Uw
3S〈fU (z)w

6z 〉
Since U1

3 is independent of S:

U1
3S〈fU (z)1

6z 〉 = 0.

Using the expression (4.29), we have

Uw
3S〈fU (z)w

6z 〉 = νρ

2
√

2
(T − t)

[
〈f ϕ′〉(S3CBS

4S + 5S2CBS
3S + 4SCBS

SS )− (α − r)

〈
ϕ′

f

〉
(2SCBS

SS + S2CBS
3S )

]

×
(

S2CBS
SS 〈ϕ′f 〉 − δ

γ
(α − r)2〈ψ ′f 〉

)
.

A.4 The term 〈(U6
(
z
z)1
)2 − (U6

(
z
z)w
)2〉

Using once again the formula (4.29) it follows

〈(U (z)1
6z )2 − (U (z)w

6z )2〉 = −1

4
S4(CBS

SS )
2〈ϕ′2〉 + 1

2

δ

γ
(α − r)2S2CBS

SS 〈ϕ′ψ ′〉.



Appendix B. Calculation of the averages 〈·〉 for Scott’s model

If one uses, for the volatility f (z) the model of Scott, i.e.

f (z)= ez,

then one can compute explicitly

〈f 2〉 = em+ν2
,〈

1

f 2

〉
= em−ν2

,

〈
ϕ′

f

〉
= 1

ν2
(em+(1/2)ν2 − em+(5/2)ν2

),

〈
ψ ′

f

〉
= 1

ν2
(e(3/2)(−2m+3ν2) − em−(3/2)ν2

),

〈ψ ′f 〉 = 1

ν2
(e3(m−(1/2)ν2) − e(1/2)(ν

2−2m)),

〈f ϕ′〉 = 1

ν2
(e3m+(5/2)ν2 − e3m+(9/2)ν2

),

〈f 〉 = em+(1/2)ν2
,〈

1

f

〉
= e−m+(1/2)ν2

,

〈f 2ϕ′〉 = 1

2ν2
(e4(m+ν2) − e4(m+2ν2)),〈

ϕ′

f 2

〉
= 1

2ν2
(1 − e4ν2

),

〈ϕ′〉 = −2 e2(m+ν2),

〈fF ′〉 = 1

ν4

(
e4m+3ν2 − e4m+5ν2 + 1

2
e4(m+2ν2) − 1

2
e4(m+ν2)

)
,

〈fG′〉 = 1

ν4
(2ν2 e2(m+ν2) + e2m+ν2 − e2m+3ν2

),〈
F ′

f

〉
= 1

ν4
(−2ν2 e2(m+ν2) + e2m+5ν2 − e2m+3ν2

),

〈
G′

f

〉
= 1

ν4

(
1

2
− 1

2
e4ν2 + e3ν2 − eν

2

)
,

〈
H ′

f

〉
= 1

ν4

(
−1

2
+ 1

2
e4(2ν2−m) − e−4m+5ν2 + e−ν2

)
.



Finally, the term 〈ϕ′ψ ′〉 can be written as

〈ϕ′ψ ′〉 = 2 e4ν2

√
πν2

∫ +∞

−∞
eu2
(erf(u −

√
2ν)− erf(u))(erf(u +

√
2ν)− erf(u)) du.

The value of this integral is numerically calculated. In particular, for ν = 1/
√

2 we obtain 〈ϕ′ψ ′〉 =
−24.8229.

Analogously, we rewrite 〈ϕ′2〉 in the following form

〈ϕ′2〉 = 2 e4(m+ν2)

√
πν2

∫ +∞

−∞
eu2
(erf(u −

√
2ν)− erf(u))2 du

and we numerically compute it. For ν = 1/
√

2, it is 〈ϕ′2〉 = 17.329 e2(2m+1).

Appendix C. The derivatives of CBS

The derivatives of CBS with respect to S, up to the sixth order, are explicitly calculated as follows

∂SCBS = N(d1),

∂SSCBS = e−d2
1 /2

Sσ̄
√

2π(T − t)
,

∂3
S CBS = −e−d2

1 /2

S2σ̄
√

2π(T − t)

(
1 + d1

σ̄
√

T − t

)
,

∂4
S CBS = e−d2

1 /2

S3σ̄
√

2π(T − t)

(
d2

1 − 1

σ̄ 2(T − t)
+ 3d1

σ̄
√

T − t
+ 2

)
,

∂5
S CBS = e−d2

1 /2

S4σ̄
√

2π(T − t)

[
−

(
d1

σ̄
√

T − t
+ 3

) (
d2

1 − 1

σ̄ 2(T − t)
+ 3d1

σ̄
√

T − t
+ 2

)

+ 1

σ̄ 2(T − t)

(
2d1

σ̄
√

T − t
+ 3

)]
,

∂6
S CBS = e−d2

1 /2

S5σ̄
√

2π(T − t)

{(
d2

1 − 1

σ̄ 2(T − t)
+ 3d1

σ̄
√

T − t
+ 2

) [(
d1

σ̄
√

T − t
+ 3

)

×
(

d1

σ̄
√

T − t
+ 4

)
− 1

σ̄ (T − t)

]
+ 2

σ̄ 4(T − t)2

− 1

σ̄ 2(T − t)

(
2d1

σ̄
√

T − t
+ 3

) (
2d1

σ̄
√

T − t
+ 7

)}
.
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