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Geophysical flows that involve the transport of grains and the shearing of colloids and non-
Brownian suspensions often take place above a substrate composed of the same particles that can
be incorporated into the flow. Despite the importance of understanding such erodible beds to the
phrasing of appropriate boundary conditions for the solution of continuum models, a rigorous def-
inition of the erodible bed and the constitutive relations for the stresses within it are still lacking.
Here, we use discrete-element simulations to show that the intense, intermittent forming and break-
ing of contact chains marks the transition to the erodible bed at a critical solid volume fraction,
as in shear jamming of steady, homogeneous flows. However, the compressible, collisional flow that
confines the bed is not strong enough to insure the stability of the contact network, resulting in a
bulk stiffness that is three orders of magnitude less than in shear jamming.

Many geophysical flows of interest in Nature, such as
turbidity currents [1], Aeolian [2] and aquatic sediment
transport [3], and debris flows [4], involve contact with a
bed of solid particles that apparently, are immobile. Al-
though it is now clear that the particles in the erodible
bed creep [5, 6], their contribution to the total trans-
port is almost always negligible. However, mathematical
continuum models of geophysical flows require bound-
ary conditions at the interface between the flow and the
bed and the quantification of the mass and momentum
exchange across it [7, 8]. In this regard, a better under-
standing of the physics that governs the erodible beds is
crucial.

To obtain this here, we make use of discrete element
simulations of inelastic, frictional spheres in steady, uni-
directional flows, both homogeneous and inhomogeneous
(Figs. 1a-e). In these, the particles interact thorough lin-
ear springs and dashpots in both the normal and tangen-
tial directions. Particles are either identical or slightly
polydispersed spheres with an average diameter d, max-
imum polydispersity equal to 20%, and mass density ρp,
characterized by a coefficient of normal collisional resti-
tution e and sliding Coulomb friction µ. The stiffness
of the linear normal spring in the interaction model is
k. See the Supplementary Information for more details
about the numerical simulations.

In homogeneous, steady shearing flows, in which ei-
ther the volume or pressure is imposed (Figs. 1a and b),
the solid volume fraction, ν, is uniform over the domain.
These flows are then commonly used to infer information
about the local rheological behaviour of granular mate-
rials [10, 11], to be applied in more complex situations.
When gravitational acceleration, g, and/or lateral con-
finement are present, inhomogeneity in the distribution
of solid volume fraction develops. Then, we may dis-
tinguish between a region in which the particles mainly
interact through collisions and the shear rate is signifi-
cant, the flow, and a region where contacts are enduring

and the shear rate is exponentially decaying, the bed. In-
homogeneity in the presence of a bed typically occurs in
steady and fully developed pressure-imposed shear flows
(Fig. 1c), chute flows (Fig. 1d) and inclined, free surface
flows between frictional sidewalls (Fig. 1e).

The identification of the location of the interface be-
tween the flow and the bed is, however, challenging. In
the case of inclined, free surface flows, for example, the
profiles of the mean velocity, u, solid volume fraction and
average number of contacts per particle (the coordination
number), Z, are continuous, with no obvious signature of
a transition to the bed (Figs. 1f-h). (author?) [6] take
the interface between the flow and the erodible bed to
be where the ratio of the shear stress, s, to the pressure,
p, reaches a characteristic value associated with yielding.
This value for the stress ratio has been largely adopted
as a boundary condition for flows over erodible beds [12–
15]. (author?) [6], however, noted that the solid volume
fraction also reaches a characteristic value at the inter-
face with the erodible bed. The existence of a particular
solid volume fraction, marking the transition from flow
to bed, hints at the role played by the configurations of
the grains and the space available for their motion.

Existing simulations of volume-imposed simple shear-
ing [10] show that rate-independent components of the
stresses are present only above a critical volume frac-
tion, νc, which is a decreasing function of the coefficient
of sliding friction. Because there is one-to-one relation
between solid volume fraction and coordination number
in simple shearing [16], a critical coordination number,
Zc, also exists. Both νc and Zc are independent of the
particle stiffness [17, 18]. Given that Zc is greater than
four for all values of coefficient of sliding friction [16], the
simple shearing flows with ν ≥ νc can be identified as me-
chanically stable, shear-jammed states [19]. (author?)
[11] modelled these as networks of springs, in which the
nodes are continuously changing due to the particle re-
arrangement, with the springs, on average, compressed,
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Figure 1. Configurations and qualitative profiles of mean velocity in the flow direction: (a) volume-imposed simple shear flow in
a periodic cell [9]; (b), (c) pressure-imposed shear flow in the absence and presence of gravity, respectively; (d) pressure-imposed
chute flow; (e) inclined, free surface flow between frictional sidewalls. Profiles of: (f) dimensionless mean velocity, (g) solid
volume fraction and (h) coordination number, shown in the case of an inclined, free surface flow, with θ = 30◦ and the sidewalls
30 diameters apart.

due to the particle overlaps. The spring compression is
responsible for the rate-independent components to the
stresses and their proportionality to the particle stiffness,
while the fluctuations in the node velocity and the asso-
ciated momentum exchange is responsible for the rate
dependence.

Three methods have been proposed to identify the crit-
ical volume fraction in discrete element simulations of
simple shearing. First, by measuring the ratio of contact
duration to passage time in simple shear over a range
of volume fractions and plotting curves of coordination
number versus volume fraction for different values of the
ratio. Such curves intersect at the critical point, provid-
ing both νc and Zc [17, 18]. Second, by plotting the di-
mensionless pressure pd/k as a function of the time ratio
for different values of the solid volume fraction. The min-
imum value of the solid volume fraction for which pd/k
becomes independent of the time ratio, as the ratio ap-
proaches zero, is νc [10] – that is, at which the pressure in
the rigid limit is rate-independent. Third, by taking ad-
vantage of the large fluctuations in coordination number
and pressure observed near νc, as the network of contacts
intermittently forms and breaks [10]. A plot of the stan-
dard deviation of the fluctuations in coordination versus
volume fraction shows a peak at νc. Only this third cri-
terion can be easily applied to inhomogeneous flows.

The temporal evolution of the coordination number at
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Figure 2. Inclined, free surface flow between frictional side-
walls with θ = 24◦ and sidewalls 30 diameters apart: standard
deviation of the fluctuations in the coordination number as a
function of (a) elevation and (b) local, mean solid volume
fraction. The solid, vertical line in Fig. 2b is at ν = 0.587,
the value of νc when µ = 0.5 [10].

different elevations above the rigid base for the inclined,
free surface flows shows that the fluctuations in coordina-
tion number are maximum at a particular elevation above
the rigid base. Assuming that the peak in the local stan-
dard deviation of Z, σZ , is a signature of the intermittent
breaking and forming of contacts at the interface between
the flow and the bed, the location of the latter can, there-
fore, be identified (Fig. 2a). A plot of σZ as a function of
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ν (Fig. 2b) permits the identification of the solid volume
fraction that marks the transition from the flow to the
bed. This solid volume fraction is remarkably close to the
critical value 0.587 identified in volume-imposed simple
shearing of frictional particles for the same sliding fric-
tion, µ = 0.5 [10]. This suggests that the transition from
flow to bed is where the solid volume fraction reaches
the critical value at which rate-independent components
of the stresses arise in homogeneous flows. Consequently,
it is reasonable to apply constitutive relations that suc-
cessfully describe the stresses in volume-imposed simple
shearing when ν ≥ νc [11] to the particles in the erodible
bed.
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Figure 3. Dimensionless pressure pd/k as a function of
solid volume fraction in simulations of volume-imposed simple
shearing [10] (triangles) at different values of tc/ts and in sim-
ulations of inclined, free surface flows (circles) with θ = 30◦

and sidewalls 30 diameters apart. The solid line is the rate-
independent component in Eq. (1).

(author?) [11] express the pressure for volume frac-
tions above the critical volume fraction as

pd

k
=

5ν(1 + e)

6

(
ρpTd

k

)1/2

+ 0.6 (ν − νc) , (1)

where the first term on the right-hand side is the rate-
dependent component associated with momentum ex-
change in collisions, with the frequency of collisions in-
versely proportional to the contact duration; and the
second is the rate-independent component. The rate-
independent component is the lower limit for the pres-
sure, when ν exceeds νc, as confirmed in the volume-
imposed simple shearing simulations of (author?) [10].
However, in the inclined, free surface flows, the pressure
for volume fractions above the critical is orders of mag-
nitude less than that predicted by Eq. 1 (Fig. 3).

In an attempt to understand this, we performed
volume-imposed simple shearing simulations of particles
with the same coefficients of restitution and sliding fric-
tion as in the inclined. free surface flows. The simulations
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Figure 4. Coordination number as a function of solid volume
fraction in our volume-imposed simple shearing (six-pointed
stars) and in our inclined, free surface flows (circles) with
θ = 30◦ and sidewalls 30 diameters apart. The vertical and
horizontal solid lines identify the critical point, νc = 0.587
[10] and Zc = 4.3 [16], for shear jamming when µ = 0.5.

were carried out at different values of the solid volume
fraction, matching the corresponding values of the ratio

of the contact duration, tc =
(
ρpd

3/k
)1/2

, over the pas-
sage time, ts = 1/u′, where u′ is the shear rate, measured
in the inclined flow. A plot of the coordination number
versus the solid volume fraction (Fig. 4) highlights two
key points.

First, for ν ≤ νc, the coordination number is less than
unity, both in volume-imposed simple shearing and in
inclined, free surface flows, even for volume fractions as
large as 0.57. That is, in the absence of a network of con-
tacts, particle interact essentially through binary, nearly
instantaneous collisions, thus justifying the use of kinetic
theory of granular gases, even for very dense flows [20].

Second, when ν exceeds νc, the contact network in
volume-imposed simple shearing is mechanically stable,
given that Z ≥ Zc ≥ 4. The use of periodic boundary
conditions permits the contact network to extend indef-
initely in the domain, and shearing requires significant
compression of the particles, thus generating enormous
stresses. In inclined, free surface flows, however, νc can
be exceeded at values of the coordination number less
than Zc. The contact network is not then mechanically
stable and particle rearrangement is possible without a
dramatical increase in the stresses. Therefore, we distin-
guish between a shear-jammed state, when ν ≥ νc and
Z ≥ Zc, and a fragile state, when ν ≥ νc and Z < Zc.

It has been shown for volume-imposed simple shear-
ing of frictional particles [10] that when the dimension-
less pressure, pd/k, and the dimensionless shear rate,
u′/[k/ρp/d

3]1/2, equal to the ratio tc/ts, are scaled with
some powers of the distance to jamming, |ν − νc|, the
relation between pressure and shear rate can be repre-
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Figure 5. Scaled pressure versus scaled time ratio for: simulations of volume-imposed simple shearing [10] (red triangles) and
our work (blue six-pointed stars); simulations of pressure-imposed simple shearing, shear flows and chute flows [21] (magenta
squares); simulations of inclined, free surface flows (black circles). Open and filled symbols refer to volume fractions less than
and greater than the critical, respectively.

sented by two universal curves, one for ν < νc and one
for ν ≥ νc. This is compatible with the theory of (au-
thor?) [11], in which it is suggested that the exponent
of the distance to jamming should be unity in both the
scaled pressure and shear rate. Indeed, in simple shear-
ing, the fluctuation energy produced by the working of
the shear stress balances the rate at which fluctuation
energy is dissipated in collisions, so that the granular
temperature T is proportional to (u′d)2, through a func-
tion of the solid volume fraction that remains finite at
ν = νc [22].

With this, it is straightforward to show that Eq. 1 can
be rewritten as a relation between the scaled pressure
pd/ (k|ν − νc|) and the scaled time ratio tc/ (ts|ν − νc|)
with two asymptotes. The first is when tc/ (ts|ν − νc|)
goes to zero (the rigid limit), so that pd/ (k|ν − νc|)
is proportional to [tc/ (ts|ν − νc|)]0; that is, the pres-
sure originates from the persistent compressions of the
springs in the contact network and is rate-independent
(the shear-jammed regime). The second is when
tc/ (ts|ν − νc|) goes to infinity (the soft limit), so that

pd/ (k|ν − νc|) is proportional to [tc/ (ts|ν − νc|)]1; that
is, the pressure originates from momentum exchange dur-
ing particle rearrangement with the frequency of interac-
tion equal to the inverse of the contact duration (the soft
collisional regime). The latter asymptotic regime is also
shared by particle flows at ν < νc, when tc/ (ts|ν − νc|)
goes to infinity, showing little to no dependence on the
solid volume fraction [11].

In the rigid limit, when ν is larger than 0.5, but less
than νc, the pressure is given by the classic expression of
kinetic theory, p ∝ ρpT/ (νc − ν), where the dependence
on the solid volume fraction results from the divergence
of the probability of having two particles in contact as νc
is approached [23]. In simple shearing, this corresponds
to a third asymptotic regime, that is pd/ (k|ν − νc|) pro-

portional to [tc/ (ts|ν − νc|)]2, when tc/ (ts|ν − νc|) goes
to zero (the rigid collisional regime). All the data from
the simulations considered in the present work are shown
in Fig. 5, in terms of dimensionless pressure against di-
mensionless shear rate.

A fourth, asymptotic, rate-independent regime, that
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we identify as the fragile regime, is clearly visible. Data in
this regime belong only to pressure-imposed shear, chute
and inclined, free surface flow simulations, where a region
in which ν ≥ νc (the erodible bed) is in contact with at
least one region in which ν < νc and the mean interpar-
ticle distance is greater than zero. The collapse of the
data coming from different configurations and sources is
suggestive of a universal behaviour of the grains in the
erodible bed.

There are two reasons for the scatter of the data in
Fig. 5. First, there is a residual dependence on the solid
volume fraction in the relation between the granular tem-
perature and the shear rate, even in simple shearing, that
is not completely captured in terms of powers of |ν− νc|.
Second, in inhomogeneous flows, the shear rate and the
granular temperature are related through a differential,
not an algebraic, equation. The granular temperature
is a more fundamental variable and should be employed
instead of the shear rate. However, some datasets do
not include the granular temperature, but only the shear
rate. Also, the granular temperature is very sensitive to
the size of the cells employed for coarse graining the mea-
surements in the simulations [24], thus adding another
source of scatter.

It is also worth mentioning that other authors [10] have
employed different powers of the distance to jamming to
scale the dimensionless pressure and shear rate. This has
no consequence, however, on the slopes associated with
the shear-jammed, fragile and rigid collisional limits in
Fig. 5 and, therefore, on our findings about the nature of
the erodible beds. Only the slope of the soft collisional
limit is affected by the exponents of |ν− νc|, because the
pressure there is independent of the solid volume fraction,
at least in dense situations.
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Figure 6. Snapshots of particle positions (left, coloured based
on velocity intensity, with umax maximum velocity in the
flow direction) and force chains (right) in an inclined, free
surface flow, with θ = 30◦ and the sidewalls 30 diameters
apart. There are three flow regimes: collisional flow with
near-instantaneous, uncorrelated, binary collisions well above
the bed; collisional flow closer to the bed with correlated col-
lisions and enough overlaps to produce short force chains; and
a mixture of collisions and contacts within the bed that gen-
erated force chains that extend to the base of the flow.

We contend that the difference between the shear-
jammed of volume-imposed simple shearing and the frag-

ile state of inclined, free surface flows in Figs. 4 and 5
is due to the fact that the contact network in the for-
mer extends indefinitely, because of the use of periodic
boundary conditions, thus making it mechanically stable.
In contrast, in an inclined, free surface flow, the top of
the erodible bed is in contact with a collisional region
that can be easily compressed, thus facilitating the buck-
ling of the contact chains in the erodible bed, leading
to mechanical instability and low coordination number
(Fig. 6).
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Figure 7. Dimensionless granular temperature as a function
of solid volume fraction for pressure-impose simple shearing
(open squares) and vertical chute flow (filled squares) simu-
lations, with pd/k = 5 · 10−6 [21, 25]. The solid line is at
ν = 0.589, the value of νc when µ = 0.4 [16]. The gray region
in the sketches of the two configurations is the region in which
ν exceeds the critical.

The role of the boundaries can be assessed by perform-
ing, for example, simulations of pressure-imposed simple
shearing and vertical chute flows, in which the dimen-
sionless pressure, pd/k, is kept constant [25]. In both
configurations, the flow is confined between two rigid,
rough boundaries that enforce a no-slip boundary condi-
tion. In the pressure-imposed simple shearing, the solid
volume fraction is uniformly distributed, so that once the
volume fraction exceeds the critical, it does that every-
where. In this case, the contact network spans the entire
domain and both ends of the contact chains are in con-
tact with solid boundaries. In the vertical chute flow,
instead, the critical volume fraction is exceeded only in
a core region that is bounded by two compressible, col-
lisional flows (inset of Fig. 7). When pd/k is constant,
the equation of state (Eq. 1) reduces to a universal re-
lation between the dimensionless granular temperature,
ρpdT/k, and the solid volume fraction, at least in simple
shearing [11].

Fig. 7 shows that the granular temperature in the two
configurations begins to differ at the critical volume frac-
tion, reinforcing the idea that νc is representative of
both shear jamming and the transition to an erodible
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bed. In the latter, the presence of compressible, colli-
sional, bounding regions permits far greater fluctuations
in the particle velocity than in the pressure-imposed sim-
ple shearing case, consistent with the idea that the con-
tact chains are more prone to buckling and the particles
experience more intense rearrangements.

In conclusion, we have employed discrete element sim-
ulations of steady flows, in which frictional spheres inter-
act through linear springs and dashpots, to investigate
the physics of erodible beds. These are regions in which
the solid volume fraction exceeds a critical value for the
development of a persistent network of chains that are
in contact with compressible, collisional flows. The con-
tinuous breaking and forming of chains at their interface
with the flow causes strong temporal fluctuations in the
coordination number, and this permits the identification
of the critical volume fraction with that at shear jamming
in simple shearing.

Unlike in shear-jammed states, the contact network
in erodible beds has a lower coordination number than
that required for mechanical stability. It is the action of
a compressible, collisional flow that buckles the chains
and creates a fragile contact network that is far more
agitated than shear-jammed, granular assemblies at the
same value of solid volume fraction. This explains why
erodible beds creep slowly, but easily, even under mild
shearing [5, 6]. This description is consistent with the
distinction between fragile and shear-jammed states in
anisotropic compression of frictional packings of disks
based on the percolation of the contact network along
the compressive direction or along both compressive and
dilational directions [19].

We have indicated that the behaviour of the erodible
bed is universal: if the particles are sufficiently rigid, the
pressure in the erodible bed is rate-independent and pro-
portional to the particle stiffness –another indirect proof
of the existence of a persistent contact network. Shear
jammed states also manifest rate-independence, but the
effective stiffness is roughly three orders of magnitude
larger than that in the erodible beds. The much weaker
bulk stiffness of the contact network in the erodible bed,
with respect to the shear-jammed state, might have im-
portant implications, for example, in those geophysical
applications in which granular assemblies are subjected
to small strains and behaves elastically [26]. It might
also have strong implications in the problem of particle
erosion, at least in those cases where the latter is driven
by pressure perturbations propagating in an erodible bed
[27]. We have noted that the coordination number in al-
most the entire flow in contact with the erodible bed
is less than unity, indicating that collisions are binary
and instantaneous. Hence, the largely accepted idea that
models of dense granular flows must incorporate endur-
ing and multiple contacts between the particles [28, 29]
has little physical justification.

Future work shall focus on the influence of the contact

model on our findings on the behaviour of erodible beds;
although it is known that employing true Hertzian, rather
than linear contacts has little effect on sufficiently rigid
particles in the collisional regime, in which the contact
duration is much less than the time of free flight, and in
the shear-jammed regime [16]. Also, the physical expla-
nation, based on first principles, of the relatively small
stiffness of the contact network in erodible beds remains
an open issue. Finally, the study of pressure-imposed
shear flows in the presence of lateral confinement, i.e., an
intermediate configuration between inclined, free surface
and pressure-imposed shear flows [30, 31], might provide
further insights on the possible transition from a fragile
to a shear-jammed contact network.
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