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times. Such systems abound in various fields, e.g., biomedicine [4], ecology [5], and TCP-like Internet congestion control [15]. 
During the past decades, switched systems have been investigated by many researchers due to the theoretical devel-opment 
as well as practical applications [21]. Several methods have been developed to study the stability of switched systems, such 
as the common Lyapunov function approach, the average dwell time (ADT) scheme, and the multiple Lyapunov functions 
method (see [1,10,25–27]). Recently, the mode-dependent average dwell time (MDADT) approach [37] has been proposed for 
the stability analysis and control synthesis of switched systems. It has been shown that the results obtained by the MDADT 
approach are more general than those derived by other methods.

Recently, switched positive linear systems (SPLSs) which consist of a family of positive linear subsystems and a switching 
signal governing the switching among them have received considerable attention due to their broad applications in conges-
tion control [3] and communication systems [14]. Many useful results on stability and stabilization of such systems have 
appeared (see [2,8,9,12,13,31,32,36,38,39]). Because time-delay phenomena exist widely in engineering and social systems 
and often cause instability or bad system performance in control systems, time-delay systems have been extensively studied 
(see [11,12,16–20,28–30,39]). Some results on SPLSs with time-delays have been obtained [12,39].

On the other hand, the disturbance rejection problem has been a hot topic [7]. Some results on L1-gain analysis for 
positive systems have been reported in [6,24]. The reason for this study is that the L1-gain can provide a more useful
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description for positive systems because 1-norm gives the sum of the values of the components, which is more appropriate, 
for instance, if the values represent the amount of material or the number of animal in a species [6].

In almost all the aforementioned works on switched positive systems, a very common assumption in the state-feedback 
stabilization context is that the controllers are switched synchronously with the switching of system modes, which is quite 
unpractical. As pointed out in [27], there inevitably exists asynchronous switching in actual operation, i.e. the switching in-
stants of the controllers exceed or lag behind those of the subsystems. Thus, it is necessary to consider asynchronous switch-
ing for realistic control. Some results on switched systems under asynchronous switching have been proposed in 
[22,23,25,26,33–35]. However, to the best of our knowledge, the asynchronous L1 control problem for SPLSs, which consti-
tutes the main motivation of the present study, has not been investigated yet.

The main contribution of this paper is threefold: (1) by constructing an appropriate co-positive type Lyapunov–Krasovskii 
functional, a new stability criterion is derived by using the MDADT method; (2) by allowing the Lyapunov–Krasovskii func-
tional to increase during the running time of active subsystems, improved stability and L1-gain analysis results are obtained;
(3) the obtained results are extended to study the issue of asynchronous L1 control.

The remainder of this paper is organized as follows. In Section 2, problem statements and necessary lemmas are given. In
Section 3, based on the MDADT approach, stability and asynchronous L1 control problems for SPLSs with time-varying delays
are addressed, and sufficient conditions are also provided to guarantee the exponential stability of the closed-loop system.
Two numerical examples are provided to show the effectiveness of the proposed approach in Section 4. Concluding remarks
are given in Section 5.

Notation: In this paper, A � 0(A � 0) means that all the elements of A are positive (nonnegative). A � B (A � B) means that
A � B � 0 (A � B � 0). Rn is the n-dimensional real vector space and Rn

þ is the set of n-dimensional vectors with nonnegative
elements; Rn�s is the set of all real matrices of (n � s)-dimension. AT denotes the transpose of A. The vector 1-norm of x 2 Rn is
denoted by kxk ¼

Pn
l¼1jxlj, where xl is the lth element of x. 1q denotes the column vector with q rows containing only 1 en-

tries; 1f denotes the column vector with f rows containing only 1 entries; For scalars ya,ya+1, . . . , yb, yaya+1 . . . yb is denoted by
Pb

i¼ayi; exp{�} is the exponential operate; L1[t0,1) is the space of absolute integrable vector-valued functions on [t0,1), i.e.,
we say z:[t0,1) ? Rq is in L1 [t0,1) if

R1
t0
kzðtÞkdt <1.
2. Problem statements and preliminaries

Consider the following switched linear system with time-varying delay:
_xðtÞ ¼ ArðtÞxðtÞ þ GrðtÞxðt � dðtÞÞ þ BrðtÞuðtÞ þ ErðtÞwðtÞ;
xðt0 þ hÞ ¼ uðhÞ; h 2 ½�s;0�;
zðtÞ ¼ CrðtÞxðtÞ þ DrðtÞwðtÞ;

8><
>: ð1Þ
where x(t) 2 Rn, u(t) 2 Rp and z(t) 2 Rq denote the system state, the control input, and the controlled output, respectively;
w(t) 2 Rf is the disturbance input which belongs to L1[t0,1); r(t):[t0,1) ? N = {1, 2, . . . , N} is a piecewise constant function
of time, called a switching signal; N is the number of subsystems; t0 is the initial instant; Ai, Gi, Bi, Ci, Di and Ei, "i 2 N, are
known constant matrices with appropriate dimensions; d(t) denotes the time-varying delay satisfying 0 6 d(t) 6 s and
_dðtÞ 6 d < 1 for known positive constants s and d; u(h) is a continuous vector-valued initial function defined on interval

s, 0].
Next, we will give the definition of switched positive system (1). 

Definition 1 [24]. System (1) is said to be an SPLS if for any switching signals r(t) and initial conditions u (h) � 0, h 2 [�s, 0], 
it satisfies x(t) � 0 and z(t) � 0, " t P t0.
Definition 2 [8]. A is called a Metzler matrix, if its off-diagonal entries are non-negative.
Due to the asynchronous switching, the switching instants of the controllers do not coincide with those of the subsys-

tems. Without loss of generality, the ‘‘asynchronous’’ means that the switching of the controllers has a lag with respect to 
that of system modes. Then, the real control input will become
uðtÞ ¼ Krðt�DjÞxðtÞ; 8t 2 ½tj; tjþ1Þ; j ¼ 0;1; . . . ð2Þ
where D0 = 0, and Dj < tj+1 � tj represents the delayed period.

Remark 1. The period Dj guarantees that switching instants of the controllers lag behind the switches of system modes, and 
also there exists a period during which the system mode and the controller operate synchronously.

Let the ith subsystem be activated at the switching instant tj, and the jth subsystem be activated at the switching instant 
tj+1. Then the corresponding controllers are activated at the switching instants tj + Dj and tj+1 + Dj+1, respectively. Upon 
applying the controller (2) to system (1), the resulting closed-loop system is given by



_xðtÞ ¼ AixðtÞ þ Gixðt � dðtÞÞ þ EiwðtÞ;

zðtÞ ¼ CixðtÞ þ DiwðtÞ; 8t 2 ½tj þ Dj; tjþ1Þ
_xðtÞ ¼ Ai;jxðtÞ þ Gjxðt � dðtÞÞ þ EjwðtÞ;

zðtÞ ¼ CjxðtÞ þ DjwðtÞ; 8t 2 ½tjþ1; tjþ1 þ Djþ1Þ

8>>>>><
>>>>>:

ð3Þ
where Ai ¼ Ai þ BiKi and Ai;j ¼ Aj þ BjKi.

Lemma 1 [24]. System (3) is positive if and only if Ai and Ai;j are Metzler matrices, and Gi � 0, Ei � 0, Ci � 0, Di � 0, "(i, j) 2 N � N, 
i – j.
 
Definition 3 [24]. System (1) is said to be exponentially stable under the switching signal r(t), if there exist constants f > 0
and q > 0 such that the solution of the system satisfies kxðtÞk 6 fkxðt0Þkce

�qðt�t0 Þ, "t P t0, where kx(t0)kc = sup�s6h60ku (h)k.
 
 

Definition 4. [37]For a switching signal r(t) and any T2 P T1 P 0, let Nri(T1,T2) be the switching number that the ith sub-
system is active over the interval [T1, T2) and Ti (T1, T2) be the total running time of the ith subsystem over the interval [T1, T2), i
2 N. We say that r(t) has a mode-dependent average dwell time Tai if there exist positive numbers N0i (we call N0i the mode

dependent chatter bounds) and Tai such that Nri(T1, T2) 6 N0i + Ti(T1, T2)/Tai holds.
Definition 5. System (1) is said to have an L1-gain performance level c under the switching signal r(t), if the following con-
ditions are satisfied:

(i) system (1) is exponentially stable when w(t) � 0;
(ii) under zero initial conditions, i.e., u(h) = 0, h 2 [�s,0], the following inequality holds for all nonzero w(t) 2 L1[t0,1):
Z 1

t0

e�
PN

i¼1
faiTiðt0 ;tÞgkzðtÞkdt 6 c

Z 1

t0

kwðtÞkdt; ð4Þ
where ai is a given positive constant and Ti(t0, t) is the total running time of the ith subsystem over the interval [t0, t).
Remark 2. When ai = a, "i 2 N, (4) will degenerate into (2) in [24]. Thus Definition 5 given here can be viewed as an exten-
sion of the one proposed in [24].

The aim of this paper is to design a state-feedback controller and a set of admissible switching signals with MDADT such 
that the resulting closed-loop system (3) is positive and exponentially stable with L1-gain performance.

3. Main results

3.1. Stability and L1-gain analysis

Before proceeding further, we present here the following results on the exponential stability for the SPLS (1) with u(t) � 0 
and w(t) � 0 for later use.

Theorem 1. Consider the SPLS (1) with u(t) � 0 and w(t) � 0. Let ai > 0 be given constants. If there exist vectors vi � 0, ti � 0 and 
#i � 0 of appropriate dimensions, such that, "i 2 N,
AT
i v i þ aiv i þ ti þ s#i 	 0; ð5Þ

GT
i v i � ð1� dÞe�aisti 	 0; ð6Þ
then the system is exponentially stable for any switching signal r(t) with the following MDADT
Tai > T
ai ¼ ln li=ai; ð7Þ
where li P 1 satisfy
v i 	 liv j; ti 	 litj; #i 	 li#j; 8ði; jÞ 2 N � N ð8Þ
Proof. For any T > 0, let t0 = 0 and denote by t1; t2; . . . ; tj�1; tj; . . . ; tNrð0;TÞ the switching instants on the interval [t0,T), where
Nrð0; TÞ ¼

PN
i¼1Nrið0; TÞ. Let Ti(0,T) be the total running time of the ith subsystem over the interval [0,T).



Consider the following Lyapunov–Krasovskii functional for the ith subsystem:
Viðt; xðtÞÞ ¼ xTðtÞv i þ
Z t

t�dðtÞ
eaið�tþsÞxTðsÞtidsþ

Z 0

�s

Z t

tþh
eaið�tþsÞxTðsÞ#idsdh ð9Þ
where vi � 0, ti � 0 and #i � 0 are vectors to be determined.
For the sake of simplicity, Vi(t,x(t)) is written as Vi(t) in this paper. Taking the derivation of the Lyapunov–Krasovskii

functional along the trajectory of the ith subsystem yields:
_ViðtÞ ¼ _xTðtÞv i � ai

Z t

t�dðtÞ
eaið�tþsÞxTðsÞtidsþ xTðtÞti � ð1� _dðtÞÞe�aisxTðt � dðtÞÞti

�ai

Z 0

�s

Z t

tþh
eaið�tþsÞxTðsÞ#idsdhþ sxTðtÞ#i �

Z 0

�s
eaihxTðt þ hÞ#idh

¼� aiV iðtÞ þ aixTðtÞv i þ _xTðtÞv i þ xTðtÞti � ð1� _dðtÞÞe�aisxTðt � dðtÞÞti

þsxTðtÞ#i �
Z t

t�s
eaiðs�tÞxTðsÞ#ids

6� aiV iðtÞ þ xTðtÞðaiv i þ AT
i v i þ ti þ s#iÞ

þxTðt � dðtÞÞ GT
i v i � ð1� dÞe�aisti

� �
�
Z t

t�dðtÞ
e�aisxTðsÞ#ids

6� aiV iðtÞ þ xTðtÞðaiv i þ AT
i v i þ ti þ s#iÞ

þxTðt � dðtÞÞ GT
i v i � ð1� dÞe�aisti

� �

It can be obtained from (5) and (6) that
ð10ÞV_ iðtÞ 6 �aiV iðtÞ
It follows that
ð11ÞVrðtÞðtÞ 6 e�arðtÞ ðt�tjÞVrðtÞðtjÞ; t 2 ½tj; tjþ1Þ 
From (7) and (8), one has
VrðTÞðTÞ 6 e�arðTÞðT�tNr ð0;TÞÞVrðtNr ð0;TÞÞðtNrð0;TÞÞ 6 lrðTÞe
�arðTÞðT�tNr ð0;TÞÞVrðt�Nrð0;TÞ

Þðt�Nrð0;TÞÞ

6 lrðTÞe
�arðTÞðT�tNr ð0;TÞÞe�arðtNr ð0;TÞ�1ÞðtNr ð0;TÞ�tNr ð0;TÞ�1ÞVrðtNr ð0;TÞ�1ÞðtNrð0;TÞ�1Þ 6 � � �

6 Vrð0Þð0Þ
YNrð0;TÞ�1

s¼0

lrðtsþ1Þ exp
XNrð0;TÞ�1

s¼0

�arðtsÞðtsþ1 � tsÞ
� �

� arðTÞðT � tNrð0;TÞÞ
( )!

6 Vrð0Þð0Þ
YN

i¼1

lNrið0;TÞ
i exp

XN

i¼1

�ai

X
s2/ðiÞ
ðtsþ1 � tsÞ

" #
� arðTÞðT � tNrð0;TÞ Þ

( )!

6 exp
XN

i¼1

N0i ln li

( )
exp

XN

i¼1

Tið0; TÞ lnli=Tai �
XN

i¼1

aiTið0; TÞ
( )

Vrð0Þð0Þ

¼ exp
XN

i¼1

N0i lnli

( )
exp

XN

i¼1

ðln li=Tai � aiÞTið0; TÞ
( )

Vrð0Þð0Þ; ð12Þ
where /(i) denotes the set of s satisfying r (ts) = i, ts 2 ft0; t1; t2; . . . ; tj�1; tj; tjþ1; . . . ; tNrð0;TÞ g, lrðtsþ1Þ, lr(T) 2 {l1,l2, . . . , lN},
ar(T) 2 {a1, a2, . . . , aN}.

Set e1 = min(r,i)2n�N{vir}, e2 = max(r,i)2n�N{vir}, e3 = max(r,i)2n�N{tir} and e4 = max(r,i)2n� N{#ir}, where mir, tir and #ir represent

the rth elements of mi, ti and #i, respectively, n = {1, 2, . . . , n}. Then, one obtains
VrðTÞðTÞP e1kxðTÞk

Vrðt0Þðt0Þ 6 e2 xðt0Þk k þ ðe3e�sarðt0 Þ þ e4se�sarðt0Þ Þ
Z t0

t0�s
kxðsÞkds
It follows that



kxðTÞk 6 1
e1

exp
XN

i¼1

N0i ln li

( )
exp

XN

i¼1

ðln li=Tai � aiÞTið0; TÞ
( )

e2kxðt0Þk þ ðe3e�arðt0 Þs þ e4se�arðt0 ÞsÞ
Z t0

t0�s
kxðsÞkds

� �

6
1
e1

exp
XN

i¼1

N0i ln li

( )
e2 þ e3se�arðt0 Þs þ e4s2e�arðt0 Þs
� 	

exp maxi2Nðln li=Tai � aiÞðT � t0Þ

 �

sup�s6h60kuðhÞk
Set
f ¼ 1
e1

exp
XN

i¼1

N0i ln li

( )
e2 þ e3se�arðt0 Þs þ e4s2e�arðt0 Þs
� 	

;

q ¼min
i2N
ðai � ln li=TaiÞ:
It can be obtained from (7) that
kxðTÞk 6 fe�qðT�t0Þkxðt0Þkc;8T P t0; ð13Þ
This completes the proof. h
Remark 3. In Theorem 1, we get a delay-dependent stability criterion by utilizing the MDADT method instead of the ADT 
method [24]. In  [24], the parameters k and l are same for all subsystems, i.e., mode-independent. However, the 
parameters ai and li in this paper are mode-dependent, which would reduce the conservativeness existed in [24].

When d(t) � 0, the SPLS (1) will generate to a delay-free system and the result in Theorem 1 reduces to the one proposed 
in Theorem 1 of [36].

Based on Theorem 1, we will present a stability result for the SPLS (3) with w(t) � 0 by considering a class of Lyapunov–
Krasovskii functionals allowed to increase with bounded increase rate during some intervals.

Theorem 2. Consider the SPLS (3) with w(t) � 0. Let ai > 0 and bi > 0 be given constants. If there exist vectors vi � 0, ti � 0, #i � 0, 
vi,j � 0, ti,j � 0 and #i,j � 0 of appropriate dimensions, such that, "(i, j) 2 N � N, i – j,
AT
i v i þ aiv i þ ti þ s#i 	 0; ð14Þ

GT
i v i � ð1� dÞe�aisti 	 0; ð15Þ

AT
i;jv i;j � biv i;j þ ti;j þ s#i;j 	 0; ð16Þ

GT
i v i;j � ð1� dÞti;j 	 0; ð17Þ
then the system is exponentially stable for any switching signal r(t) with the following MDADT scheme
Taj > T
aj ¼ Dmjðaj þ bjÞ þ lnðl0jl1jl2jÞ
� �

=aj; ð18Þ
where Dmj denotes the maximal delay period that the switching of the controller of the jth subsystem lags behind that of the sub-
system, l0j ¼ lj ¼ esðajþbjÞ and l1jl2j P 1 satisfy
v j 	 l1jv i;j; tj 	 l1jti;j; #j 	 l1j#i;j; v i;j 	 l2jl0jv i; ti;j 	 l2jti; #i;j 	 l2j#i ð19Þ
Proof. For any T > 0, let t0 = 0 and denote by t1; t2; . . . ; tj�1; tj; . . . ; tNrð0;TÞ the switching instants in the interval [t0,T), where
Nrð0; TÞ ¼

PN
i¼1Nrið0; TÞ. Let Ti(0,T) be the total running time of the ith subsystem over the interval [0,T).

Let the ith subsystem be activated at tj�1 and the jth subsystem be activated at tj, (i, j) 2 N � N, i – j. Construct the
following Lyapunov–Krasovskii functional for the SPLS (3):
VðtÞ ¼
xTðtÞv i þ

R t
t�dðtÞ eaið�tþsÞxTðsÞtidsþ

R 0
�s

R t
tþh eaið�tþsÞxTðsÞ#idsdh; 8t 2 ½tj�1 þ Dj�1; tjÞ

xTðtÞv i;j þ
R t

t�dðtÞ ebjðt�sÞxTðsÞti;jdsþ
R 0
�s

R t
tþh ebjðt�sÞxTðsÞ#i;jdsdh; 8t 2 ½tj; tj þ DjÞ

8<
: ð20Þ
When w(t) � 0, by Theorem 1, we obtain from (14)–(17) that
_VðtÞ 6
�aiVðtÞ; 8t 2 ½tj�1 þ Dj�1; tjÞ
biVðtÞ; 8t 2 ½tj�1; tj�1 þ Dj�1Þ

�
ð21Þ
From (19) and (20), at the instants tj and tj + Dj, we have
Vðtj þ DjÞ 6 l1jVððtj þ DjÞ�Þ; VðtjÞ 6 l2jljV t�j
� 	



For T P tNrð0;TÞ þ DNrð0;TÞ, we obtain by induction that
VðTÞ 6e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞVðtNrð0;TÞ þ DNrð0;TÞÞ
6lrðTÞ1e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞVððtNrð0;TÞ þ DNrð0;TÞÞ

�Þ
6lrðTÞ1e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞebrðTÞDNr ð0;TÞVðtNrð0;TÞÞ
6lrðTÞlrðTÞ1lrðTÞ2e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞebrðTÞDNr ð0;TÞVðt�Nrð0;TÞÞ

6lrðTÞlrðTÞ1lrðTÞ2e�arðTÞðT�tNr ð0;TÞ�DmrðTÞÞebrðTÞDmrðTÞV t�Nrð0;TÞ

� �
6 � � �

6 exp
XN

i¼1

�ai

X
s2/ðiÞ
ðtsþ1 � ts � DmiÞ þ bi

X
s2/ðiÞ

Dmi

!( )

Vðt0Þ
YN
i¼1

ðlili1li2Þ
Nrið0;TÞ

6 exp
XN

i¼1

N0i lnðlili1li2Þ
( )

exp
XN

i¼1

lnðlili1li2ÞTið0; TÞ=Tai

(

þ
XN

i¼1

ð�aiðTið0; TÞ � DmiNrið0; TÞÞ þ biDmiNrið0; TÞÞ
)

Vðt0Þ

6 exp
XN

i¼1

N0i lnðlili1li2Þ þ ðai þ biÞDmi
� 	( )

exp
XN

i¼1

lnðlili1li2Þ=Tai � ai þ ðai þ biÞDmi=Tai
� 	

Tið0; TÞ
( )

Vðt0Þ
where /(i) denotes the set of s satisfying r (ts) = i, ts 2 ft0; t1; t2; . . . ; tj�1; tj; tjþ1; . . . ; tNrð0;TÞ g, Dmr(T) 2 {Dm1,Dm2, . . . , DmN},
lr(T) 2 {l1,l2, . . . , lN}, lr(T)1 2 {l11,l21, . . . , lN1}, lr(T)2 2 {l12,l22, . . . , lN2}, ar(T) 2 {a1,a2, . . . , aN} and br(T) 2 {b1,b2,
. . . , bN}.

It follows from (18) that V(T) converges to zero as T ? 1. Then the exponential stability of the SPLS (3) with w(t) � 0 can
be deduced by following the proof line of Theorem 1.

The proof is completed. h
Remark 4. The proof of Theorem 2 is similar to the one of Theorem 1. Note that the Lyapunov–Krasovskii functional con-
sidered in Theorem 2 can be increasing both at switching instants and during the interval [tj�1, tj�1 + Dj�1). However,
the possible increment will be compensated by the more specific decrement (by limiting the lower bound of MDADT), there-
fore, the system exponential stability is still guaranteed.

Now, we are in a position to consider the L1-gain analysis for the SPLS (3).

Theorem 3. Consider the SPLS (3). Let ai > 0, bi > 0 and c > 0 be given constants. If there exist vectors vi � 0, ti � 0, #i � 0, vi,j � 0,
ti,j � 0 and #i,j � 0 of appropriate dimensions, "(i, j) 2 N � N, i – j, such that
AT
i v i þ aiv i þ ti þ s#i þ CT

i 1q 	 0; ð22Þ
AT

i;jv i;j � biv i;j þ ti;j þ s#i;j þ CT
j 1q 	 0; ð23Þ

GT
i v i � ð1� dÞe�aisti 	 0; ð24Þ

GT
j v i;j � ð1� dÞti;j 	 0; ð25Þ

ET
i v i þ DT

i 1q � c1f 	 0; ð26Þ
ET

j v i;j þ DT
j 1q � c1f 	 0; ð27Þ
then the system is exponentially stable and has a prescribed L1-gain performance level c for any switching signal with the MDADT
scheme (18), where l0j, l1j and l2j satisfy (19).
Proof. Choose the Lyapunov–Krasovskii functional (20) for the SPLS (3). By Theorem 2, the exponential stability of the SPLS
(3) with w(t) � 0 is ensured by (22)–(25).

We are now in a position to consider the L1-gain performance.



Define C(t) = kz(t)k � ckw(t)k. When w(t)–0, it follows from (22)–(27) that
_VðtÞ 6
�aiVðtÞ � CðtÞ; 8t 2 ½tj�1 þ Dj�1; tjÞ
biVðtÞ � CðtÞ; 8t 2 ½tj�1; tj�1 þ Dj�1Þ

�
ð28Þ
Then, integrating both sides of (28), we have
VðtÞ 6
e�aiðt�tj�1�Dj�1ÞVðtj�1 þ Dj�1Þ �

R t
tj�1þDj�1

e�aiðt�sÞCðsÞds; 8t 2 ½tj�1 þ Dj�1; tjÞ

ebiðt�tj�1ÞVðtj�1Þ �
R t

tj�1
ebiðt�sÞCðsÞds; 8t 2 ½tj�1; tj�1 þ Dj�1Þ

8<
: ð29Þ
where C(s) = kz(s)k � ckw(s)k.
For T P tNrð0;TÞ þ DNrð0;TÞ, by Definition 4, (19) and (29), we can obtain by induction that
VðTÞ 6e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞVðtNrð0;TÞ þ DNrð0;TÞÞ

�
Z T

tNr ð0;TÞþDNr ð0;TÞ

e�arðTÞðT�sÞCðsÞds

6lrðTÞ1e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞVððtNrð0;TÞ þ DNrð0;TÞÞ
�Þ

�
Z T

tNr ð0;TÞþDNr ð0;TÞ

e�arðTÞðT�sÞCðsÞds

6lrðTÞ1e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞfebrðTÞDNr ð0;TÞVðtNrð0;TÞÞ

�
Z tNr ð0;TÞþDNr ð0;TÞ

tNr ð0;TÞ

ebrðTÞðtNr ð0;TÞþDNr ð0;TÞ�sÞCðsÞdsg

�
Z T

tNr ð0;TÞþDNr ð0;TÞ

e�arðTÞðT�sÞCðsÞds

6lrðTÞlrðTÞ1lrðTÞ2e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞebrðTÞDNr ð0;TÞVðt�Nrð0;TÞÞ

�lrðTÞ1e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞ
Z tNr ð0;TÞþDNr ð0;TÞ

tNr ð0;TÞ

ebrðTÞðtNr ð0;TÞþDNr ð0;TÞ�sÞCðsÞds

�
Z T

tNr ð0;TÞþDNr ð0;TÞ

e�arðTÞðT�sÞCðsÞds

6lrðTÞlrðTÞ1lrðTÞ2e�arðTÞðT�tNr ð0;TÞ�DmrðTÞÞebrðTÞDmrðTÞV t�Nrð0;TÞ

� �

�
Z T

tNr ð0;TÞþDNr ð0;TÞ

e�arðTÞðT�sÞCðsÞds

�lrðTÞ1e�arðTÞðT�tNr ð0;TÞ�DNr ð0;TÞÞ
Z tNr ð0;TÞþDNr ð0;TÞ

tNr ð0;TÞ

ebrðTÞðtNr ð0;TÞþDNr ð0;TÞ�sÞCðsÞdsg

6 � � �

6 exp
XN

i¼1

N0i lnðlili1li2Þ
( )

exp
XN

i¼1

lnðlili1li2ÞTið0; TÞ=Tai

(

þ
XN

i¼1

ð�aiðTið0; TÞ � Nrið0; TÞDmiÞ þ biNrið0; TÞDmiÞ
)

Vðt0Þ

�
Z T

t0

e
PN

i¼1
�aiðTiðs;TÞ�Nriðs;TÞDmiÞþbiNriðs;TÞDmi


 �
CðsÞ

YN

i¼1

ðlili1li2Þ
Nriðs;TÞds
where /(i) denotes the set of s satisfyingr (ts) = i, ts 2 ft0; t1; t2; . . . ; tj�1; tj; tjþ1; . . . ; tNrð0;TÞ g,
Dmr(T) 2 {Dm1,Dm2, . . . , DmN}, lr(T) 2 {l1, l2, . . . , lN}, lr(T)1 2 {l11,l21, . . . , lN1}, lr(T)2 2 {l12,l22, . . . , lN2}, ar(T) 2

{a1,a2, . . . , aN} and br(T) 2 {b1,b2, . . . , bN}.
Under the zero initial condition, one has
0 6 �
Z T

t0

e
PN

i¼1
�aiðTiðs;TÞ�Nriðs;TÞDmiÞþbiNriðs;TÞDmi


 �
CðsÞ

YN

i¼1

ðlili1li2Þ
Nriðs;TÞ ð30Þ



That is
Z T

t0

e
PN

i¼1
�aiðTiðs;TÞ�Nriðs;TÞDmiÞþbiNriðs;TÞDmi


 �
zðsÞk k

YN

i¼1

ðlili1li2Þ
Nriðs;TÞds

6 c
Z T

t0

e
PN

i¼1
�aiðTiðs;TÞ�Nriðs;TÞÞþbiNriðs;TÞ


 �
wðsÞk k

YN
i¼1

ðlili1li2Þ
Nriðs;TÞds ð31Þ
Multiplying both sides of (31) by e�
PN

i¼1
ðaiþbiÞNriðt0 ;TÞDmi

QN
i¼1ðlili1li2Þ

�Nriðt0 ;TÞ yields
Z T

t0

e
PN

i¼1
�aiTiðs;TÞ�ðaiþbiÞNriðt0 ;sÞDmi�Nriðt0 ;sÞ lnðlili1li2Þf gkzðsÞkds 6 c

Z T

t0

e
PN

i¼1
�aiTiðs;TÞ�ðaiþbiÞNriðt0 ;sÞDmif gkwðsÞkds ð32Þ
It follows from (18) that
Z T

t0

e
PN

i¼1
�aiTiðs;TÞ� ðaiþbiÞDmiþlnðlili1li2Þð ÞTiðt0 ;sÞ=Taif gkzðsÞkds 6 c

Z T

t0

e
PN

i¼1
�aiTiðs;TÞkwðsÞkds ð33Þ
Integrating both sides of (33) from T = t0 to 1 leads to
Z 1

t0

e�
PN

i¼1
aiTiðt0 ;tÞf g zðtÞk kdt 6 c

Z 1

t0

kwðtÞkdt ð34Þ
This means that system (3) achieves a prescribed L1-gain performance level c.
This completes the proof. h
3.2. Asynchronous L1 control

Based on the obtained stability and L1-gain analysis results, the following theorem presents sufficient conditions for the
existence of a state-feedback controller for the SPLS (1) in the presence of asynchronous switching such that the correspond-
ing closed-loop system (3) is positive and exponentially stable with an L1-gain performance level c.

Theorem 4. Consider the SPLS (1). Let ai > 0, bi > 0 and c > 0 be given constants. If there exist vectors vi � 0, ti � 0, #i � 0, vi,j � 0,
ti,j � 0, #i,j � 0, and any matrices Ki of appropriate dimensions, "(i, j) 2 N � N, i – j, such that Ai ¼ Ai þ BiKi and Ai;j ¼ Aj þ BjKi are
Metzler matrices, and (24)–(27) and the following inequalities hold
AT
i v i þ hi þ aiv i þ ti þ s#i þ CT

i 1q 	 0; ð35Þ
AT

i;jv i;j þ KT
i BT

j v i;j � biv i;j þ ti;j þ s#i;j þ CT
j 1q 	 0; ð36Þ
where hi � KT
i BT

i v i, then the resulting closed-loop system (3) is positive and exponentially stable with an L1-gain performance level
c for any switching signal with the MDADT scheme (18), where l0j, l1j and l2j satisfy (19).
Proof. Upon introducing vectors hi satisfying hi � KT
i BT

i v i, and substituting them into (22), the theorem can be directly
obtained from Theorem 3.

This completes the proof. h
Remark 5. Differently from the result in [35], we get sufficient conditions for the existence of an L1-gain performance level. 
Also, the result proposed in Theorem 4 is derived via the MDADT approach, which is different from those adopted in [33–35]. 
The parameters ai and bi are mode-dependent, which brings more flexibility to find feasible controllers. On the other hand, 
our result can cover the result of [24] as a special case, where the asynchronous switching is not considered.
Remark 6. It is noticed that (24), (25), (26), (27), (35) and (36) are mutually dependent. We can firstly solve (24), (26) and
(35) to obtain the vectors vi, ti, #i, hi. Then we can get Ki by hi � Ki

T Bi
T vi. By substituting the obtained Ki into (36), and solving 

(25), (27) and (36), we can obtain these vectors vi,j, ti,j, #i,j. In addition, it can be seen that a smaller ai will be favorable to the 
feasibility of (24), (26) and (35), and a larger bi will be favorable to the feasibility of (25), (27) and (36). In view of these, we 
put forward the following algorithm to obtain Ki.
Algorithm 1.

Step (1) For each i 2 N, choose a ai (For the first time, we can choose a larger ai), and solve (24), (26) and (35).
Step (2) If (24), (26) and (35) are unfeasible, then decrease ai appropriately, and go to Step (1).



Step (3) If there exists a feasible solution, then get vi, ti, #i, hi. By hi � KT
i BT

i v i, find a Ki such that Ai ¼ Ai þ BiKi and
Ai;j ¼ Aj þ BjKi are Metzler matrices, and then substitute it into (36).
Step (4) Choose a bi (For the first time, we can choose a smaller bi), and solve (25), (27) and (36).
Step (5) If (25), (27) and (36) are unfeasible, then increase bi appropriately, and go to Step (4).
Step (6) If there exists a feasible solution, then get vi,j, ti,j, #i,j, and compute T
aj by (18) and (19).

4. Numerical examples

In this section, two examples will be presented to demonstrate the potential and validity of our developed theoretical
results.

Example 1. Consider the switched linear systems consisting of two positive subsystems described by:
Table 1
Comput

Feas

Swit
A1 ¼
�0:5302 0:0012 0:0873
0:2185 �0:7494 0:5411
0:7370 0:1543 �0:3606

2
64

3
75; A2 ¼

�0:5136 0:4419 0:3689
0:1840 �0:3951 0:0080
0:3163 0:6099 �1:0056

2
64

3
75;

G1 ¼
0:01 0:001 0

0 0:01 0:1
0:05 0 0:01

2
64

3
75; G2 ¼

0:012 0 0
0:014 0:01 0

0 0 0:01

2
64

3
75:
It is obvious that the trajectories of such a switched system will remain positive if x(0) � 0. Our purpose here is to find the
admissible switching signals with MDADT such that the system is exponentially stable.

To illustrate the advantages of the proposed MDADT switching, we shall also present the design results of switching sig-
nals for the system with ADT switching for the sake of comparison. By different approaches and setting the relevant param-
eters appropriately, the computation results for the system with two different switching schemes are listed in Table 1.

It can be seen from Table 1 that the minimal MDADT are reduced to T
a1 ¼ 6:8663; T
a2 ¼ 7:8472 for given l1 = l2 = 3, and
one special case of MDADT switching is T
a1 ¼ T
a2 ¼ 7:8472 by setting a1 = a2 = 0.14, which is the ADT switching, i.e., the de-
signed MDADT switching is more general.

Example 2. Consider system (1) with parameters as follows
A1 ¼
�1 7
8:5 �2:5

 �
; G1 ¼

0:1 0:2
0:3 0:1

 �
; B1 ¼

0:2
0:4

 �
; E1 ¼

0:5
0:2

 �
;

C1 ¼ 0:1 0:3½ �; D1 ¼ 0:3;

A2 ¼
�6:8 3:5
9:3 �6:6

 �
; G2 ¼

0:2 0:1
0:1 0:2

 �
; B2 ¼

0:1
0:3

 �
; E2 ¼

0:3
0:4

 �
;

C2 ¼ 0:2 0:4½ �; D2 ¼ 0:2:

By Lemma 1, the trajectories of such a switched system will obviously remain positive if u(h) � 0, h 2 [�s, 0]. Our purpose 

here is to design a set of stabilizing controllers and find the admissible switching signals with MDADT such that the resulting
closed-loop system is exponentially stable with an L1 disturbance attenuation performance level in the presence of asynchro-
nous switching.

Taking Dm1 = 1.0, Dm2 = 0.5, a1 = 0.4, a2 = 0.3, s = 0.1, d = 0.1 and c = 1, and solving (24), (26) and (35) in Theorem 4 give 
rise to
ation results for the system with two different switching schemes

ADT switching [38] MDADT switching

ible solutions v1 ¼ 70:6769 26:0675 27:0391½ �T ;
v2 ¼ 24:3130 75:9861 11:9570½ �T ;
t1 ¼ 0:6826 1:2278 0:6271½ �T ;
t2 ¼ 0:4213 0:6719 0:3204½ �T ;
#1 ¼ 7:1928 10:0483 6:9808½ �T ;
#2 ¼ 5:0049 5:5576 3:9734½ �T

v1 ¼ 64:7231 22:8869 24:0552½ �T ;
v2 ¼ 21:8226 67:5209 10:5841½ �T ;
t1 ¼ 0:4451 1:0511 0:3853½ �T ;
t2 ¼ 0:4103 0:5137 0:2134½ �T ;
#1 ¼ 5:3587 9:0788 5:1133½ �T ;
#2 ¼ 4:9672 4:7610 3:1748½ �T

ching parameters k ¼ 0:14;l ¼ 3;
s
a ¼ 7:8472

a1 ¼ 0:16; a2 ¼ 0:14; l1 ¼ l2 ¼ 3
T
a1 ¼ 6:8663; T
a2 ¼ 7:8472



v1 ¼
0:5757
0:7741

 �
; v2 ¼

0:7487
0:5872

 �
; t1 ¼

1:2302
1:1821

 �
; t2 ¼

1:1858
1:2650

 �
;

#1 ¼
1:0186
1:0186

 �
; #2 ¼

1:0186
1:0186

 �
; h1 ¼

�8:6846
�5:0069

 �
; h2 ¼

�3:1003
�1:7068

 �
:

By hi � KT
i BT

i v i, the state feedback gain matrices can be obtained as follows:
K1 ¼ �20:4460 �11:7876½ �; K2 ¼ �16:1223 �8:8759½ �:
Obviously, Ai ¼ Ai þ BiKi and Ai;j ¼ Aj þ BjKi are Metzler matrices. Then, choosing b1 = 0.5 and b2 = 0.6, and solving (25), (27)
and (36), we obtain
v2;1 ¼
0:7916
0:9499

 �
; v1;2 ¼

0:4309
0:3613

 �
; t2;1 ¼

0:9653
0:9630

 �
; t1;2 ¼

0:9921
1:0477

 �
;

#2;1 ¼
0:8413
0:8509

 �
; #1;2 ¼

0:8680
0:8689

 �
:

Then, according to (19), we have l11 = 1.2744, l21 = 1.7375, l01 = 1.0942, l12 = 1.6187, l22 = 0.8863 and l02 = 1.0942. From
(18), it can be obtained that T
a1 ¼ 4:4623 and T
a2 ¼ 3:0031. Choosing Ta1 = 4.5 and Ta2 = 3.1, simulation results of the closed-
loop systems are shown in Figs. 1 and 2, where the initial conditions are xð0Þ ¼ 0:1 0:2½ �T , and xðtÞ ¼ 0 0½ �T ; t 2 ½�0:1 0 .
It can be seen that the closed-loop system is positive and exponentially stable, which indicates that the proposed method is
effective.
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Fig. 1. Switching signal.
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Fig. 2. State responses of the closed-loop system.



5. Conclusions

Using the MDADT approach, the stabilization problem of positive switched systems with time-varying delays under asyn-
chronous switching has been investigated in this paper. We have designed a feedback controller and a class of switching sig-
nals such that the closed-loop system is exponentially stable and has a prescribed L1-gain performance in presence of
asynchronous switching. Our future work will focus on the L1 fault detection observer design for positive switched systems
under asynchronous switching.
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