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Abstract

In this paper we provide an alternative method to construct the Fueter
primitive of an axial monogenic function of degree k, which is comple-
mentary to the one used in [4]. As a byproduct, we obtain an explicit
description of the kernel of the Fueter mapping. We also apply our
method to obtain the Fueter primitives of the Cauchy kernels with
singularities on the unit sphere.
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1 Introduction

Let us denote by R0,m (m ∈ N) the real Clifford algebra generated by the
standard basis {e1, . . . , em} of the Euclidean space Rm (see [2]). The multi-
plication in R0,m is determined by the relations

ejek + ekej = −2δjk, j, k = 1, . . . , m
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and a general element a of R0,m may be written as

a =
∑

A

aAeA, aA ∈ R,

in terms of the basis elements eA = ej1 . . . ejk , defined for every subset A =
{j1, . . . , jk} of {1, . . . , m} with j1 < · · · < jk. For the empty set, one puts
e∅ = 1, the latter being the identity element. Conjugation in R0,m is given
by a =

∑

A aAeA, where eA = ejk · · · ej1 with ej = −ej , j = 1, . . . , m.

Observe that Rm+1 may be naturally embedded in the real Clifford algebra
R0,m by associating to any element (x0, x1, . . . , xm) ∈ Rm+1 the paravector
given by

x0 + x = x0 +
m
∑

j=1

xjej .

A function f : Ω → R0,m defined and continuously differentiable in an open
set Ω in Rm+1 (resp. Rm), is said to be monogenic if

(∂x0
+ ∂x)f = 0 (resp. ∂xf = 0) in Ω,

where ∂x =
∑m

j=1 ej∂xj
is the Dirac operator in Rm (see e.g. [1, 7, 9]). The

differential operator ∂x0
+ ∂x, called generalized Cauchy-Riemann operator,

gives a factorization of the Laplacian, i.e.

∆ =

m
∑

j=0

∂2xj
= (∂x0

+ ∂x)(∂x0
− ∂x).

Thus the monogenic functions can be considered a subclass of the class of
harmonic functions in m+ 1 variables.

Throughout the paper we assume h(z) = u(x, y) + iv(x, y) to be a holo-
morphic function in some open subset Ξ of the upper half of the complex
plane C and Pk(x) shall denote a homogeneous monogenic polynomial of de-
gree k in Rm. Let us recall the following generalization of Fueter’s theorem
obtained in [18]:

Theorem 1 Put ω = x/r, with r = |x|, x ∈ Rm. If m is odd, then the

function

Ft [h(z), Pk(x)] (x0, x) = ∆k+m−1

2

[(

u(x0, r) + ω v(x0, r)
)

Pk(x)
]

is monogenic in Ω = {(x0, x) ∈ Rm+1 : (x0, r) ∈ Ξ}.
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In other words, this result provides a way to generate monogenic functions
starting from a holomorphic function in the upper half of the complex plane.
It was originally formulated by R. Fueter in the setting of quaternionic anal-
ysis in [8] and later extended to the case of Clifford algebra-valued functions
in [15, 17] (see also [10, 12, 14, 16]).

Remark 1 It easily seen that Ft [h(z), Pk(x)] defines an R-linear operator
between holomorphic functions and monogenic functions considered as real
vector spaces, i.e.

Ft [c1h1(z) + c2h2(z), Pk(x)] = c1Ft [h1(z), Pk(x)] + c2Ft [h2(z), Pk(x)] ,

for all c1, c2 ∈ R.

The functions generated by this technique are monogenic functions of the
form

(

A(x0, r) + ω B(x0, r)
)

Pk(x), (1)

where A and B are R-valued continuously differentiable functions in R2 which
satisfy the following Vekua-type system

{

∂x0
A− ∂rB =

2k +m− 1

r
B

∂x0
B + ∂rA = 0.

(2)

Monogenic functions of the form (1) are called axial monogenic of degree k
and represent an important class of functions in Clifford analysis (see [7]).

It is quite natural to ask whether given an axial monogenic function of
degree k

H(x0, x) =
(

A(x0, r) + ω B(x0, r)
)

Pk(x),

one can find a holomorphic function h(z) such that

Ft [h(z), Pk(x)] (x0, x) = H(x0, x).

The function h is called the Fueter primitive of H . This problem has been
recently studied in [3, 4] and the Fueter primitive h has been explicitly con-
structed. To this purpose, it was necessary to determine the Fueter primitives
W±

k,m of the functions

F+
k,m(x0, x) =

∫

Sm−1

G(x0 + x− ω)Pk(ω) dS(ω),

F−
k,m(x0, x) =

∫

Sm−1

G(x0 + x− ω)ω Pk(ω)dS(ω),
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where dS(ω) is the scalar element of surface area of Sm−1, and

G(x0 + x) =
1

Am+1

x0 + x

|x0 + x|m+1

is the monogenic Cauchy kernel. Then, it is possible to express the Fueter
primitive of H in terms of a suitable integral involving W±

k,m, A, B and Pk

(see [4]). This method can be used on any axially symmetric open set of
Rm+1, i.e. on every open set which is invariant under rotations that fix the
real axis x0.

Every monogenic function f defined on an axially symmetric open set of
Rm+1 can be written as f =

∑∞

k=0 fk where fk are axial monogenic functions
of degree k. Hence for each term in the series we can provide a Fueter
primitive as described above. We would like to note that the problem of
inverting the Fueter mapping theorem has been recently tackled in the case
of bi-axial monogenic functions (see [5]).

The aim of this paper is to present an alternative proof of the fact that
the Fueter mapping is surjective on the set of axial monogenic functions of
degree k and to explicitly provide their Fueter primitives. The method we
present here is complementary to the one presented in [4] in the sense that
we here integrate with respect to the radius r instead of the axial coordinate
x0. For the sake of simplicity the method is developed on a rectangle; of
course it remains applicable on more general axially symmetric domains.

As a byproduct of this method we describe the kernel of the Fueter map-
ping. We also compute with this method an exact formula for the Fueter
primitives of the Cauchy kernels with singularities on the unit sphere. This
corresponds to the integrals of the standard Cauchy kernel over the unit
sphere.

2 Some preliminary results

Let f : [a, b] → R be a continuous function. From the Cauchy formula for
repeated integration, we know that an n-th antiderivative of f is given by

f (−n)(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt.

Inspired by this formula, we wish to find the solutions of the equations
(

x−1 d

dx

)n

g(x) = f(x) and

(

d

dx
x−1

)n

g(x) = f(x), (3)

where f : [a, b] → R is a given continuous function.
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Remark 2 It is worth noting that the following identities hold (see [6, 13])

(

x−1 d

dx

)n

g(x) =
n

∑

j=1

(−1)n+jaj,nx
j−2n d

jg

dxj
(x)

with

aj,n =
(2n− j − 1)!

2n−j(n− j)!(j − 1)!

and
(

d

dx
x−1

)n

g(x) =

n
∑

j=0

(−1)n+jaj+1,n+1x
j−2n d

jg

dxj
(x).

Moreover, the integers

aj+1,n+1 =
(2n− j)!

2n−j(n− j)!j!

are the coefficients of the Bessel polynomial of degree n (see [11]).

In order to find the solutions of (3), we define the following functions:

φn(x) =

∫ x

a

tφn−1(t)dt, ψn(x) = x

∫ x

a

ψn−1(t)dt, x ∈ [a, b], n ≥ 1,

with φ0(x) = ψ0(x) = f(x). Obviously, φn and ψn satisfy

φ′
n(x)

x
= φn−1(x),

(

ψn(x)

x

)′

= ψn−1(x), φn(a) = ψn(a) = 0, n ≥ 1. (4)

Lemma 1 The functions φn and ψn are given by

φn(x) =
1

(2n− 2)!!

∫ x

a

t(x2 − t2)n−1f(t)dt, (5)

ψn(x) =
x

(2n− 2)!!

∫ x

a

(x2 − t2)n−1f(t)dt, (6)

where n!! denotes the double factorial of n.

Proof. Using integration by parts we obtain

∫ x

a

t(x2 − t2)n−1f(t)dt =

∫ x

a

(x2 − t2)n−1φ′
1(t)dt

=
(

(x2 − t2)n−1φ1(t)
)∣

∣

t=x

t=a
+ 2(n− 1)

∫ x

a

t(x2 − t2)n−2φ1(t)dt.

5



Then
∫ x

a

t(x2 − t2)n−1f(t)dt = 2(n− 1)

∫ x

a

t(x2 − t2)n−2φ1(t)dt.

We iterate this procedure until the (x2 − t2) term vanishes. Thus after n− 1
steps we have
∫ x

a

t(x2 − t2)n−1f(t)dt = 2n−1(n− 1)!

∫ x

a

tφn−1(t)dt = 2n−1(n− 1)!φn(x),

which proves (5). Formula (6) may be proved in a similar way. �

As an immediate consequence of Lemma 1 we obtain:

Theorem 2 Let f : [a, b] → R be a continuous function. The general solu-

tion of the equation
(

x−1 d

dx

)n

g(x) = f(x)

is

φn(x) +
n−1
∑

j=0

Cjx
2j

while the general solution of
(

d

dx
x−1

)n

g(x) = f(x)

is

ψn(x) +
n−1
∑

j=0

C̃jx
2j+1,

where Cj and C̃j, j = 0, . . . , n− 1, are arbitrary real constants.

3 The inverse Fueter mapping theorem revis-

ited

Here plays an essential role the explicit form of Ft [h(z), Pk(x)] determined
in [12], namely:

Ft [h(z), Pk(x)] (x0, x) = (2k +m− 1)!!

×
(

(

r−1∂r
)k+m−1

2 u(x0, r) + ω
(

∂r r
−1
)k+m−1

2 v(x0, r)
)

Pk(x). (7)
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Theorem 3 (The inverse Fueter mapping theorem) Let

H(x0, x) =
(

A(x0, r) + ω B(x0, r)
)

Pk(x),

be a given arbitrary axial monogenic function of degree k in

Ω =
{

(x0, x) ∈ R
m+1 : (x0, r) ∈ [a, b]× [c, d] ⊂ R

2, c > 0
}

.

The Fueter primitives of H(x0, x) exist and are given by

u(x0, r) = KN

∫ r

c

t(r2 − t2)N−1A(x0, t)dt+

N−1
∑

j=0

αj(x0)r
2j, (8)

v(x0, r) = KN r

∫ r

c

(r2 − t2)N−1B(x0, t)dt+
N−1
∑

j=0

βj(x0)r
2j+1, (9)

where

KN =
1

2N ((2N − 2)!!)2
, N = k +

m− 1

2
.

Moreover, the R-valued functions αj(x0) and βj(x0) satisfy the following dif-

ferential equations

α′
j(x0)− (2j + 1)βj(x0)

= (−1)N−j−1KN

(

N − 1

j

)

c2(N−j)−1B(x0, c), j = 0, . . . , N − 1, (10)

β ′
j(x0) + 2(j + 1)αj+1(x0)

= (−1)N−jKN

(

N − 1

j

)

c2(N−j−1)A(x0, c), j = 0, . . . , N − 2, (11)

β ′
N−1(x0) = −KNA(x0, c). (12)

Proof. Let h(z) = u(x, y) + iv(x, y) be a Fueter primitive of H , i.e.

Ft [h(z), Pk(x)] (x0, x) = H(x0, x),

then from (7) we obtain

(

r−1∂r
)k+m−1

2 u(x0, r) =
A(x0, r)

(2k +m− 1)!!
,

(

∂r r
−1
)k+m−1

2 v(x0, r) =
B(x0, r)

(2k +m− 1)!!
.
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Theorem 2 now yields (8) and (9). We must now investigate when u and v
given by these formulae satisfy the Cauchy-Riemann equations, taking into
account that A and B fulfill the Vekua-type system (2).

Let us define

I1(x0, r) =

∫ r

c

t(r2 − t2)N−1A(x0, t)dt, (13)

I2(x0, r) = r

∫ r

c

(r2 − t2)N−1B(x0, t)dt. (14)

It follows from (2) and (4) that

∂x0
I1(x0, r) =

∫ r

c

t(r2 − t2)N−1

(

∂tB(x0, t) +
2N

t
B(x0, t)

)

dt

= −c(r2 − c2)N−1B(x0, c) + (2N − 1)

∫ r

c

(r2 − t2)N−1B(x0, t)dt

+ 2(N − 1)

∫ r

c

t2(r2 − t2)N−2B(x0, t)dt,

∂rI2(x0, r) =
∫ r

c

(r2 − t2)N−1B(x0, t)dt+ 2(N − 1)r2
∫ r

c

(r2 − t2)N−2B(x0, t)dt =

(2N − 1)

∫ r

c

(r2 − t2)N−1B(x0, t)dt+ 2(N − 1)

∫ r

c

t2(r2 − t2)N−2B(x0, t)dt,

which implies that

∂x0
I1(x0, r)− ∂rI2(x0, r) = −c(r2 − c2)N−1B(x0, c).

Similarly, we may verify that

∂rI1(x0, r) + ∂x0
I2(x0, r) = r(r2 − c2)N−1A(x0, c).

We thus have

∂x0
u(x0, r)− ∂rv(x0, r) =

N−1
∑

j=0

(

α′
j(x0)− (2j + 1)βj(x0)

)

r2j

−KN c (r
2 − c2)N−1B(x0, c),
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∂ru(x0, r) + ∂x0
v(x0, r) =

N−2
∑

j=0

(

β ′
j(x0) + 2(j + 1)αj+1(x0)

)

r2j+1

+ β ′
N−1(x0)r

2N−1 +KN r (r
2 − c2)N−1A(x0, c).

Therefore u and v satisfy the Cauchy-Riemann equations if and only if (10),
(11) and (12) are fulfilled. �

This theorem thus asserts that Ft [h(z), Pk(x)] is surjective on the space
of axial monogenic functions of degree k. Furthermore, we note that this
operator is not injective since Ft [zn, Pk(x)] (x0, x) = 0 for 0 ≤ n ≤ 2k+m−2,
as it was observed in [6, 13].

In the next result, we show that the set of all real linear combinations of
zn, 0 ≤ n ≤ 2k +m− 2, is indeed the kernel of Ft [h(z), Pk(x)].

Corollary 1 Let R2k+m−2[z] be the vector space of all polynomials with real

coefficients in z of degree at most 2k +m− 2. Then

ker (Ft [h(z), Pk(x)]) = R2k+m−2[z].

Proof. We only have to prove that

ker (Ft [h(z), Pk(x)]) ⊂ R2k+m−2[z].

If Ft [h(z), Pk(x)] (x0, x) = 0, then from (8) and (9) we obtain

u(x, y) =
N−1
∑

j=0

αj(x)y
2j, v(x, y) =

N−1
∑

j=0

βj(x)y
2j+1.

The differential equations (10), (11) and (12) now tell us that αj(x) (resp.
βj(x)) are polynomials of degree at most 2(N − j)− 1 (resp. 2(N − j − 1)).
Therefore

u(x, 0) = C0 + C1x+ . . . C2N−1x
2N−1, v(x, 0) = 0,

for certain real constants C0, . . . , C2N−1. Then clearly h(z) ∈ R2k+m−2[z]. �

Remark 3 As Ft [h(z), Pk(x)] is an R-linear operator, it is clear that

Ft [h1(z), Pk(x)] = Ft [h2(z), Pk(x)] ⇔ h1(z)− h2(z) ∈ R2k+m−2[z].

We end the paper with two examples.
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Example 1 From [12, 13] we have that

Ft [1/z, Pk(x)] (x0, x) = (−1)k+
m−1

2 ((2k+m− 1)!!)2
(

x0 − x

|x0 + x|2k+m+1

)

Pk(x).

Thus if we apply (8) and (9) to this monogenic function we should be able
to obtain the Cauchy kernel in the plane. Let us illustrate this for the case
k = 0, m = 5. For this case N = 2 and

A(x0, r) =
x0

(x20 + r2)3
, B(x0, r) = −

r

(x20 + r2)3
.

It easily follows that

β0(x0) = −
x20 + 2c2

64(x20 + c2)2
, α0(x0) = −x0β0(x0),

β1(x0) =
1

64(x20 + c2)2
, α1(x0) = −x0β1(x0),

I1(x0, r) =
(r2 − c2)2x0

4(x20 + r2)(x20 + c2)2
, I2(x0, r) = −

(r2 − c2)2r

4(x20 + r2)(x20 + c2)2
,

where I1 and I2 denote the functions defined in (13) and (14), respectively.

Using (8) and (9) we obtain

u(x0, r) =
x0

64(x20 + r2)
, v(x0, r) = −

r

64(x20 + r2)
.

That is h(z) equals (up to a multiplicative constant) the Cauchy kernel in
the plane.

Example 2 In [3] we have considered the functions

N+(q) =

∫

S2

G(q − ω) dS(ω),

and

N−(q) =

∫

S2

G(q − ω)ω dS(ω), q = x0 + rω,

and their Fueter primitives W± in order to provide the Fueter inverse of a
regular function of a quaternionic variable. This corresponds to what we
have discussed in the introduction, i.e. the integrals F±

k,m, in the particular
case k = 0, m = 3.
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In a closed form, these two functions can be written as

N+(q) =
ω

πr

(

1

1 + q2
−

1

r
Im(arctan q)

)

,

and

N−(q) =
ω

πr

(

arctan q +
q

1 + q2
−

1

r
Im(q arctan q)

)

.

We shall use formulae (8) and (9) to retrieve the fact that the Fueter primitive
of N+ is the function W+(z) = 1

2π
arctan z. Note that the function N+ is

regular of axial type and it can thus be written as N+(q) = A(x0, r) +
ωB(x0, r) where

A(x0, r) =
1

π

2x0
(1 + x20 − r2)2 + 4x20r

2

and

B(x0, r) =
1

2πr

(

2 (1 + x20 − r2)

(1 + x20 − r2)2 + 4x20r
2
−

1

2r
ln

(

x20 + (r + 1)2

x20 + (r − 1)2

))

.

We now compute I1 and I2 defined in (13) and (14) with N = 1. We get that

2πI1(x0, r) = 2π

∫ r

c

tA(x0, t)dt = arctan

(

2x0
1− x20 − t2

)
∣

∣

∣

∣

t=r

t=c

= 2Re(arctan z)− arctan

(

2x0
1− x20 − c2

)

= 2Re(arctan z)− 4πα0(x0),

2πI2(x0, r) = 2πr

∫ r

c

B(x0, t)dt =
r

2t
ln

(

x20 + (t + 1)2

x20 + (t− 1)2

)
∣

∣

∣

∣

t=r

t=c

= 2Im(arctan z)−
r

2c
ln

(

x20 + (c+ 1)2

x20 + (c− 1)2

)

= 2Im(arctan z)− 4πrβ0(x0).

On account of (8) and (9), we conclude that a Fueter primitive of N+(q) is
the function W+(z) = 1

2π
arctan z as it was computed in [3].

The function N−(q) is also of axial type and so N−(q) = A(x0, r) +
ωB(x0, r) where

A(x0, r) =
1

2π

(

1

2r
ln

(

x20 + (r − 1)2

x20 + (r + 1)2

)

+
2(x20 + r2 − 1)

(1 + x20 − r2)2 + 4x20r
2

)
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and

B(x0, r) =
x0
2πr

(

1

2r
ln

(

x20 + (r − 1)2

x20 + (r + 1)2

)

+
2(1 + x20 + r2)

(1 + x20 − r2)2 + 4x20r
2

)

.

For this case we compute I1 and I2 with N = 1 and obtain

2πI1(x0, r) = 2π

∫ r

c

tA(x0, t)dt

=

(

x0 arctan

(

2x0
1− x20 − t2

)

−
t

2
ln

(

x20 + (t+ 1)2

x20 + (t− 1)2

))
∣

∣

∣

∣

t=r

t=c

= 2Re(z arctan z)− 4πα0(x0),

2πI2(x0, r) = 2πr

∫ r

c

B(x0, t)dt

= r

(

x0
2t

ln

(

x20 + (t+ 1)2

x20 + (t− 1)2

)

+ arctan

(

2x0
1− x20 − t2

))
∣

∣

∣

∣

t=r

t=c

= 2Im(z arctan z)− 4πrβ0(x0).

Thus, using formulae (8), (9) we obtain that the Fueter primitive of N−(q)
is W−(z) = 1

2π
z arctan z, as shown in [3].
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[9] K. Gürlebeck and W. Sprössig, Quaternionic and Clifford calculus for

physicists and engineers.Wiley and Sons Publications, Chichester, 1997.

[10] K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter’s theorem.

Methods Appl. Anal. 9 (2002), no. 2, 273–289.

[11] H. L. Krall and O. Frink, A new class of orthogonal polynomials: The

Bessel polynomials. Trans. Amer. Math. Soc. 65, (1949), 100–115.

[12] D. Peña Peña, Cauchy-Kowalevski extensions, Fueter’s theorems and

boundary values of special systems in Clifford analysis, Ph.D. Thesis,
Ghent University, 2008.

[13] D. Peña Peña and F. Sommen, Monogenic Gaussian distribution in

closed form and the Gaussian fundamental solution. Complex Var. El-
liptic Equ. 54 (2009), no. 5, 429-440.

[14] D. Peña Peña and F. Sommen, Fueter’s theorem: the saga continues. J.
Math. Anal. Appl. 365 (2010) 29–35.

[15] T. Qian, Generalization of Fueter’s result to Rn+1. Atti Accad. Naz.
Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (1997),
no. 2, 111–117.

[16] T. Qian and F. Sommen, Deriving harmonic functions in higher dimen-

sional spaces. Z. Anal. Anwendungen 22 (2003), no. 2, 275–288.

[17] M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici. Atti
Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 23 (1957), 220–225.

[18] F. Sommen, On a generalization of Fueter’s theorem. Z. Anal. Anwen-
dungen 19 (2000), no. 4, 899–902.

13


	1 Introduction
	2 Some preliminary results
	3 The inverse Fueter mapping theorem revisited

