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Abstract 
Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their 

useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an 

exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is 

available, the possibility of applying diagnostic techniques based on vibration measurements has not 

been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. 

The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the 

potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as 

those of fluid-structure interactions, with order tracking procedures, allowing domain transformations 

and consequently the separation of synchronous and non-synchronous components. This paper will 

focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power 

plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities 

and proposing techniques and methodologies for a highly automated condition monitoring system. 

Keywords 
Hydraulic instability; condition monitoring; cyclostationarity; order tracking; rotatordynamics; 

Kaplan turbine. 

1. Introduction 
The detection of hydraulic instabilities in Francis and Kaplan turbines for power generation is a key 

issue to avoid drastic reductions of the turbine life. High vibrations may arise in the shaft as a 

consequence of those abnormal pressure fluctuations in the flow, in turn causing fatigue problems on 

the turbine components, as shown by Presas et al. [1], Egusquiza et al. [2]. Moreover, cavitation 

problems are also associated with such phenomena (see for instance Ausoni et al. [3], Escaler et al. 

[4]), resulting in a faster degradation of the surfaces of the runner. 

Hydraulic instabilities have been studied in the past mainly by means of computational fluid-

dynamics (CFD) models and pressure measurements within the flow in prototype turbines. The first 
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mentioning of vortex instabilities in a close conduct is likely due to Kelvin in 1910 [5]. His study, 

despite neglecting significant factors such as turbulence and viscosity, remained substantially the state 

of the art until the ’60. Only then, the studies by Hoffman and Joubert [6] and Kreith and Sonju [7], 

proved, with experimental tests, that their turbulence models could be introduced in the description of 

vortexes in a pipe. Despite the fact that investigation of flow in hydraulic turbines was considered a 

significant issue, as demonstrated by the experimental investigations on turbine prototypes by Wigle 

et al. [8], Hosoi [9] and Kolyachev and Lasenko [10], no major breakthrough was made in this 

application until Ruprecht et al. [11][12] finally introduced in the first years of the this century the full 

dynamics of a 3-dimensional unsteady turbulent flow in the simulation of a Francis turbine, including 

the rotor and stator interactions. Later studies, as those by Susan-Resiga et al. [13], Zhang et al. [14] 

and Liu et al. [15], focused particularly on vortex rope instability, which was described as an unsteady 

motion of vortices in the draft tube of Francis turbines, often happening in partial load conditions. 

Fluid-dynamical studies on Kaplan turbines are also available in the literature, such as that by Wang 

et al. [16], focusing on experimental measurement of the flow, and Liu et al. [17][18][19], 

implementing CFD models for the prediction of pressure fluctuations, further verified by means of a 

turbine prototype. 

The possibility to exploit vibrations to detect and investigate the nature of such phenomena has not 

been analysed before previous preliminary works by the authors on this topic [20][21]. In those 

papers, order tracking techniques were applied to isolate the non-synchronous part of the vibration 

signal and therefore highlight the harmonics which characterized the hydraulic instability in a Kaplan 

turbine. The preliminary investigations reported in those papers were however limited to simple first 

order cyclostationary indicators, like the Short Time Fourier Transform and its order domain 

counterpart, similarly to what is usually employed in the few studies available in the literature for 

Francis turbine, such as Bajic and Keller [22] and Escaler et al. [23]. In this way, it was possible to 

characterize the phenomenon only in relation to its periodic/deterministic behaviour, while all the 

information carried in the random part was neglected. 

As shown by Antoni [24], second order cyclostationary components are often significant, or even 

dominant, in the dynamics of many rotating and reciprocating mechanical systems, including fluid 

machines such as compressors and internal combustion motors. The concepts of cyclostationary 

analysis were brought from the field of telecommunications to mechanical engineering thanks to the 

works of Randall et al. [25] and further developed by Antoni et al. [26][27]. The basic idea of 

cyclostationarity is to look into periodicities of the statistical properties of the signal [28], mainly 

mean (first order cyclostationarity) and variance (second order cyclostationarity). While the first order 

tools are substantially coincident with the traditional Fourier analysis ones, the second are able to 

provide information on signals which have interactions between periodic and random components. In 

particular, second order cyclostationary tools have proven their effectiveness in describing 

modulations of random carriers by deterministic components and non-exactly periodic phenomena. 

Despite the absence, to the best of the authors’ knowledge of any study regarding cyclostationary 

tools applied to hydraulic turbines, the coupling of unstable and ergodic phenomena, characteristic of 

turbulent flows, and macroscopic cyclic behaviours, typical of fluid structure interactions, suggest the 

potential of such techniques for this application. 

Therefore, the aims of this paper are: 

1. to further detail and describe the application of first order cyclostationary tools for the 

detection of fluid instabilities, including the necessary domain transformations; 
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2. to investigate the nature of the hydrodynamic instability by means of second order 

cyclostationary analysis, providing a further tool for the diagnostics of hydraulic turbines. 

This study will take advantage of experimental measurements on a real Kaplan turbine unit installed 

in an Italian power plant. The sketch of the turbine is shown in Figure 1. 

Figure 1 about here 

2. The Kaplan turbine 
The turbine unit under investigation is shown in Figure 2. It consists of a 7 blades runner, able to 

process a 91 m3/s flow with nominal speed of 166.67 rpm (2.778 Hz), net head of 27,95  m and a 

maximum power output of 23.388 MW. The turbine is connected to a 18 poles synchronous 

generator, thus obtaining the European standard electric frequency of 50 Hz. 

Figure 2 about here 

2.1. Finite element model 

A finite element model (FEM) of the shaft, based on beam elements, has been programmed, as 

described in the previous work [20], to obtain an estimate of the natural frequencies and eigenmodes 

of the shaft for the lateral vibrations. Some model data are reported in annex A. A sketch of the shaft-

line model is reported in Figure 3. 

Figure 3 about here 

The first two modes, relative to the runner, are shown in the Figure 4 and Figure 5, corresponding 

respectively to natural frequencies of 6.00 Hz and 15.52 Hz for backward modes, 6.17 Hz and 

19.54 Hz for forward modes. 

Figure 4 about here 

 

Figure 5 about here 

2.2. Measurement setup 

The turbine unit is equipped with a series of sensors, including for vibration measurements: 

• Two couple of Brüel & Kjær Vibro IN-081 proximitors measuring lateral rotor vibrations in 

two orthogonal directions. The sensors were installed in two different measuring planes, in 

correspondence of the unit bearings (turbine journal bearing - Brg. #1 and generator journal 

bearing Brg. #2 in Figure 3). 

• One Brüel & Kjær Vibro IN-081 proximitor measuring axial vibrations. 

• An additional Brüel & Kjær Vibro IN-081 proximitor acting as a key-phasor to provide a 

tachometer measurement. 

Vibration measurements were acquired at the sampling rate of 500 Hz by a National Instruments 

SCXI 1000 chassis and 4 boards SCXI 1305, with embedded anti-aliasing filters, along with other unit 

operating parameters, like the rotational speed, the active power, etc. 
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In this paper, only the results for the Brg. #1 measuring plane measurements are reported for the sake 

of brevity. Similar results have been obtained also for Brg. #2. 

3. Experimental test 
The experimental test analysed in this paper consists of a plant start-up, which allows investigating 

different operating conditions and their effect on hydraulic instability. 

The start-up of the plant consists of three phases: first the rotational speed is brought gradually to the 

nominal value of 2.778 Hz (corresponding to an electric frequency of 50 Hz, due to the 18 poles 

pairs). Then the unit is connected to the grid (synchronization) and, finally, the load applied by the 

generator is gradually increased to obtain the desired power output. 

Figure 6 reports an example of such procedure, including the final moments of the speed ramp and the 

first part of the load increase. In particular, diagram (a) shows an estimate of the instantaneous electric 

frequency of the generator, obtained by processing the signal of a 1x rev. tachometer installed on the 

shaft (a 18X multiplication factor was introduced to convert the shaft speed in the electric frequency). 

Diagram (b) shows the instantaneous power output of the generator, obtained by means of electric 

measurements, and directly proportional to the load (torque) applied on the shaft. Note that the spikes 

at about 55 s correspond to the grid synchronization. Diagram (c) shows the vibrations measured in 

two orthogonal directions of Brg. #1 measuring plane by two proximitors installed on the stator. All 

signals have been sampled with a sampling rate of 500 Hz. 

Figure 6 about here 

It is possible to notice a macroscopic increase of vibrations, at the operational speed, when the load is 

kept in the range 3-5 MW. This is also evident if rotor orbits are considered: Figure 6 (d) shows the 

direct and 1X rotor orbits at about 3 MW, while (e) at about 16 MW, moreover it also evident that the 

vibration harmonic content is very different in the two load conditions of Figure 6 (d) and (e). 

By calculating a simple spectrogram of the two signals measured by the proximity probes, it is 

possible to obtain some insight on the dynamics of such vibrations. Figure 7 was obtained by applying 

a short time Fourier transform (STFT), based on 10 second long Hamming windows, with a 5 second 

overlap among two adjacent windows. Both diagrams are dominated by the series of harmonics of the 

shaft rotational speed, which are always present and stabilize soon on the nominal frequency of 2.778 

Hz (corresponding to 50 Hz of electric frequency). However, in the time range between 100 and 300 

s, three strong additional components arise. Moreover, overall noise levels increase in this time frame, 

suggesting a not fully harmonic phenomenon, as it also rather evident from Figure 6 (d), where direct 

rotor orbit is unquestionably not closed. 

Figure 7 about here 

In the following sections the phenomenon will be investigated by means of advanced order tracking 

and cyclostationary tools. 

3.1. Order tracking 

The first step to clarify the behaviour of the machine is to remove the synchronous components, 

which are present also during the normal functioning of the turbine, and are therefore not useful for 

diagnostic purposes of instabilities. This can be done by applying computed order tracking (COT), 
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followed by a synchronous averaging (SA), and finally subtract the average behaviour from the 

signal. 

COT is a technique [29] is a family of techniques aimed at obtaining a uniform angular sampling by 

means of interpolations on a uniformly time sampled signal, i.e. transforming a measured signal 

𝑥[𝑛Δ𝑡] in the estimated signal 𝑥[𝑚Δ𝜃] where Δ𝜃 is a fixed (small) angular rotation of a reference 

shaft. 

A simple algorithm implementing the COT, based on linear interpolations and a 1x revolution 

keyphasor is explained as follows. The tacho signal 𝜉[𝑛Δ𝑡] is measured on a reference shaft, 

providing a 1x revolution reference: 

 
𝜉[𝑛Δ𝑡] =

0 if 0 + 2𝜋𝑘 ≤ 𝜃(𝑛Δ𝑡) < 𝛼 + 2𝜋𝑘
1 if 𝛼 + 2𝜋𝑘 ≤ 𝜃(𝑛Δ𝑡) < 2𝜋(𝑘 + 1)

    with 0 < 𝛼 < 2𝜋 and k = 0, … , K 
(1) 

 

A simple edge detecting algorithm is used on the tacho signal to identify the time instants 

corresponding to complete revolutions of the shaft (angles 𝛼 + 2𝜋𝑘): 

 
𝑡𝑘 = (𝑛𝑘 + 0.5)Δ𝑡   with   𝜉[𝑛𝑘Δ𝑡] = 0   and   𝜉[(𝑛𝑘 + 1)Δ𝑡] = 1 

(2) 

 

Then an estimation of the angles 𝜃[𝑛Δ𝑡] corresponding to each sample of 𝑥[𝑛Δ𝑡] is obtained 

(disregarding the constant arbitrary phase shift 𝛼) by means of a first (piecewise linear) interpolation: 

 
𝜃[𝑛Δ𝑡] = 2𝜋 (𝑘 +

𝑛Δ𝑡 − 𝑡𝑘

𝑡𝑘+1 − 𝑡𝑘
)    with  𝑡𝑘 ≤ 𝑛Δ𝑡 < 𝑡𝑘+1 

(3) 

 

Once the desired number of samples 𝑀 per revolution is chosen, a second interpolation will finally 

lead to the estimation of the uniformly angular sampled signal 𝑥[𝑚Δ𝜃]: 

 
𝑥[𝑚Δ𝜃] = 𝑥[𝑛Δ𝑡] +

𝑚Δ𝜃 − 𝜃[𝑛Δ𝑡]

𝜃[(𝑛 + 1)Δ𝑡] − 𝜃[𝑛Δ𝑡]
 (𝑥[(𝑛 + 1)Δ𝑡] − 𝑥[𝑛Δ𝑡])  

with 𝜃[𝑛Δ𝑡] ≤ 𝑚Δ𝜃 < 𝜃[(𝑛 + 1)Δ𝑡]   and   Δ𝜃 = 2𝜋/𝑀 

(4) 

 

The so obtained signal will have 𝑀𝑃 samples, i.e. 𝑀 samples per each of the 𝑃 revolutions. This 

constant number of samples per revolution allows the application of the SA, consisting in the 

calculation of the average one-revolution behaviour of 𝑥[𝑚Δ𝜃]: 

 
𝑥𝑆𝐴[𝑚Δ𝜃] = ∑ 𝑥[(𝑚 + 𝑝𝑀)Δ𝜃]

𝑃−1

𝑝=0

  with  𝑚 = 0: 𝑀 − 1 
(5) 
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This synchronous average component can be removed from the original signal to find the so called 

residual: 

 
𝑥𝑟[𝑚Δ𝜃] = 𝑥[𝑚Δ𝜃] − 𝑥𝑆𝐴 [(𝑚 − ⌊

𝑚

𝑀
⌋ 𝑀) Δ𝜃] 

(6) 

 

with ⌊⋅⌋ indicating a rounding down operation. 

A series of issues have to be tackled in order to ensure a good result of the SA procedure. 

• It is necessary to isolate a time window in which the components to be removed keep stable in 

amplitude. Therefore, it has been chosen to analyse two sections of the vibration signals 

separately: a first part (hereafter called subrecord A see Figure 6) from 100 s to 300 s, where 

the speed is constant and the load on the turbine is low (~3.3 MW). A second part (hereafter 

called subrecord B) from 500 s to 700 s at the same constant speed but with a high load 

(~15 MW). 

• A sufficiently precise tacho signal should be selected for this purpose. Noticing the speed 

fluctuations of Figure 6 (a), probably not feasible in such a high inertia rotor, and considering 

that the tacho gives a only a 1x revolution reference, the tacho signal is not considered as 

reliable for this purpose. Therefore, it may result more effective to use the Improved 

Synchronous Averaging (ISA) [30][31] technique, taking advantage of the strong high 

frequency harmonics of the shaft within the vibration signal itself. This technique will extract 

an artificial tacho signal from the vibration signal itself, by narrow band-pass filtering the 

vibration signal around a multiple of the shaft speed. 

• The uncertain nature of the non-synchronous components suggests keeping their study in the 

frequency domain, instead than in the order one. Therefore it will be necessary to transform 

the signal back to time domain (using the same artificial tacho signal), after having removed 

the synchronous component in the angular domain of the shaft. To do this, an approach 

already suggested by the authors in the past [32], though not yet implemented, is applied and 

explained later. 

The ISA technique isolates a harmonic of the vibration signal itself by narrow band-pass filtering and 

uses it as a tacho signal: 

 𝜉[𝑛Δ𝑡] = 𝑥[𝑛Δ𝑡]⨂𝑤𝑓𝑐,Δ𝑓[𝑛Δ𝑡] (7) 

 

where 𝑤𝑓𝑐,Δ𝑓[𝑛Δ𝑡] is a band pass filter with central frequency 𝑓𝑐 and bandwidth Δ𝑓 and ⨂ is the 

convolution operator. 𝑓𝑐 is set according to the average speed of the shaft 𝜔𝑎𝑣𝑔 and the target multiple 

𝑀, while the bandwidth is chosen accordingly to the expected speed fluctuation Δ𝜔 and considering 

Carson’s rule for frequency modulated signals. If possible (depending on the presence of strong 

multiples and the width of Δ𝜔) a high order multiple 𝑀𝜔𝑎𝑣𝑔 is chosen, in order to obtain a high 

resolution tacho-equivalent signal (i.e. with many edges per revolution), able to track small changes of 

speed within one revolution of the shaft. 

Figure 8 shows the digital ideal filtering applied to the x-vibration signal, which is defined as a narrow 

band of 2.778 Hz, centred on the 27th harmonic (75 Hz). The 27th harmonic has been chosen for its 
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high order, leading to a high precision in following speed variations, and for its high amplitude 

(strong signal to noise ratio). 

Figure 8 about here 

The resulting inversed Fourier transformed signal is then used as a normal tachometer signal to 

perform COT. This procedure is repeated for the two subrecords A and B of the signal, obtaining the 

improvements shown in Figure 9. Only x-vibrations will be shown here for the sake of brevity, the 

same steps are applied with similar results to y-direction vibrations. 

Figure 9 about here 

The spectrograms of the residuals now show clearly the different behaviour of the two signals, with 

no significant component in subrecord B, Figure 9 (d) and the three non-synchronous components of 

subrecord A, Figure 9 (c). 

However, as said before, to better identify the nature of these components it is suitable to return to the 

frequency domain. The process used is based on an Ariadne’s thread approach: an artificially 

generated signal is subjected to the same order tracking operation as the vibration subrecord and, after 

having cleaned the vibration signal in the order domain, it is used as a reference to invert the 

transformation back to the starting point of the time domain.  

The reference signal is generated in time domain, with a length equal to the one of the subrecord 

under analysis. In particular this reference signal has been arbitrarily chosen as a 10 Hz sinewave. 

This signal is order-tracked using the same tachometer signal described in Figure 8, in parallel to the 

vibration signals. When the signals of Figure 9 (c) and (d) have been obtained, the order-tracked 

reference sinewave, now distorted in the transformation to the order domain, is used as a tachometer 

signal to operate a second COT operation, in this case from the angular to the time domain. This 

procedure is displayed in Figure 10. 

Figure 10 about here 

The results for both directions of vibration are shown in Figure 11 for the subrecord A and Figure 12 

for the subrecord B. The location of the anomalous peaks is now possible with accuracy by comparing 

the two cases. 

Figure 11 about here 

 

Figure 12 about here 

In particular it is possible to identify the following frequency components which are present only at 

low load (subrecord A): 

• 0.3 Hz component, dominating the spectrum, not very stable. 

• 6 Hz component, corresponding to the first bending mode of the shaft. 

• 15.5 Hz component, corresponding to the second bending mode of the shaft. 

It is also possible to notice, especially in x direction vibrations, a couple of sidebands of the 1st 

harmonics of the shaft, exactly spaced from the nominal 2.778 Hz frequency by an interval of 0.3 Hz, 
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indicating a coupling of this phenomenon with the 1x revolution vibrations of the shaft. All this 1st 

order cyclostationary (periodic) components are typical of an instability. 

However, given the strong unstable behaviour of such fluid-structure interactions, it is natural to also 

expect components with higher orders of cyclostationarity, whose presence is suggested also by high 

overall noise levels for the overall duration of subrecord A. 

3.2. Second order cyclostationary analysis 

A first attempt to look into the second order cyclostationary (CS2) content of the signal consists in 

calculating the STFT of the envelope of a high pass filtered version of the vibration signal. The choice 

of a high pass is dictated by the need of removing the 1st order cyclostationary components listed at 

the end of previous section and still present in the signal. Half of the Nyquist frequency has been 

chosen as cut-off frequency for the ideal digital filter applied to the time domain residual signals of 

the two subrecords (output of the procedure of Figure 10). 

The result of the envelope analysis is reported in Figure 13 for subrecord A and in Figure 14 for 

subrecord B. 

Figure 13 about here 

 

Figure 14 about here 

While for the second subrecord the only CS2 harmonics are the ones of the rotational speed, 

subrecord A shows clear CS2 components at 9.5 Hz, 12 Hz, 21.5 Hz and 31 Hz. These components 

can be easily explained as modulating effects of the natural frequencies of the system on random 

hydraulic phenomena. Being the natural vibrations sinusoidal and given the squaring operator 

involved in the envelope operation, the peaks corresponding to resonances will have their frequency 

doubled in cyclic domain, thus resulting in the 12 Hz (26 Hz) and 31 Hz (215.5 Hz). The other two 

peaks at 9.5 and 12.5 are nothing but the combinations of the two resonances (15.5±6 Hz). 

To prove the validity of such considerations a simple numerical signal 𝑥(𝑡) has been generated. It is 

composed by white noise amplitude modulated by a biharmonic signal as follows. 

 
𝑥(𝑡) = [𝑠𝑖𝑛 (6 ⋅ 2𝜋𝑡 +

𝜋

12
) + 𝑠𝑖𝑛 (15.5 ⋅ 2𝜋𝑡 +

𝜋

12
)] ⋅ 𝑤(𝑡) 

(8) 

 

where 𝑤(𝑡) is white noise (pseudo standard normal random series). 

The sampling frequency has been set to 500 Hz and a 10 s record of the signal has been generated (see 

Figure 15). 

Figure 15 about here 

Then the envelope spectrum of this signal has been obtained applying the same filtering used for the 

Kaplan turbine signal (upper half band pass). The result of the envelope spectrum, shown in Figure 16 

is exactly matching the peak pattern of the Kaplan case. 

Figure 16 about here 
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3.1. Detailing the CS2 components in the envelope spectrum 

Once the key CS2 components have been identified, information can be obtained on the 

characteristics of the fluid-dynamic phenomenon by means of more sophisticated CS2 analysis tools: 

the cyclic correlation (or averaged cyclic periodogram) and the cyclic coherence. 

The two indicators are described in detail by Antoni [27] and allow identifying both the macroscopic 

cyclic frequencies of a CS2 signal and their corresponding spectral support, i.e. in case of 

deterministic/random modulation, associate to each deterministic modulating component found in the 

envelope spectrum, the spectral characterization of its random carrier. 

The cyclic correlation 𝑆𝑥(𝑓, 𝛼) is basically defined as the expected value of the autocorrelation of the 

spectrum itself: 

 𝑆𝑥(𝑓, 𝛼) = 𝑬 {𝑋 (𝑓 +
𝛼

2
) ⋅ 𝑋∗ (𝑓 −

𝛼

2
)} (9) 

 

and it is estimated by means of the averaged cyclic periodogram as described in [27]. 

This two dimensional indicator identifies simultaneously the power associated with the frequency 𝑓, 

in a traditional spectral sense, and varying (modulation) at a cyclic frequency 𝛼, from the CS2 

(envelope) point of view. 

The cyclic coherence 𝛾𝑥(𝑓, 𝛼) is the normalized version of the cyclic correlation, defined as: 

 
𝛾𝑥(𝑓, 𝛼) =

𝑆𝑥(𝑓, 𝛼)

√|𝑆𝑥 (𝑓 +
𝛼
2

)| |𝑆𝑥 (𝑓 −
𝛼
2

)|

 
(10) 

 

Given the computational effort required to obtain such indexes on large cyclic frequency ranges, it has 

been chosen to split the analysis concentrating singularly on each component of the envelope 

spectrum. Moreover, given the similarities of the two measurement direction, only the x-direction will 

be reported for the sake of brevity. 

The first component identified in the envelope spectrum is located at 9.5 Hz, resulting from the 

difference of the two natural frequencies of the turbine. The spectral correlation, calculated on a cyclic 

neighbourhood of 9.5 Hz is shown in Figure 17 (a). It is possible to notice that the energy associated 

with the 9.5 Hz cyclic component has a wide spectral support. The overall decreasing level of energy, 

moving towards the higher spectral frequencies, may mislead the consideration on the spectral 

characterization of this component. 

Figure 17 about here 

More normalized information is given by the spectral coherence, which provides an indication of the 

share of the total energy at the frequency 𝑓 associated with the cyclic frequency 𝛼. As shown in 

Figure 17 (b), the coherence grows significantly towards higher spectral bands, indicating a higher 

importance of the modulating phenomenon in that area. This can be explained by the fact that, at such 

frequency, no external disturbance can be found and the hydraulic instability effect dominates the 

signal. 
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The same considerations apply for the other three cyclic components (12, 21.5 and 31 Hz). 

3.2. Kurtosis as a synthetic CS2 diagnostic tool 
In order to automate the detection of such problem in the CS2 indicator, a very simple, compact and 

non-dimensional measure of the CS2 content of a signal can be obtained by the time domain kurtosis 

of the band-pass filtered analytic signal (henceforth simply kurtosis) used for the calculation of the 

envelope. As explained in a previous work [33], thanks to the Parseval’s theorem it is possible to 

demonstrate that the kurtosis is nothing but the sum of all the peaks of the squared envelope spectrum, 

normalized by the zero-frequency peak. High kurtosis values mean that the envelope spectrum is non-

flat and possess high non-zero frequency peaks. 

In the experimental cases of Figure 13 and Figure 14, the kurtoses are respectively: 

• 4.5 in x direction and 4.6 in y direction for subrecord A (hydraulic instability) 

• 4.0 in x direction and 3.5 in y direction for subrecord B (normal operation) 

The small difference of kurtosis between the two conditions is due to the presence of the synchronous 

peaks in the envelope spectrum of subrecord B, which keep the kurtosis high despite the absence of 

the peaks due to the hydraulic instability. The presence of the peaks can be due to the imperfection of 

the order tracking operations or really connected to some effect of the rotating speed on hydro-

dynamics. However, if not solved, it compromises any attempt to develop any automated system for 

the detection of hydraulic problems based on kurtosis. 

A possible solution resides in applying SA to the envelope signal: as done for the raw signal, it is 

possible to obtain the SA of the envelope signal and subtract it from the envelope itself, obtaining a 

residual envelope signal, whose synchronous components have been removed. This operation is 

included in the process of Figure 10, which is modified in the form of Figure 18. 

Figure 18 about here 

The results of this procedure are shown in Figure 19 and Figure 20, respectively for subrecord A and 

B. It is evident that, whereas no significant change happens for the hydraulic instability case, 

subrecord B shows a significant decrease in the amplitude of the CS2 shaft harmonics. 

Figure 19 about here 

 

Figure 20 about here 

Once the envelope spectrum has been cleaned, it is easy to calculate a far more reliable kurtosis, as: 

 𝜅𝑥 =
∑|𝐸𝑆[𝑘]|2

|𝐸𝑆[0]|2
 (11) 

 

This results in a far more reliable kurtosis: 

• 4.3 in x direction and 4.4 in y direction for subrecord A (hydraulic instability) 

• 2.2 in x direction and 2.1 in y direction for subrecord B (normal operation) 
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As for the envelope spectra, the SA operation did not affect significantly subrecord A, which shows a 

dominance of non-shaft related CS2 peaks. On the contrary, for subrecord B (normal conditions) the 

kurtosis returns very near the theoretical value of 2, which is expected in case of no significant CS2 

component. 

4. Conclusions 
In this paper, a detailed analysis of the vibrating phenomena caused by vortex rope instability in a 

Kaplan turbine has been provided. Step-by-step diagnostic procedures involving domain 

transformations and 1st and 2nd order cyclostationary indicators have been illustrated, showing their 

effectiveness in detecting the insurgency of this problem. Moreover, a synthetic kurtosis-based 

indicator has been derived, in order to allow programming simple but reliable automated condition 

monitoring systems. Being the first attempt to apply cyclostationary analysis to fluid-dynamic 

phenomena, this paper represents a starting point for future works in this field. Future steps will 

necessarily involve improved measurement setups, able to widen the frequency range under 

investigation and allowing comparisons between vibration signals and flow measurements. 
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Annex A – Kaplan turbine model data 
The Kaplan turbine model, shown in Figure 3, is made of 54 beam elements with 7 rigid disks, in 

correspondence of the runner, generator poles, fan and exciter.  

Bearing dynamic coefficients, provided by bearings’ manufacturer, are: 

• Turbine journal bearing: stiffness 9.221e+008 N/m, damping 1.368e+007 Ns/m 

• Generator journal bearing: stiffness 2.392e+008 N/m, damping 4.918e+006 Ns/m 

The supporting structure is considered as rigid.  
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Figure captions 

Figure 1. Sketch of the Kaplan turbine. 

Figure 2. Kaplan turbine unit after installation. 

Figure 3. Sketch of the FEM. 

Figure 4. First bending mode affecting the runner: (a) backward mode with natural frequency 

of 6.0 Hz, (b) forward mode at 6.2 Hz. 

Figure 5. Second bending mode affecting the runner: (a) backward mode with natural 

frequency of 15.5 Hz, (b) forward mode at 19.5 Hz. 

Figure 6. Measurements during start-up: (a) electric instantaneous frequency, obtained by 

processing a tachometer signal: (b) instantaneous power output, (c) rotor vibrations in two 

orthogonal directions of the shaft section, measured by proximitors installed in the stator at 

the turbine end of the shaft, (d) rotor direct and 1X orbits at about 3MW, (e) rotor direct and 

1X orbits at about 16MW. 

Figure 7. Raw spectrograms of the vibration signals: (a) x direction; (b) y direction. All 

diagrams have log scale z axis. 

Figure 8. Extraction of an artificial tacho signal from the vibration signal itself (x vibration) 

by band pass filtering in the spectral domain. 

Figure 9. Removal of synchronous components in the x-vibration signal: (a) spectrogram of 

the subrecord A before order tracking, (b) spectrogram of subrecord B before order tracking, 

(c) spectrogram of the residual of subrecord A after COT/SA, (d) spectrogram of the residual 

of subrecord B after COT/SA. All diagrams have log scale z axis. 

Figure 10. Procedure to obtain clean vibration signals in time domain, without additional 

experimental signals. 

Figure 11. Residual of the subrecord A: (a) spectrogram x direction; (b) spectrogram y 

direction; (c) spectrum x direction; (d) spectrum y direction. All diagrams have log scale z 

axis. 

Figure 12. Residual of the subrecord B: (a) spectrogram x direction; (b) spectrogram y 

direction; (c) spectrum x direction; (d) spectrum y direction. All diagrams have log scale z 

axis. 

Figure 13. Envelope analysis for the subrecord A: (a) envelope spectrogram x direction; (b) 

envelope spectrogram y direction; (c) envelope spectrum x direction; (d) envelope spectrum y 

direction. All diagrams in linear scale. 

Figure 14. Envelope analysis for the subrecord B: (a) envelope spectrogram x direction; (b) 

envelope spectrogram y direction; (c) envelope spectrum x direction; (d) envelope spectrum y 

direction. All diagrams in linear scale. 
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Figure 15. First second of the artificially generated signal obtained modulating white noise 

with a biharmonic signal. 

Figure 16. Envelope spectrum of the numerical simulation of a CS2 signal due to a 

biharmonic modulation of white noise. 

Figure 17. Neighbourhood of 9.5 Hz, subrecord A: (a) cyclic correlation, Log z-axis scale 

Figure 18. Procedure to obtain clean envelope signals in time domain, without additional 

experimental signals. 

Figure 19. Envelope analysis for the subrecord A after removal of synchronous CS2 

components: (a) envelope spectrogram x direction; (b) envelope spectrogram y direction; (c) 

envelope spectrum x direction; (d) envelope spectrum y direction. 

Figure 20. Envelope analysis for the subrecord B after removal of synchronous CS2 

components: (a) envelope spectrogram x direction; (b) envelope spectrogram y direction; (c) 

envelope spectrum x direction; (d) envelope spectrum y direction. 
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Figure 1. Sketch of the Kaplan turbine. 
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Figure 2. Kaplan turbine unit after installation. 
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Figure 3. Sketch of the FEM. 
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(a) (b) 

  
Figure 4. First bending mode affecting the runner: (a) backward mode with natural frequency of 6.0 Hz, (b) forward 

mode at 6.2 Hz. 
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(a) (b) 

  
Figure 5. Second bending mode affecting the runner: (a) backward mode with natural frequency of 15.5 Hz, (b) 

forward mode at 19.5 Hz. 
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Figure 6. Measurements during start-up: (a) electric instantaneous frequency, obtained by processing a tachometer 

signal: (b) instantaneous power output, (c) rotor vibrations in two orthogonal directions of the shaft section, 

measured by proximitors installed in the stator at the turbine end of the shaft, (d) rotor direct and 1X orbits at about 

3MW, (e) rotor direct and 1X orbits at about 16MW. 
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Figure 7. Raw spectrograms of the vibration signals: (a) x direction; (b) y direction. All diagrams have log scale z 

axis. 
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Figure 8. Extraction of an artificial tacho signal from the vibration signal itself (x vibration) by band pass filtering in 

the spectral domain. 
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Figure 9. Removal of synchronous components in the x-vibration signal: (a) spectrogram of the subrecord A before 

order tracking, (b) spectrogram of subrecord B before order tracking, (c) spectrogram of the residual of subrecord A 

after COT/SA, (d) spectrogram of the residual of subrecord B after COT/SA. All diagrams have log scale z axis. 
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Figure 10. Procedure to obtain clean vibration signals in time domain, without additional experimental signals. 
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Figure 11. Residual of the subrecord A: (a) spectrogram x direction; (b) spectrogram y direction; (c) spectrum x 

direction; (d) spectrum y direction. All diagrams have log scale z axis. 
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Figure 12. Residual of the subrecord B: (a) spectrogram x direction; (b) spectrogram y direction; (c) spectrum x 

direction; (d) spectrum y direction. All diagrams have log scale z axis. 
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Figure 13. Envelope analysis for the subrecord A: (a) envelope spectrogram x direction; (b) envelope spectrogram y 

direction; (c) envelope spectrum x direction; (d) envelope spectrum y direction. All diagrams in linear scale. 
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Figure 14. Envelope analysis for the subrecord B: (a) envelope spectrogram x direction; (b) envelope spectrogram y 

direction; (c) envelope spectrum x direction; (d) envelope spectrum y direction. All diagrams in linear scale. 
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Figure 15. First second of the artificially generated signal obtained modulating white noise with a biharmonic signal. 
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Figure 16. Envelope spectrum of the numerical simulation of a CS2 signal due to a biharmonic modulation of white 

noise. 
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(a) (b) 

  
 

Figure 17. Neighbourhood of 9.5 Hz, subrecord A: (a) cyclic correlation, Log z-axis scale; (b) cyclic coherence. 
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Figure 18. Procedure to obtain clean envelope signals in time domain, without additional experimental signals. 
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Figure 19. Envelope analysis for the subrecord A after removal of synchronous CS2 components: (a) envelope 

spectrogram x direction; (b) envelope spectrogram y direction; (c) envelope spectrum x direction; (d) envelope 

spectrum y direction. 
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Figure 20. Envelope analysis for the subrecord B after removal of synchronous CS2 components: (a) envelope 

spectrogram x direction; (b) envelope spectrogram y direction; (c) envelope spectrum x direction; (d) envelope 

spectrum y direction. 
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