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Abstract. We study the nonlinear quantum master equation describing a laser under
the mean field approximation. The quantum system is formed by a single mode optical
cavity and two level atoms, which interact with reservoirs. Namely, we establish the ex-
istence and uniqueness of the regular solution to the nonlinear operator equation under
consideration, as well as we get a probabilistic representation for this solution in terms
of a mean field stochastic Schrödinger equation. To this end, we find a regular solution
for the nonautonomous linear quantum master equation in Gorini-Kossakowski-Sudarshan-
Lindblad form, and we prove the uniqueness of the solution to the nonautonomous linear
adjoint quantum master equation in Gorini-Kossakowski-Sudarshan-Lindblad form. More-
over, we obtain rigorously the Maxwell-Bloch equations from the mean field laser equation.

Keywords: Open quantum system, nonlinear quantum master equation, Maxwell-Bloch
equations, quantum master equation in the Gorini-Kossakowski-Sudarshan-Lindblad form,
existence and uniqueness, regular solution, Ehrenfest-type theorem, stochastic Schrödinger
equation.

1. Introduction

This paper provides the mathematical foundation for the nonlinear laser
equation

d

dt
ρt = −i ω

2
[2 a†a+ σ3, ρt] (1)

+ g
[(

Tr(σ−ρt)a
† − Tr(σ+ρt)a

)
+

(
Tr(a†ρt)σ

− − Tr(a ρt)σ
+
)
, ρt

]
+ κ−

(
σ−ρt σ

+ − 1

2
σ+σ−ρt −

1

2
ρt σ

+σ−
)

+ κ+

(
σ+ρt σ

− − 1
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ρt σ

−σ+
)
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+ 2κ
(
a ρta

† − 1

2
a†aρt −

1

2
ρta

†a
)
,

where ω ∈ R, g is a nonzero real number, κ, κ+, κ− > 0 and ρt is an unknown
nonnegative trace-class operator on ℓ2(Z+)⊗ C2. As usual, [ · , · ] stands for
the commutator of two operators,

σ+ =

[
0 1
0 0

]
, σ− =

[
0 0
1 0

]
, σ3 =

[
1 0
0 −1

]
,

and a, a† are the closed operators on ℓ2(Z+) given by

a en =

{ √
n en−1 if n ∈ N
0 if n = 0

and a†en =
√
n+ 1 en+1 for all n ∈ Z+. Here and subsequently, (en)n≥0

denotes the canonical orthonormal basis of ℓ2(Z+).
Under the mean field approximation, (1) describes the dynamics of a laser

consisting of a radiation field coupled to a set of identical noninteracting two-
level systems (see, e.g., Section 3.7.3 of [8] and [27, 32, 40, 47] for more details
on mean field quantum master equations). The first term of the right-hand
side of (1) is determined by the free Hamiltonians of the field mode and
the atoms, the second term governs the atom-field interaction, and the last
three terms, i.e., the Gorini-Kossakowski-Sudarshan-Lindblad superoperators
[24, 31], represent decay/pumping in the atoms and radiation losses. We are
interested in establishing rigorously the well-posedness of (1), the equations
of motion of the observables a + a†, σ− + σ+ and σ3, and a probabilistic
representation of ρt. This gives the mathematical basis to study, for instance,
dynamical properties of (1) and the numerical solution of (1).

Our approach to the nonlinear quantum master equation (1) involves the
study of nonautonomous linear quantum master equations in the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) form [1, 8, 24, 31]. In the time-
homogeneous setup, E.B. Davies and A.M. Chebotarev [12, 17] constructed
the minimal solution of GKSL linear master equations with unbounded co-
efficients (see, e.g., [13, 18]). Using semigroup methods, [11, 14, 15, 18] prove
that these equations have a unique solution under a quantum version of the
Lyapunov condition for nonexplosion of classical Markov processes. Applying
probabilistic techniques, one deduces that the GKSL quantum master equa-
tion preserves the regularity of the initial state (see, e.g., [37]), and one also
obtains the well-posedness of the GKSL adjoint quantum master equation
with an initial condition given by an unbounded operator (see, e.g., [36]).
Using a limit procedure, one gets a conservative solution to a linear adjoint
quantum master equation with time-dependent coefficients (see, e.g, [10]). In
this article, we address a class of time-local linear master equations, which
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describes relevant physical systems (see, e.g., [7, 9, 16, 26, 46]). Namely, by
extending some results given by [36, 37], we construct a regular solution for
the nonautonomous linear quantum master equation

d

dt
ρt = G(t)ρt + ρtG(t)

∗ +
∞∑
k=1

Lk(t)ρtLk(t)
∗ t ≥ 0 , (2)

where ρt is a density operator in h, the initial datum ρ0 is regular, and
G(t), L1(t), L2(t), . . . are linear operators in h satisfying (on appropriate do-
main)

G(t) = −iH(t)− 1

2

∞∑
ℓ=1

Lℓ(t)
∗Lℓ(t)

with H(t) self-adjoint operator in h. Furthermore, we prove the uniqueness
of the solution to the adjoint version of (2), which models the evolution of the
quantum observables in the Heisenberg picture. This leads to prove the well-
posedness of the GKSL quantum master equation resulting from replacing
in (1) the unknown values of Tr(σ−ρt) and Tr(a ρt) by known functions α(t)
and β(t).

Our main objective is to develop the mathematical theory for the non-
linear equation (1). First, we establish the existence and uniqueness of the
regular solution to (1). In this direction, Belavkin [5, 6] treated a general
class of nonlinear quantum master equations with bounded coefficients, and
Kolokoltsov [30] obtained the well-posedness of nonlinear quantum dynamic
semigroups having nonlinear Hamiltonians that are bounded perturbations
of unbounded linear self-adjoint operators, together with nonlinear bounded
Gorini-Kossakowski-Sudarshan-Lindblad superoperators. Arnold and Spar-
ber [2] showed the existence and uniqueness of global solution to a nonlinear
quantum master equation involving Hartree potential by means of semigroup
techniques.

Moreover, we deal with the equations of motion for the mean values of
a, σ− and σ3. It is well known that the following first-order differential
equations is formally obtained from (1):

d

dt
Tr(a ρt) = −(κ+ i ω)Tr(a ρt) + g Tr(σ−ρt)

d

dt
Tr(σ−ρt) = −(γ + i ω)Tr(σ−ρt) + g Tr(a ρt)Tr(σ

3ρt)

d

dt
Tr(σ3ρt) = −4gRe

(
Tr(a ρt)Tr(σ−ρt)

)
− 2γ(Tr(σ3ρt)− d) ,

(3)

where ≥ 0, γ = (κ+ + κ−)/2 and d = (κ+ − κ−)/(κ+ + κ−) (see, e.g., [8]). Please verify!

In the semiclassical laser theory, the Maxwell-Bloch equations (3) describe
the evolution of the field (i.e., Tr(a ρt)), the polarization (i.e., Tr(σ−ρt)) and

1950001-3



F. Fagnola and C.M. Mora

the population inversion (i.e., Tr(σ3ρt)) of ring lasers like far-infrared NH3

lasers (see, e.g., [25, 42, 48]). The system (3) has received much attention in
the physical literature due to its important role in the description of laser
dynamics (see, e.g., [8, 21, 41]). In this paper, we prove rigorously the valid-
ity of (3) whenever the initial state is regular enough, and thus we get an
Ehrenfest theorem for (1) (see, e.g., [19, 22, 23]).

Finally, we obtain a probabilistic representation of (1). The solution of
the linear quantum master equations in GKSL form is characterized as the
mean value of random pure states given by the linear and nonlinear stochastic
Schrödinger equations (see, e.g., [3, 4, 8, 37, 49]). This representation plays
an important tool in the numerical simulation of open quantum systems
(see, e.g., [8, 35, 33, 43, 45]), and it has also been used for proving theoretical
properties of the GKSL quantum master equations (see, e.g., [20, 36, 37]). In
this paper, we get a probabilistic representation of (1) in terms of a mean
field version of the linear stochastic Schrödinger equation. To the best of
our knowledge this is the first rigorously established result, at the level of
infinite dimensional density matrices, with an unbounded nonlinear evolution
operator, in the study of nonlinear mean field laser evolution equations

This paper is organized as follows. Section 2 presents the main results.
Section 3 is devoted to general linear master equations. In Sect. 4 we study a
linear quantum master equation associated with (1), moreover, for the sake of
completeness, we recall the basic properties of the complex Lorenz equations.
All proofs are deferred to Sect. 4.2.

1.1. Notation

In this paper, (h, ⟨ · , · ⟩) is a separable complex Hilbert space, where the
scalar product ⟨ · , · ⟩ is linear in the second variable and anti-linear in the
first one. The standard basis of C2 is denoted by

e+ =

[
1
0

]
, e− =

[
0
1

]
.

If A,B are linear operators in h, then [A,B] = AB − BA and D(A) stands
for the domain of A. We take N = a†a. In case X, Z are normed spaces,
we denote by L(X,Z) the set of all bounded operators from X to Z and we
choose L(X) = L(X,X). We write L1(h) for the set of all trace-class operators
on h equipped with the trace norm. For simplicity of notation, generic no-
negative constants are denoted by K, as well as K( · ) stands for different
nondecreasing nonnegative functions on [0,∞[.

Let C be a self-adjoint positive operator in h. Then, πC : harrowh is
defined by πC(x) = x if x ∈ D(C) and πC(x) = 0 if x /∈ D(C), as well
as ∥x∥C =

√
⟨x, x⟩C with ⟨x, y⟩C = ⟨x, y⟩ + ⟨Cx,Cy⟩ for any x, y ∈ D(C).

We write L2(P, h) for the set of all square integrable random variables from
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(Ω,F,P) to (h,B(h)), where B(Y) is the collection of all Borel set of the
topological space Y. Finally, L2

C(P, h) denotes the set of all ξ ∈ L2(P, h)
satisfying ξ ∈ D(C) a.s. and E(∥ξ∥2C) <∞.

2. Basic Properties of the Mean Field Laser Equation

This section presents the main results of the paper, which are summarized
in Theorem 1 given below. We start by adapting the notion of regular weak
solution — of a linear quantum master equation (see, e.g., [37] and Definition
5 given below) — to the mean field laser equation (1). To this end, we recall
that a density operator ϱ is C-regular if, roughly speaking, CϱC is a trace-
class operator, where C is a suitable reference operator (see, e.g., [11, 37]).

DEFINITION 1 Suppose that C is a self-adjoint positive operator in h. An
operator ϱ ∈ L1(h) is called density operator iff ϱ is a nonnegative operator
with unit trace. The nonnegative operator ϱ ∈ L(h) is said to be C-regular
iff ϱ =

∑
n∈I λn|un⟩⟨un| for some countable set I, summable nonnegative real

numbers (λn)n∈I and collection (un)n∈I of elements of D(C), which together
satisfy:

∑
n∈I λn∥Cun∥2 < ∞. Let L+

1,C(h) denote the set of all C-regular
density operators in h.

DEFINITION 2 Let C be a self-adjoint positive operator in h. A family
(ρt)t≥0 of operators belonging to L+

1,C(h) is called C-weak solution to (1) iff

the function t 7→ Tr(aρt) is continuous and for all t ≥ 0 we have

d

dt
Tr(Aρt) = Tr(AL⋆(ρt)ρt) ∀ A ∈ L(h) ,

where

L⋆(ϱ̃)ϱ = − i ω
2
[2a†a+ σ3, ϱ] + 2κ

(
a ϱa† − 1

2
a†aϱ− 1

2
ϱa†a

)
+ κ−

(
σ−ϱ σ+ − 1

2
σ+σ−ϱ− 1

2
ϱ σ+σ−

)
+ κ+

(
σ+ϱ σ− − 1

2
σ−σ+ϱ− 1

2
ϱ σ−σ+

)
+ g[Tr(σ−ϱ̃)a† − Tr(σ+ϱ̃)a, ϱ] + g[Tr(a†ϱ̃)σ− − Tr(a ϱ̃)σ+, ϱ] .

Similar to the linear case, (1) is strongly related with the following non-
linear stochastic evolution equation on ℓ2(Z+)⊗ C2:

Zt(ξ) = ξ +

t∫
0

(
− iH(t, Zt(ξ))−

1

2

3∑
ℓ=1

L∗
ℓLℓ

)
Zs(ξ)ds (4)

+

3∑
ℓ=1

t∫
0

Lℓ Zs(ξ)dW
ℓ
s ,
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where L1 =
√
2κ a, L2 =

√
γ(1− d)σ−, L3 =

√
γ(1 + d)σ+,

H(t, Zt(ξ)) =
ω

2
(2a†a+ σ3) (5)

+ i g
(
E⟨Zt(ξ), σ

−Zt(ξ)⟩a† − E⟨Zt(ξ), σ
+Zt(ξ)⟩a

)
+ i g

(
E⟨Zt(ξ), a

†Zt(ξ)⟩σ− − E⟨Zt(ξ), a Zt(ξ)⟩σ+
)
,

and W 1,W 2,W 3 are real valued independent Wiener processes on a filtered
complete probability space (Ω,F, (Ft)t≥0,P). Next, we tailor the concept
of regular weak solution — used in the framework of stochastic Schödinger
equations (see, e.g., [19, 38, 39] and Definition 4 given below) — to suit (4).

DEFINITION 3 Let p ∈ N. An ℓ2(Z+) ⊗ C2-valued adapted process with
continuous sample paths (Zt(ξ))t∈I is called strong Np-solution of (4) if:

• For all t ≥ 0: E∥Zt(ξ)∥2 ≤ K(t)E∥ξ∥2, Zt(ξ) ∈ D(Np) a.s., and

sup
s∈[0,t]

E∥NpXs(ξ)∥2 < ∞ .

• The functions t 7→ E⟨Zt(ξ), σ
−Zt(ξ)⟩ and t 7→ E⟨Zt(ξ), a Zt(ξ)⟩ are

continuous.

• a.s. for all t ≥ 0:

Zt(ξ) = ξ +

t∫
0

(
− iH(t)− 1

2

3∑
ℓ=1

L∗
ℓLℓ

)
πNp(Zs(ξ))ds

+

3∑
ℓ=1

t∫
0

Lℓ πNp(Zs(ξ))dW
ℓ
s

with H(t, Zt(ξ)) described by (5), and Lℓ, W
ℓ as in (4).

Now, we establish the existence and uniqueness of the regular solution to (1),
a Ehrenfest-type theorem describing the evolution of the mean values of the
observables a + a†, σ− + σ+ and σ3, and the probabilistic representation of
(1).

THEOREM 1 Suppose that ϱ ∈ L+
1,Np(ℓ2(Z+) ⊗ C2), with p ∈ N. Then,

there exists a unique Np-weak solution (ρt)t≥0 to (1) with initial datum ϱ.
Moreover, the Maxwell-Bloch equations (3) hold, and

ρt = E|Zt(ξ)⟩⟨Zt(ξ)| ∀ t ≥ 0 , (6)

where ξ ∈ L2
Np(P, h) satisfies ϱ = E|ξ⟩⟨ξ|, and Zt(ξ) ∈ ℓ2(Z+) ⊗ C2 is the

strong Np-solution of (4).
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Proof. Deferred to Sect. A.7. �

Remark 1 If g2d < κγ, then (0, 0, d) is an asymptotically stable equilibrium
point of (3). In fact, from (23) and (24), given below, it follows that Tr(a ρt),
Tr(σ−ρt) and Tr(σ3ρt)− d converge exponentially fast to 0 as t goes to +∞.

3. General Linear Quantum Master Equations

3.1. Regular solution for the GKSL quantum master equation

This subsection provides a regular solution for the linear quantum master
equation (2). By generalizing [37] to the nonautonomous framework, we will
describe a solution of (2) with the help of the linear stochastic evolution
equation in h:

Xt(ξ) = ξ +

t∫
0

G(s)Xs(ξ)ds+
∞∑
ℓ=1

t∫
0

Lℓ(s)Xs(ξ)dW
ℓ
s , (7)

whereW 1,W 2, . . . are real-valued independent Wiener processes on a filtered
complete probability space (Ω,F, (Ft)t≥0,P).

Suppose that the density operator ρ0 is C-regular. According to Theorem
3.1 of [37] we have ρ0 = E|ξ⟩⟨ξ| for certain ξ ∈ L2

C(P, h). We set

ρt := E|Xt(ξ)⟩⟨Xt(ξ)| , (8)

where we use Dirac notation, Xt(ξ) is the unique strong C-solution of (7)
(see Definition 4), and the mathematical expectation can be interpreted as
a Bochner integral in both L1(h) and L(h). Then, ρt is a C-regular density
operator (see [37] for details).

HYPOTHESIS 1 There exists a self-adjoint positive operator C in h such
that D(C) ⊂ D(G(t)) and D(C) ⊂ D(Lℓ(t)) for all t ≥ 0, and G( · ) ◦ πC
and Lℓ( · ) ◦ πC are measurable as functions from ([0,∞[×h,B([0,∞[×h)) to
(h,B(h)).

DEFINITION 4 Assume Hypothesis 1. Let I be either [0,∞[ or [0, T ], with
T ∈ R+. By strong C-solution of (7) with initial condition ξ, on the interval
I, we mean an h-valued adapted process (Xt(ξ))t∈I with continuous sample
paths such that for all t ∈ I: E∥Xt(ξ)∥2 ≤ K(t)E∥ξ∥2, Xt(ξ) ∈ D(C) a.s.,
sups∈[0,t] E∥CXs(ξ)∥2 <∞, and

Xt(ξ) = ξ +

t∫
0

G(s)πC(Xs(ξ))ds+

∞∑
ℓ=1

t∫
0

Lℓ(s)πC(Xs(ξ))dW
ℓ
s a.s.
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The following theorem, which extends Theorem 4.4 of [37] to the nonau-
tonomous context, asserts that ρt given by (8) is a regular solution to (2).

DEFINITION 5 Let C be a self-adjoint positive operator in h. A family
(ρt)t≥0 of C-regular density operators is called C-weak solution to (2) if and
only if

d

dt
Tr(Aρt) = Tr

[
A
(
G(t)ρt + ρtG(t)

∗ +

∞∑
ℓ=1

Lℓ(t)ρtLℓ(t)
∗
)]

(9)

for all A ∈ L(h) and t ≥ 0.

HYPOTHESIS 2 Suppose that C satisfies Hypothesis 1, together with:

(H2.1) for any t ≥ 0 and x ∈ D(C), ∥G(t)x∥2 ≤ K(t)∥x∥2C ,

(H2.2) for any t ≥ 0 and x ∈ D(C), 2Re ⟨x,G(t)x⟩+
∑∞

ℓ=1 ∥Lℓ(t)x∥2 = 0,

(H2.3) for any initial datum ξ ∈ L2
C(P, h), (7) has a unique strong C-solution

on any bounded interval,

(H2.4) there exist functions fk : [0,∞[×[0,∞[arrow[0,∞[ such that:

(i) fk is bounded on bounded subintervals of [0,∞[×[0,∞[;

(ii) lims→t fk(s, t) = 0 and

(iii) for all s, t ≥ 0 and x ∈ D(C), we have

∥G(s)x−G(t)x∥2 ≤ f0(s, t)∥x∥2C and ∥Lℓ(s)x−Lℓ(t)x∥2 ≤ fℓ(s, t)∥x∥2C .

THEOREM 2 Let Hypotheses 1 and 2 hold. Assume that ϱ0 be C-regular,
and that G(t), L1(t), L2(t), . . . are closable for all t ≥ 0. Then ρt given by
(8) is a C-weak solution to (2). Moreover, for all t ≥ 0 we have

ρt = ρ0 +

t∫
0

(
G(s)ρs + ρsG(s)

∗ +

∞∑
ℓ=1

Lℓ(s)ρsLℓ(s)
∗
)
ds , (10)

where we understand the above integral in the sense of Bochner integral in
L1(h).

Proof. Deferred to Sect. A.1 �

Remark 2 Sufficient conditions for the regularity of the solution to the lin-
ear stochastic Schödinger equation (7) (i.e., Hypothesis 2.3) are given, for
instance, in [19, 34, 38].
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3.2. Uniqueness of the solution to the adjoint quantum master
equation in the GKSL form

The next theorem introduces the operator Tt(A) that describes the evolution
of the observable A at time t in the Heisenberg picture. Roughly speaking,
the maps A 7→ Tt(A) is the adjoint operator of the application ϱ 7→ ρt, where
ρt is defined by (8).

HYPOTHESIS 3 Let Hypothesis 1 hold together with (H2.1) and (H2.3).
Suppose that

(H3.1) For all t ≥ 0 and x ∈ D(C),

2Re ⟨x,G(t)x⟩+
∞∑
ℓ=1

∥Lℓ(t)x∥2 ≤ K(t)∥x∥2.

THEOREM 3 Assume that Hypothesis 1 and (H2.1) and (H2.3) hold. Con-
sider A ∈ L(h). Then, for every t ≥ 0 there exists a unique Tt(A) ∈ L(h) for
which

⟨x, Tt(A)y⟩ = E⟨Xt(x), AXt(y)⟩ ∀ x, y ∈ D(C) . (11)

Moreover, supt∈[0,T ] ∥Tt(A)∥ <∞ for all T ≥ 0.

Proof. Deferred to Sect. A.2 �
Theorem 4 below shows that Tt(A) is the unique possible solution of the
adjoint quantum master equation

d

dt
Tt(A) = Tt(A)G(t) +G(t)∗Tt(A) +

∞∑
k=1

Lk(t)
∗Tt(A)Lk(t) . (12)

Thus, we generalize Theorem 2.2 of [37] to the nonautonomous framework.

THEOREM 4 Let Hypothesis 3 holds, and let Tt(A) be as in Theorem 3 with
A ∈ L(h). Assume that (At)t≥0 is a family of operators belonging to L(h)
such that A0 = A, sups∈[0,t] ∥As∥L(h) <∞, and

d

dt
⟨x,Aty⟩ = ⟨x,AtG(t)y⟩+ ⟨G(t)x,Aty⟩+

∞∑
ℓ=1

⟨Lℓ(t)x,AtLℓ(t)y⟩ (13)

for all x, y ∈ D(C). Then At = Tt(A) for all t ≥ 0.

Proof. Deferred to Sect. A.3 �
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Remark 3 In the autonomous case, [36, 37] obtain sufficient conditions for
Tt(A) defined by (11) to be solution of (12). Using semigroup methods,
[11, 14, 15, 18] show the existence and uniqueness of solutions to (2) and (12),
in the semigroup sense.

In order to check (H2.3) we establish the following extension of Theorem 2.4
of [19].

HYPOTHESIS 4 Suppose that C satisfies Hypothesis 1, together with

(H4.1) for any t ≥ 0 and x ∈ D(C), ∥G(t)x∥2 ≤ K(t)∥x∥2C ,

(H4.2) for every ℓ ∈ N, there exists a nondecreasing function Kℓ : [0,∞[→
[0,∞[ satisfying ∥Lℓ(t)x∥2 ≤ Kℓ(t)∥x∥2C for all x ∈ D(C) and t ≥ 0,

(H4.3) there exists a nondecreasing function α : [0,∞[→ [0,∞[ and a core
D1 of C2 such that for any x ∈ D1 we have

2Re ⟨C2x,G(t)x⟩+
∞∑
ℓ=1

∥CLℓ(t)x∥2 ≤ α(t)∥x∥2C ∀ t ≥ 0 ,

(H4.4) there exists a nondecreasing function β : [0,∞[→ [0,∞[ and a core
D2 of C such that

2Re ⟨x,G(t)x⟩+
∞∑
ℓ=1

∥Lℓ(t)x∥2 ≤ β(t)∥x∥2 ∀ t ≥ 0 ∀ x ∈ D2 .

THEOREM 5 In addition to Hypothesis 4, we assume that ξ ∈ L2
C(P, h)

is F0-measurable. Then (7) has a unique strong C-solution (Xt(ξ))t≥0 with
initial condition ξ. Moreover,

E∥CXt(ξ)∥2 ≤ K(t)(E∥Cξ∥2 + E∥ξ∥2) .

Proof. Our assertion can be proved in much the same way as Theorem 2.4
of [19]. �

Remark 4 Theorem 5 given above asserts that Theorem 2.4 of [19] still holds
if we replace the assumption (H2.4) of [19] by Hypothesis (H4.4). We will
apply Theorem 4 to the case: L1 =

√
2κa†, L2 =

√
γ(1− d)σ+, L3 =√

γ(1 + d)σ− and G(t) = iH(t)− 1
2

∑3
ℓ=1 LℓL

∗
ℓ with

H(t) =
ω

2
(2a†a+ σ3) + i g(α(t)a† − α(t)a) + i g(β(t)σ− − β(t)σ+) .

Since

G(t) +G(t)∗ +

3∑
ℓ=1

L∗
ℓLℓ = 4κ2I + 2γ2(1 + d2)σ3 ,

condition (H2.4) of Theorem 2.4 of [19] does not apply to our situation.
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4. Auxiliary Equations

4.1. Auxiliary linear quantum master equation

This subsection deals with the linear evolution equation obtained by replacing
in (1) the unknown functions t 7→ g Tr(σ−ρt) and t 7→ g Tr(a ρt) by general
functions α, β : [0,∞[→ C. More precisely, we study the well-posedness of
the linear quantum master equation

d

dt
ρt = Lh

⋆ ρt + [α(t)a† − α(t)a+ β(t)σ− − β(t)σ+, ρt] , (14)

where ρt ∈ L+
1 (ℓ

2(Z+)⊗ C2),

Lh
⋆ ϱ =

[
− i ω

2
(2a†a+ σ3), ϱ

]
+ 2κ

(
a ϱa† − 1

2
a†aϱ− 1

2
ϱa†a

)
(15)

+ γ(1− d)
(
σ−ϱ σ+ − 1

2
σ+σ−ϱ− 1

2
ϱ σ+σ−

)
+ γ(1 + d)

(
σ+ϱ σ− − 1

2
σ−σ+ϱ− 1

2
ϱ σ−σ+

)
,

where d ∈] − 1, 1[, ω ∈ R and κ, γ > 0. Furthermore, we represent (14) by
using

Xt(ξ) = ξ +

t∫
0

G(s)Xs(ξ)ds+

3∑
ℓ=1

t∫
0

Lℓ(s)Xs(ξ)dW
ℓ
s , (16)

where Xt(ξ) ∈ ℓ2(Z+)⊗C2, W 1,W 2,W 3 are real valued independent Wiener
processes, L1 =

√
2κ a, L2 =

√
γ(1− d)σ−, L3 =

√
γ(1 + d)σ+ and G(t) =

−iH(t)− 1
2

∑3
ℓ=1 L

∗
ℓLℓ with

H(t) =
ω

2
(2a†a+ σ3) + i (α(t)a† − α(t)a) + i (β(t)σ− − β(t)σ+) .

Though the open quantum system (14) deserves attention in its own right,
our main objective is to develop key tools for proving the results of Sect. 2.
First, combining Theorems 2, 4 and 5 we obtain the existence and uniqueness
of the regular solution to (14).

THEOREM 6 Consider (14) with α, β : [0,∞[→ C continuous. Let ϱ be Np-
regular, where p ∈ N. Then, there exists a unique Np-weak solution (ρt)t≥0

to (14) with initial datum ρ0 = ϱ. Moreover, for any t ≥ 0 we have

ρt = ρ0 +

t∫
0

(
Lh
⋆ ρs + [α(s)a† − α(s)a+ β(s)σ− − β(s)σ+, ρs]

)
ds (17)
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and
ρt = E|Xt(ξ)⟩⟨Xt(ξ)| ∀ t ≥ 0 , (18)

where the integral of (17) is understood in the sense of Bochner integral in
L1(ℓ

2(Z+)⊗ C2), ξ ∈ L2
Np(P, ℓ2(Z+)⊗ C2) satisfies ϱ = E|ξ⟩⟨ξ| and Xt(ξ) is

the unique strong Np-solution of (16).

Proof. Deferred to Sect. A.4. �

Remark 5 Assume the framework of Theorem 6. From the proof of Theorem
6 it follows that E∥Xt(ξ)∥2Np ≤ K(t)E∥ξ∥2Np for all t ≥ 0. In the operator
language we have Tr(Np ρtN

p) ≤ K(t)(1 + Tr(Np ρ0N
p)) (see, e.g., [37])

since E∥Xt(ξ)∥2 = E∥ξ∥2 = 1 (see, e.g., [19]).

Using the Ehrenfest-type theorem given in [19] we get a system of ordinary
differential equations that describes the evolution of Tr(ρt a), Tr(ρt σ

−) and
Tr(ρt σ

3).

THEOREM 7 Under the assumptions and notation of Theorem 6,

d

dt
Tr(ρt a) = −(κ+ i ω)Tr(ρt a) + α(t) , (19)

d

dt
Tr(ρt σ

−) = −(γ + i ω) Tr(ρt σ
−) + β(t)Tr(ρt σ

3) , (20)

d

dt
Tr(ρt σ

3) = −2(β(t)Tr(ρtσ
−) + β(t)Tr(ρtσ−)) (21)

−2γ(Tr(ρtσ
3)− d) .

Proof. Deferred to Sect. A.5 �

4.2. Complex Lorenz equations

Taking A(t) = Tr(a ρt), S(t) = Tr(σ−ρt) and D(t) = Tr(σ3ρt) we rewrite (3)
as 

d

dt
A(t) = −(κ+ i ω)A(t) + g S(t)

d

dt
S(t) = −(γ + i ω)S(t) + g A(t)D(t)

d

dt
D(t) = −4gRe (A(t)S(t))− 2γ(D(t)− d) ,

(22)

where t ≥ 0, D(t) ∈ R and A(t), Y (t) ∈ C. The complex Lorenz equation
(22) has received much attention in the physical literature (see, e.g., [21, 41])
due to its important role in the description of laser dynamics. Just for the
sake of completeness, we next present relevant properties of (22), together
with their mathematical proofs.
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THEOREM 8 Suppose that d ∈] − 1, 1[, ω ∈ R, g ∈ R \ {0} and κ, γ > 0.
Then, for every initial condition A(0) ∈ C, S(0) ∈ C, D(0) ∈ R there exists
a unique solution defined on [0,+∞[ to the system (22). Moreover, we have:

• If d < 0, then for all t ≥ 0,

4|d||A(t)|2 + 4|S(t)|2 + (D(t)− d)2 (23)

≤ e−2t min{κ,γ}
(
4|d||A(0)|2 + 4|S(0)|2 + (D(0)− d)2

)
.

• If d ≥ 0, then for any t ≥ 0,

|A(t)|2 + g2

γκ
|S(t)|2 + g2

4γκ
(D(t)− d)2 (24)

≤ e
−tmin{κ− g2d

γ
,γ− g2d

κ
}
(
|A(0)|2 + g2

γκ
|S(0)|2 + g2

4γκ
(D(0)− d)2

)
.

Proof. Deferred to Sect. A.6 �

Remark 6 According to γ = (κ++κ−)/2, d = (κ+ −κ−)/(κ++κ−) we have
κ− = γ(1− d) and κ+ = γ(1 + d). Since κ+, κ− > 0, γ > 0 and d ∈]− 1, 1[.
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Appendix A: Proofs

A.1. Proof of Theorem 2

The proof of Theorem 2 follows from combining Lemma A.2, given below,
with the arguments used in the proof of Theorem 4.4 of [37]. First, we get
the weak continuity of the map t 7→ AXt(ξ) in case A is relatively bounded
by C.

LEMMA A.1 Let (H2.3) of Hypothesis 2 holds. Suppose that ξ ∈ L2
C(P, h)

and A ∈ L((D(C), ∥ · ∥C), h). Then, for any ψ ∈ L2(P, h) and t ≥ 0 we have

lim
s→t

E⟨ψ,AXs(ξ)⟩ = E⟨ψ,AXt(ξ)⟩ . (A.1)
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Proof. Consider a sequence of nonnegative real numbers (sn)n satisfying
sn → t as n → +∞. Since ((Xsn(ξ), AXsn(ξ), CXsn(ξ)))n is a bounded
sequence in L2(P, h3), where h3 = h × h × h, there exists a subsequence
(sn(k))k such that

(Xsn(k)
(ξ), AXsn(k)

(ξ), CXsn(k)
(ξ))

k→∞−→ (Y, U, V ) (A.2)

weakly in L2(P, h3). Define M = {(η,Aη,Cη) : η ∈ L2
C(P, h)}. Thus,

(Xsn(k)
(ξ), AXsn(k)

(ξ), CXsn(k)
(ξ)) ∈ M ∀ k ∈ N .

Since M is a linear manifold of L2(P, h3) closed with respect to the strong
topology (see, e.g., proof of Lemma 7.15 of [37]), (A.2) implies (Y, U, V ) ∈
M (see, e.g., Section III.1.6 of [29]). Using E(sups∈[0,t+1] ∥Xs(ξ)∥2) < ∞,
together with the dominated convergence theorem we obtain that

E∥Xsn(k)
(ξ)−Xt(ξ)∥2

k→+∞−→ 0 .

Hence Y = Xt(ξ), and so U = AXt(ξ). Therefore, AXsn(k)
(ξ) converges to

AXt(ξ) weakly in L2(P, h). �

LEMMA A.2 Assume Hypothesis 2, together with ξ ∈ L2
C(P, h) and A ∈

L(h). Then, t 7→ Lk(t)Xt(ξ) is continuous as a map from [0,+∞[ to L2(P, h).
Moreover,

t 7−→ E⟨G(t)Xt(ξ), AXt(ξ)⟩+ E⟨Xt(ξ), AG(t)Xt(ξ)⟩

+

∞∑
ℓ=1

E⟨Lℓ(t)Xt(ξ), ALℓ(t)Xt(ξ)⟩

is a continuous function.

Proof. Suppose that (tn)n is a sequence of nonnegative real numbers satis-
fying tn → t as n → +∞. By E(sups∈[0,t+1] ∥Xs(ξ)∥2) < ∞ (see, e.g., Th.
4.2.5 of [44]), using the dominated convergence theorem gives

E∥Xtn(ξ)−Xt(ξ)∥2
n→∞−→ 0 ,

and hence AXtn(ξ)
n→∞−→ AXt(ξ) in L

2(P, h). For any ψ ∈ L2(P, h),

|E⟨ψ,G(s)Xs(ξ)⟩ − E⟨ψ,G(t)Xt(ξ)⟩|
≤ E∥ψ∥∥G(s)Xs(ξ)−G(t)Xs(ξ)∥+ |E⟨ψ,G(t)Xs(ξ)⟩ − E⟨ψ,G(t)Xt(ξ)⟩| ,
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and so combining Lemma A.1 with

E∥G(s)Xs(ξ)−G(t)Xs(ξ)∥2 ≤ f0(s, t)E∥Xs(ξ)∥2C

yields
lim
s→t

E⟨ψ,G(s)Xs(ξ)⟩ = E⟨ψ,G(t)Xt(ξ)⟩ . (A.3)

Therefore

lim
n→∞

E⟨G(tn)Xtn(ξ), AXtn(ξ)⟩ = E⟨G(t)Xt(ξ), AXt(ξ)⟩ (A.4)

(see, e.g., Section III.1.7 of [29]). Analysis similar to that in (A.3) shows

lim
s→t

E⟨ψ,Lℓ(s)Xs(ξ)⟩ = E⟨ψ,Lℓ(t)Xt(ξ)⟩ ,

and hence

Lℓ(tn)Xtn(ξ)
n→∞−→ Lℓ(t)Xt(ξ) weakly in L2(P, h) . (A.5)

According to (A.4) with A replaced by A∗ we have the continuity of t 7→
E⟨A∗Xt(ξ), G(t)Xt(ξ)⟩, and so t 7→ E⟨Xt(ξ), AG(t)Xt(ξ)⟩ is continuous. More-
over, taking A = I in (A.4) we deduce that

ERe ⟨Xtn(ξ), G(tn)Xtn(ξ)⟩
n→∞−→ ERe ⟨Xt(ξ), G(t)Xt(ξ)⟩ .

Applying (H2.2) we now get

∞∑
ℓ=1

E∥Lℓ(tn)Xtn(ξ)∥2
n→∞−→

∞∑
ℓ=1

E∥Lℓ(t)Xt(ξ)∥2. (A.6)

Combining (A.5) and (A.6) yields

lim sup
n→∞

E∥Lℓ(tn)Xtn(ξ)∥2 ≤ E∥Lℓ(t)Xt(ξ)∥2

(see, e.g., proof of Lemma 7.16 of [37] for details) which, together with (A.5),
implies that Lℓ(tn)Xtn(ξ) converges strongly in L2(P, h) to Lℓ(t)Xt(ξ) as
n→ ∞. Therefore, t 7→ Lℓ(t)Xt(ξ) is continuous as a function from [0,+∞[
to L2(P, h).

Using (H2.2) we obtain that
∑n

ℓ=1 E⟨Lℓ(t)Xt(ξ), ALℓ(t)Xt(ξ)⟩ converges
to

∑∞
ℓ=1 E⟨Lℓ(t)Xt(ξ), ALℓ(t)Xt(ξ)⟩ as n→ ∞ uniformly on any finite inter-

val. Since

E⟨Lℓ(tn)Xtn(ξ), ALℓ(tn)Xtn(ξ)⟩
n→∞−→ E⟨Lℓ(t)Xt(ξ), ALℓ(t)Xt(ξ)⟩ ,

the map t 7→
∑∞

ℓ=1 E⟨Lℓ(t)Xt(ξ), ALℓ(t)Xt(ξ)⟩ is continuous. �
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LEMMA A.3 Let Hypothesis 2 hold, except (H2.4). For any ξ ∈ L2
C(P, h),

we define

L∗(ξ, t) = E|G(t)Xt(ξ)⟩⟨Xt(ξ)|+ E|Xt(ξ)⟩⟨G(t)Xt(ξ)|

+

∞∑
ℓ=1

E|Lℓ(t)Xt(ξ)⟩⟨Lℓ(t)Xt(ξ)| .

Then L∗(ξ, t) is a trace-class operator on h whose trace-norm is uniformly
bounded with respect to t on bounded time intervals; the series involved in the
definition of L∗ converges in L1(h).

Proof. By condition (H2.2), using ∥|x⟩⟨y|∥1 = ∥x∥∥y∥ and Lemma 7.3 of
[37] we get

∥E|G(t)Xt(ξ)⟩⟨Xt(ξ)|∥1 + ∥E|Xt(ξ)⟩⟨G(t)Xt(ξ)|∥1

+
∞∑
ℓ=1

∥E|Lℓ(t)Xt(ξ)⟩⟨Lℓ(t)Xt(ξ)|∥1

≤ 4E(∥Xt(ξ)∥∥G(t)Xt(ξ)∥) ≤ K(t)
√

E∥ξ∥2
√

E∥Xt(ξ)∥2C ,

where the last inequality follows from (H2.1). �
Applying Lemma 7.3 of [37] and Lemma A.2 we easily obtain Lemma A.4.

LEMMA A.4 Suppose that Hypothesis 2 holds, ξ ∈ L2
C(P, h), and A ∈ L(h).

Then t 7→ Tr(AL∗(ξ, t)) is continuous as a function from [0,∞[ to C, and

Tr(AL∗(ξ, t)) = E⟨Xt(ξ), AG(t)Xt(ξ)⟩+ E⟨G(t)Xt(ξ), AXt(ξ)⟩

+

∞∑
ℓ=1

E⟨Lℓ(t)Xt(ξ), ALℓ(t)Xt(ξ)⟩ .

Here, L∗(ξ, t) is as in Lemma A.3.

LEMMA A.5 Adopt Hypothesis 2, together with ξ ∈ L2
C(P, h). Then

ρt = E|ξ⟩⟨ξ|+
t∫

0

L∗(ξ, s)ds , (A.7)

where t ≥ 0 and L∗(ξ, s) is as in Lemma A.3; we understand the above
integral in the sense of Bochner integral in L1(h).
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Proof. Fix x ∈ h and choose τn = inf{s ≥ 0 : ∥Xs(ξ)∥ > n} with n ∈ N.
Applying the complex Itô formula we obtain that

⟨Xt∧τn(ξ), x⟩Xt∧τn(ξ) = ⟨ξ, x⟩ξ + E
t∧τn∫
0

Lx(Xs(ξ), s)ds+Mt , (A.8)

where

Mt =
∞∑
ℓ=1

t∧τn∫
0

(⟨Xs(ξ), x⟩Lℓ(s)Xs(ξ) + ⟨Lℓ(s)Xs(ξ), x⟩Xs(ξ))dW
ℓ
s

and for any z ∈ D(C),

Lx(z, s) = ⟨z, x⟩G(s)z + ⟨G(s)z, x⟩z +
∞∑
k=1

⟨Lk(s)z, x⟩Lk(s)z .

According to (H2.2) we have

E
∞∑
ℓ=1

t∧τn∫
0

∥⟨Xs(ξ), x⟩Lℓ(s)Xs(ξ) + ⟨Lℓ(s)Xs(ξ), x⟩Xs(ξ)∥2ds

≤ 4n3∥x∥2E
t∧τn∫
0

∥G(s)Xs∥ds .

Therefore, EMt = 0 by (H2.1), and so (A.8) yields

E⟨Xt∧τn(ξ), x⟩Xt∧τn(ξ) = E⟨ξ, x⟩ξ + E
t∧τn∫
0

Lx(Xs(ξ), s)ds . (A.9)

We will take the limit as n → ∞ in (A.9). Since X(ξ) has continuous
sample paths, τn ↗n→∞ ∞. By (H2.1) and (H2.2), applying the dominated
convergence yields

lim
n→∞

E
t∧τn∫
0

Lx(Xs(ξ), s)ds = E
t∫

0

Lx(Xs(ξ), s)ds .

Combining E(sups∈[0,t+1] ∥Xs(ξ)∥2) < ∞ with the dominated convergence
theorem gives

lim
n→∞

E⟨Xt∧τn(ξ), x⟩Xt∧τn(ξ) = E⟨Xt(ξ), x⟩Xt(ξ) .
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Then, letting first n→ ∞ in (A.9) and then using Fubini’s theorem we get

E⟨Xt(ξ), x⟩Xt(ξ) = E⟨ξ, x⟩ξ +
t∫

0

ELx(Xs(ξ), s) . (A.10)

By (H2.2), the dominated convergence theorem leads to

E
∞∑
k=1

⟨Lk(s)Xs(ξ), x⟩Lk(s)Xs(ξ) =
∞∑
k=1

E⟨Lk(s)Xs(ξ), x⟩Lk(s)Xs(ξ) ,

and so Lemma 7.3 of [37] yields ELx(Xs(ξ), s) = L∗(ξ, s)x, hence

t∫
0

ELx(Xs(ξ), s) =

t∫
0

L∗(ξ, s)xds . (A.11)

Since the dual of L1(h) consists in all linear maps ϱ 7→ Tr(Aϱ) with A ∈ L(h),
Lemma A.4 implies that t 7→ L∗(ξ, t) is measurable as a function from [0,∞[
to L1(h). Furthermore, using Lemma A.3 we get that t 7→ L∗(ξ, t) is a
Bochner integrable L1(h)-valued function on bounded intervals. Then (A.10),
together with (A.11), gives (A.7). �

Proof of Theorem 2. According to Theorem 3.2 of [37] we have

AG(t)ρt = E|AG(t)Xt(ξ)⟩⟨Xt(ξ)| .

Since G(t), L1(t), L2(t), . . . are closable, G(t)∗, L1(t)
∗, L2(t)

∗, . . . are densely
defined and G(t)∗∗, L1(t)

∗∗, . . . coincide with the closures of G(t), L1(t), . . .
respectively (see, e.g., Theorem III.5.29 of [29]). Now, Theorem 3.2 of [37]
yields AρtG(t)

∗ = E|AXt(ξ)⟩⟨G(t)Xt(ξ)| and

ALk(t)ρtLk(t)
∗ = E|ALk(t)Xt(ξ)⟩⟨Lk(t)Xt(ξ)| .

Therefore,

L∗(ξ, t) = G(t)ρt + ρtG(t)
∗ +

∞∑
k=1

Lk(t)ρtLk(t)
∗, (A.12)

where L∗(ξ, t) is as in Lemma A.3. Combining (A.12) with Lemma A.5 we
get (10), and so

Tr(Aρt) = Tr(Aϱ) +

t∫
0

Tr(AL∗(ξ, s))ds ∀ t ≥ 0 .

Using the continuity of L∗(ξ, · ) we obtain (9). �
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A.2. Proof of Theorem 3

Proof. For any x, y ∈ D(C) we set [x, y] = E⟨Xt(x), AXt(y)⟩. According to
Definition 4 we have

|[x, y]| = |E⟨Xt(x), AXt(y)⟩| ≤ K(t)∥A∥∥x∥∥y∥ ∀ x, y ∈ D(C) .

Since D(C) is dense in h, [ · , · ] can be extended uniquely to a sesquilinear
form [ · , · ] over h × h satisfying |[x, y]| ≤ K(t)∥A∥∥x∥∥y∥ for any x, y ∈ h.
Hence, there exists a unique bounded operator Tt(A) on h such that |[x, y]| =
⟨x, Tt(A)y⟩ for all x, y in h. Moreover, ∥Tt(A)∥ ≤ K(t)∥A∥. �

A.3. Proof of Theorem 4

Proof. Using Itô formula we will prove that for all x, y ∈ D(C),

E⟨Xt(x), AXt(y)⟩ = ⟨x,Aty⟩. (A.13)

This, together with Theorem 3, implies At = Tt(A).
Motivated by At is only a weak solution, we fix an orthonormal basis

(en)n∈N of h and consider the function Fn : [0, t]× h× h → C defined by

Fn(s, u, v) = ⟨Rnu,At−sRnv⟩ ,

where Rn = n(n + C)−1 and ū =
∑

n∈N ⟨en, u⟩en. Since the range of Rn is
contained in D(C),

d

ds
Fn(s, u, v) = −g(s,Rnu,Rnv) , (A.14)

with g(s, x, y) = ⟨x,At−sGy⟩ + ⟨Gx,At−sy⟩ +
∑∞

k=1⟨Lkx,At−sLky⟩. We
have that t 7→ ⟨u,Atv⟩ is continuous for all u, v ∈ h, and so combining
CRn ∈ L(h) with Hypothesis 3 we get the uniformly continuity of (s, u, v) 7→
g(s,Rnu,Rnv) on bounded subsets of [0, t]× h× h. Then, we can apply Itô’s

formula to Fn(s ∧ τj , X
τj
s (x), X

τj
s (y)), with

τj = inf {t ≥ 0 : ∥Xt(x)∥+ ∥Xt(y)∥ > j} .

Fix x, y ∈ D(C). Combining Itô’s formula with (A.14) we deduce that

Fn(t ∧ τj ,X
τj
t (x), X

τj
t (y)) = Fn(0, X0(x), X0(y)) + Int∧τj +Mt ,
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where for s ∈ [0, t]:

Ms =
∞∑
k=1

s∧τj∫
0

⟨RnX
τj
r (x),At−rRnLkX

τj
r (y)⟩dW k

r

+

∞∑
k=1

s∧τj∫
0

⟨RnLkX
τj
r (x),At−rRnX

τj
r (y)⟩dW k

r

and

Ins =

s∫
0

(
− g(r,RnXr(x), RnXr(y)) + gn(r,Xr(x), Xr(y))

)
dr

with

gn(r, u, v) = ⟨Rnu,At−rRnGv⟩+⟨RnGu,At−rRnv⟩+
∞∑
k=1

⟨RnLku,At−rRnLkv⟩ .

We next establish the martingale property of Ms. For all r ∈ [0, t] we
have

∥RnX
τj
r (x)∥2∥At−r∥2∥RnLkX

τj
r (y)∥2 ≤ j2 sup

s∈[0,t]
∥As∥2∥LkX

τj
r (y)∥2.

By (H2.1) and (H3.1),

E

t∧τj∫
0

∞∑
k=1

|⟨RnX
τj
r (x),At−rRnLkX

τj
r (y)⟩|2ds < ∞ .

Thus ( ∞∑
k=1

s∧τj∫
0

⟨RnX
τj
r (x),At−rRnLkX

τj
r (y)⟩dW k

r

)
s∈[0,t]

is a martingale. The same conclusion can be drawn for

∞∑
k=1

s∧τj∫
0

⟨RnLkX
τj
r (x),At−rRnX

τj
r (y)⟩dW k

r ,

and so (Ms)s∈[0,t] is a martingale. Hence

E⟨RnX
τj
t (x),At−t∧τjRnX

τj
t (y)⟩ = ⟨Rnx,AtRny⟩+ EInt∧τj . (A.15)
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We will take the limit as j → ∞ in (A.15). Since E(sups∈[0,t] ∥Xs(ξ)∥2) <
∞ for ξ = x, y (see, e.g., Th. 4.2.5 of [44]), using the dominated convergence
theorem, together with the continuity of t 7→ ⟨u,Atv⟩, we get

E⟨RnX
τj
t (x),At−t∧τjRnX

τj
t (y)⟩ j→∞−→ E⟨RnXt(x), ARnXt(y)⟩ .

Applying again the dominated convergence theorem yields EInt∧τj
j→∞−→ EInt ,

and hence letting j → ∞ in (A.15) we deduce that

E⟨RnXt(x), ARnXt(y)⟩ − ⟨Rnx,AtRny⟩ (A.16)

= E
t∫

0

(
− g(s,RnXs(x), RnXs(y)) + gn(s,Xs(x), Xs(y))

)
ds .

Finally, we take the limit as n→ ∞ in (A.16). Since ∥Rn∥ ≤ 1 and Rn tends
pointwise to I as n→ ∞, the dominated convergence theorem yields

lim
n→∞

E
t∫

0

gn(s,Xs(x), Xs(y))ds = E
t∫

0

g(s,Xs(x), Xs(y))ds .

For any x ∈ D(C), limn→∞CRnx = Cx. By ∥CRnx∥ ≤ ∥Cx∥, using the
dominated convergence theorem gives

lim
n→∞

E
t∫

0

g(s,RnXs(x), RnXs(y))ds = E
t∫

0

g(s,Xs(x), Xs(y))ds .

Thus, letting n→ ∞ in (A.16) we obtain (A.13). �

A.4. Proof of Theorem 6

Proof. First, we show that ρt given by (18) is a Np-weak solution to (14).
To this end, we will verify that C = Np satisfies Hypothesis 2, where, here
and subsequently, H(t), G(t), L1, L2, L3 are defined as in Theorem 6. Since
L2, L3 ∈ L(ℓ2(Z+)⊗C2), L1, L

∗
1L1 are relatively bounded with respect to N

and
∥H(t)x∥2 ≤ Kmax(|α(t)|, |β(t)|)∥x∥N ∀ x ∈ D(N) ,

C fulfills (H2.1) of Hypothesis 2. By definition of G(t) and Lℓ,

2Re⟨x,G(t)x⟩+
3∑

ℓ=1

∥Lℓ x∥2 = 0 ∀ x ∈ D(N) ,
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and hence (H2.2) holds. Condition (H2.4) follows from the continuity of α
and β.

In order to check (H2.3), we denote by D the set of all x ∈ ℓ2(Z+) ⊗ C2

such that x(n, η) := ⟨en ⊗ eη, x⟩ is equal to 0 for all combinations of n ∈ Z+

and η = ± except a finite number. Consider x ∈ D. A careful computation
yields

2Re⟨N2px,G(t)x⟩+
3∑

ℓ=1

∥NpLℓx∥2 (A.17)

=
∑

k∈Z+,η=±
2Re

(
α(t)x(k, η)x(k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)
+

∑
k∈Z+,η=±

2κ|x(k, η)|2k
(
(k − 1)2p − k2p

)
.

Since ∑
k∈Z+,η=±

2Re
(
α(t)x(k, η)x(k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)
≤ 2|α(t)|

∑
k∈Z+,η=±

|x(k, η)||x(k + 1, η)|ϕ(k)

≤ 2|α(t)|
∑

k∈Z+,η=±
|x(k, η)|2ϕ(k)

with

ϕ(k) =
√
k + 1((k + 1)2p − k2p) =

√
k + 1

2p−1∑
j=0

(
2p

j

)
kj ,

∑
k∈Z+,η=±

2Re
(
α(t)x(k, η)x(k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)
(A.18)

≤ |α(t)|K
∑

k∈Z+,η=±
|x(k, η)|2(1 + k2p−1/2) .

Combining (A.17) with (A.18) we get

2Re⟨N2px,G(t)x⟩+
3∑

ℓ=1

∥NpLℓx∥2 ≤ K|α(t)|∥x∥2Np ,

and so (H4.3) of Hypothesis 4 holds because D is a core of Np. Then,
applying Theorem 2.4 of [19] (see also Theorem 5) we obtain that for any
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initial condition ξ ∈ L2
Np(P, ℓ2(Z+) ⊗ C2) there exists a unique strong Np-

solution of (16), together with

E∥Xt(ξ)∥2Np ≤ K(t)E∥ξ∥2Np . (A.19)

Therefore, (H2.3) holds and so we have checked Hypothesis 2 with C = Np.
Applying Theorem 3.1 of [37] yields ϱ = E|ξ⟩⟨ξ| for certain

ξ ∈ L2
Np(P, ℓ2(Z+)⊗ C2) .

Using Theorem 2 we obtain that ρt := E|Xt(ξ)⟩⟨Xt(ξ)| satisfies the relation
(17) and

d

dt
Tr(Aρt) = Tr

[
A
(
G(t)ρt + ρtG(t)

∗ +
∑3

ℓ=1 LℓρtL
∗
ℓ

)]
ρ0 = ϱ

(A.20)

for all A ∈ L(ℓ2(Z+)⊗ C2).
Second, we will prove that (14) has at most one Np-weak solution pro-

vided that the initial condition is Np-regular. Suppose that (A.20) holds.
Taking A = |y⟩⟨x| in (A.20) we get

d

dt
⟨x, ρty⟩ = ⟨G(t)∗x, ρty⟩+ ⟨x, ρtG(t)∗y⟩+

3∑
ℓ=1

⟨L∗
ℓx, ρtL

∗
ℓy⟩ (A.21)

for all x, y ∈ D(Np). Relation (A.21) coincides with (13) with At, G(t),
L1, L2 and L3 replaced by ρt, G(t)

∗, L∗
1, L

∗
2 and L∗

3. This suggests us to
apply Theorem 4 to (A.21) in order to prove the uniqueness of the solution
of (A.20). To this end, we next deduce that the linear stochastic Schrödinger
equation

Yt(ξ) = ξ +

t∫
0

G(s)∗Ys(ξ)ds+

3∑
ℓ=1

t∫
0

L∗
ℓ Ys(ξ)dW

ℓ
s (A.22)

satisfies Hypothesis 4 with C = Np.
Now, we check Hypothesis 4 with G(t), L1, L2 and L3 replaced by G(t)∗,

L∗
1, L

∗
2 and L∗

3. Take C = Np. Since a† is relatively bounded with respect
to N , using analysis similar to that in the second paragraph we can check
that G(t)∗ = iH(t) − 1

2

∑3
ℓ=1 L

∗
ℓLℓ satisfies (H4.1) of Hypothesis 4 with

G(t) substituted by G(t)∗, as well as (H4.2) holds with Lℓ(t) replaced by
L

∗
1 =

√
2κa†, L∗

2 =
√
γ(1− d)σ+, L∗

3 =
√
γ(1 + d)σ−. On D we have

G(t)∗ + (G(t)∗)∗ +

3∑
ℓ=1

(L∗
ℓ)

∗L∗
ℓ =

3∑
ℓ=1

(LℓL
∗
ℓ − L∗

ℓLℓ)

= 4κ2I + 2γ2(1 + d2)σ3 ,
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which gives (H4.4). For any x ∈ D,

2Re⟨N2px, iH(t)x⟩ (A.23)

=
∑

k∈Z+,η=±
2Re

(
α(t)x(k, η)x(k + 1, η)

)√
k + 1

(
(k + 1)2p − k2p

)
and ⟨

x,
(
L1N

2pL∗
1 −

1

2
L∗
1L1N

2p − 1

2
N2pL∗

1L1

)
x
⟩

(A.24)

=
∑

k∈Z+,η=±
2κ|x(k, η)|2((k + 1)2p+1 − k2p+1) .

Since L2, L3 are bounded operators with conmute with N2p, using (A.23)
and (A.24) yields

2Re⟨N2px,G(t)∗x⟩+
3∑

ℓ=1

∥NpL∗
ℓx∥2 ≤ K(t)∥Npx∥2

and hence (H4.3) holds. By Theorem 5, (A.22) has a unique strong Np-
solution whenever ξ ∈ L2

C(P, ℓ2(Z+) ⊗ C2). It follows from Theorem 4
that (A.21) has at most one solution ϱt ∈ L(ℓ2(Z+) ⊗ C2) satisfying ϱ0 =
ϱ. Thus, (14) has a unique Np-regular solution, which is equal to ρt :=
E|Xt(ξ)⟩⟨Xt(ξ)|. �

A.5. Proof of Theorem 7

Proof. From Theorem 6 it follows that (16) has a unique strong Np-solution
Xt(ξ) for any initial datum ξ ∈ L2

Np(P, ℓ2(Z+) ⊗ C2). In order to establish
(19) we apply Theorem 4.1 of [19] to obtain

Tr(aρt) = Tr(aρ0) +

3∑
ℓ=1

t∫
0

E⟨LℓXs(ξ), aLℓXs(ξ)⟩ds (A.25)

+

t∫
0

(
E⟨a†Xs(ξ), G(s)Xs(ξ)⟩+ E⟨G(s)Xs(ξ), aXs(ξ)⟩

)
ds ,

where, throughout the proof, G(t), H(t), L1, L2, L3 are as in Theorem 6.
Therefore, t 7→ Tr(aρt) is a continuous function.
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Suppose that x ∈ D, where D is the set of all x ∈ ℓ2(Z+)⊗C2 satisfying
⟨en ⊗ eη, x⟩ = 0 for all combinations of n ∈ Z+ and η = ± except a finite
number. Since a commutes with σ3 and σ±, using [a, a†] = I we deduce that

⟨a†x,−iH(s)x⟩+ ⟨−iH(s)x, ax⟩ = ⟨x, i [H(s), a]x⟩
= ⟨x, [i ω a†a− α(t)a† + α(t)a, a]x⟩
= ⟨x, (−i ω a+ α(t))x⟩

and

3∑
ℓ=1

⟨
x,

(
L⋆
ℓaLℓ −

1

2
aL⋆

ℓLℓ −
1

2
L⋆
ℓLℓa

)
x
⟩

=
⟨
x,

(
L⋆
1aL1 −

1

2
aL⋆

1L1 −
1

2
L⋆
1L1a

)
x
⟩

= −κ⟨x, ax⟩ .

Because D is a core for N , we obtain that for all x ∈ D(N),

⟨a†x,G(s)x⟩+ ⟨G(s)x, ax⟩+
3∑

ℓ=1

⟨Lℓx, aLℓx⟩ = ⟨x,−(κ+ i ω)ax+ α(t)x⟩ .

Then, from (A.25) it follows that

Tr(aρt) = Tr(aρ0) +

t∫
0

(
− (κ+ i ω)Tr(aρs) + α(s)

)
ds ,

which leads to (19).
Fix η = − or η = 3. According to (A.20) we have

d

dt
Tr(ρtσ

η) = Tr
[
ση

(
G(t)ρt + ρtG(t)

∗ +
3∑

ℓ=1

LℓρtL
∗
ℓ

)]
,

and so applying Theorem 3.2 of [37] we deduce that

d

dt
Tr(ρtσ

η) = Tr
[
ρt

(
σηG(t) +G(t)∗ση +

3∑
ℓ=1

L∗
ℓσ

ηLℓ

)]
= Tr

[
ρt

(
− i [ση, H(t)] +

3∑
ℓ=1

(
L∗
ℓσ

ηLℓ −
1

2
σηL∗

ℓLℓ −
1

2
L∗
ℓLℓσ

η
))]

= Tr
(
− i ρt

[
ση,

ω

2
σ3 + i (β(t)σ− − β(t)σ+)

])
+

3∑
ℓ=2

Tr
[
ρt

(
L∗
ℓσ

ηLℓ −
1

2
σηL∗

ℓLℓ −
1

2
L∗
ℓLℓσ

η
)]
.
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Now, we use the commutation relations

[σ+, σ−] = σ3 , [σ3, σ+] = 2σ+ , [σ−, σ3] = 2σ−

to derive (20) and (21). �

A.6. Proof of Theorem 8

Proof. Fix A(0) ∈ C, S(0) ∈ C and D(0) ∈ R. Since (22) is an ordinary
differential equation with locally Lipschitz coefficients, (22) has a unique
solution defined on a maximal interval [0, T [ (see, e.g., [28]).

For all t ∈ [0, T [, we set X(t) = exp(iωt)A(t), Y (t) = exp(iωt)S(t) and
Z(t) = D(t)− d. Thus, (22) becomes

X ′(t) = −κX(t) + g Y (t)

Y ′(t) = dg X(t)− γ Y (t) + g X(t)Z(t)

Z ′(t) = −4gRe(X(t)Y (t))− 2γ Z(t) .

Therefore,

d

dt
|X(t)|2 = 2Re(X ′(t)X(t)) = −2κ|X(t)|2 + 2gRe(Y (t)X(t))

and
d

dt
|Y (t)|2 = 2dgRe(X(t)Y (t))− 2γ|Y (t)|2 + 2g Z(t)Re(X(t)Y (t))

d

dt
Z(t)2 = −4γZ(t)2 − 8g Z(t)Re(X(t)Y (t)) .

Hence,

4
d

dt
|Y (t)|2 + d

dt
Z(t)2 = 8dgRe(X(t)Y (t))− 8γ|Y (t)|2 − 4γZ(t)2 . (A.26)

Suppose, for a moment, that d < 0. Then

−4d
d

dt
|X(t)|2 + 4

d

dt
|Y (t)|2 + d

dt
Z(t)2 = 8dκ|X(t)|2 − 8γ|Y (t)|2 − 4γZ(t)2.

This gives

d

dt
(−4d |X(t)|2 + 4 |Y (t)|2 + (Z(t))2)

≤ −min{2κ, 2γ}(−4d |X(t)|2 + 4 |Y (t)|2 + Z(t)2) ,
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which implies

4|d| |X(t)|2 + 4 |Y (t)|2 + Z(t)2 (A.27)

≤ exp(−2t min{κ, γ})(4|d| |X(0)|2 + 4 |Y (0)|2 + Z(0)2)

for any t ∈ [0, T [.
On the other hand, assume that d ≥ 0. Combining

d

dt
|X(t)|2 + g2

4γκ

(
4
d

dt
|Y (t)|2 + d

dt
Z(t)2

)
= 2g

(
1 +

g2d

γκ

)
Re(X(t)Y (t))− 2κ|X(t)|2 − 2

g2

κ
|Y (t)|2 − g2

κ
Z(t)2

with 2Re(X(t) gκY (t)) ≤ |X(t)|2 + g2

κ2 |Y (t)|2 we obtain

d

dt

(
|X(t)|2 + g2

γκ
|Y (t)|2 + g2

4γκ
Z(t)2

)
≤

(
− κ+

g2d

γ

)
|X(t)|2 +

(
− γ +

g2d

κ

) g2
γκ

|Y (t)|2 − 4γ
g2

4γκ
Z(t)2.

Therefore, for all t ∈ [0, T [ we have

d

dt

(
|X(t)|2 + g2

γκ
|Y (t)|2 + g2

4γκ
Z(t)2

)
≤ −min

{
κ− g2d

γ
, γ − g2d

κ

}(
|X(t)|2 + g2

γκ
|Y (t)|2 + g2

4γκ
Z(t)2

)
.

This yields

|X(t)|2 + g2

γκ
|Y (t)|2 + g2

4γκ
Z(t)2 (A.28)

≤ e
−tmin{κ− g2d

γ
,γ− g2d

κ
}
(
|X(0)|2 + g2

γκ
|Y (0)|2 + g2

4γκ
Z(0)2

)
.

Suppose that T < +∞. According to (A.27) and (A.28) we have that

∥(A(t), S(t), D(t))∥ < K ,

where K > 0 and t ∈ [0, T [. This contradicts the property

lim
t→T

∥(A(t), S(t), D(t))∥ = ∞ .

Therefore, T = +∞. Moreover, (A.27) and (A.28) lead to (23) and (24),
respectively. �
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A.7. Proof of Theorem 1

Proof. Let (A(t), S(t), D(t)) be the unique global solution of (22) with
A(0) = Tr(aϱ), S(0) = Tr(σ−ϱ) and D(0) = Tr(σ3ϱ). According to Theo-
rem 6 we have that there exists a unique Np-weak solution (ρt)t≥0 to (14)
with α(t) = g S(t), β(t) = g A(t) and initial datum ρ0 = ϱ. Moreover,
Theorem 6 ensures that ρt = E|Zt(ξ)⟩⟨Zt(ξ)|, where Zt(ξ) is the strong
Np-solution of (16) with α(t) = g S(t), β(t) = g A(t) and initial condition
ξ ∈ L2

Np(P, ℓ2(Z+) ⊗ C2) such that ϱ = E|ξ⟩⟨ξ|. Applying Theorem 7 we
deduce that the evolutions of Tr(a ρt), Tr(σ

−ρt) and Tr(σ3ρt) are governed
by

d

dt
Tr(a ρt) = −(κ+ i ω)Tr(a ρt) + g S(t)

d

dt
Tr(σ−ρt) = −(γ + i ω)Tr(σ−ρt) + g A(t)Tr(σ3ρt)

d

dt
Tr(σ3ρt) = −4g Re(A(t) Tr(σ−ρt))− 2γ(Tr(σ3ρt)− d) .

(A.29)

From the uniqueness of solution to (A.29) we find Tr(a ρt) = A(t), Tr(σ−ρt) =
S(t) and Tr(σ3ρt) = D(t). Hence{

d

dt
Tr(Aρt) = Tr(AL⋆(ρt)ρt) ∀ A ∈ L(ℓ2(Z+)⊗ C2)

ρ0 = ϱ ,
(A.30)

as well as α(t) = g E⟨Zt(ξ), σ
−Zt(ξ)⟩ and β(t) = g E⟨Zt(ξ), a Zt(ξ)⟩ (see, e.g.,

[37]). Therefore, Zt(ξ) is a strong Np-solution of (4).

Let Zt(ξ) and Z̃t(ξ) be strong Np-solutions of (4) with initial datum ξ
belonging to L2

Np(P, ℓ2(Z+) ⊗ C2). Then, Zt(ξ) is the strong Np-solution of
(16) with initial datum ξ ∈ L2

Np(P, ℓ2(Z+)⊗ C2), α(t) = g E⟨Zt(ξ), σ
−Zt(ξ)⟩

and β(t) = g E⟨Zt(ξ), a Zt(ξ)⟩. Since

t 7−→ E⟨Zt(ξ), σ
−Zt(ξ)⟩ and t 7−→ E⟨Zt(ξ), a Zt(ξ)⟩

are continuous functions, applying Theorems 6 and 7, together with Theorem
3.2 of [37], we deduce that

E⟨Zt(ξ), σ
−Zt(ξ)⟩ , E⟨Zt(ξ), a Zt(ξ)⟩ , E⟨Zt(ξ), σ

3Zt(ξ)⟩

is a solution of (22) with initial condition A(0) = Tr(a ϱ), S(0) = Tr(σ−ϱ)

and D(0) = Tr(σ3ϱ). The same is true for Z̃t(ξ) in place of Zt(ξ), and so

Theorem 8 leads to E⟨Zt(ξ), σ
−Zt(ξ)⟩ = E⟨Z̃t(ξ), σ

−Z̃t(ξ)⟩ and

E⟨Zt(ξ), a Zt(ξ)⟩ = E⟨Z̃t(ξ), a Z̃t(ξ)⟩
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for all t ≥ 0. Now, the uniqueness of the strong Np-solution of (16) implies

Z = Z̃.
On the other hand, suppose that (ρt)t≥0 and (ρ̃t)t≥0 are families of Np-

regular operators satisfying (A.30) such that ρ0 = ρ̃0 = ϱ and t 7→ Tr(a ρt),
t 7→ Tr(a ρ̃t) are continuous. Then, (ρt)t≥0 is a Np-weak solution to (14)
with α(t) = g Tr(σ−ρt) and β(t) = g Tr(a ρt), as well as (ρ̃t)t≥0 is a Np-
weak solution to (14) with α(t) = g Tr(σ−ρ̃t) and β(t) = g Tr(aρ̃t). Using
Theorem 7 we get that (Tr(a ρt),Tr(σ

−ρt),Tr(σ
3ρt)) and

(Tr(a ρ̃t),Tr(σ
−ρ̃t),Tr(σ

3ρ̃t))

are solutions of (22) with initial condition A(0) = Tr(a ϱ), S(0) = Tr(σ−ϱ)
and D(0) = Tr(σ3ϱ). Since the solution of (22) is unique (see, e.g., Theo-
rem 8), Tr(a ρt) = Tr(a ρ̃t), Tr(σ

−ρt) = Tr(σ−ρ̃t) and Tr(σ3ρt) = Tr(σ3ρ̃t).
Therefore, (ρt)t≥0 and (ρ̃t)t≥0 are Np-weak solution to (14) with the same
α(t) and β(t), and hence using Theorem 6 yields ρt = ρ̃t for all t ≥ 0. �
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