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1. Introduction

In a natural circulation loop, the circulating fluid removes heat from a 
source and transports it to a heat sink. The driving force is the fluid 
buoyancy force. In a closed loop, steady state natural circulation is 
achieved when the driving buoyancy forces are in balance with the 
frictional forces. However, under certain circumstances, the achieved 
steady state can be dynamically unstable. The possible instabilities  can 
lead to large oscillations in the fluid flow and on the temperature field 
and cause an inconvenient operation of the closed loop system. Since 
natural circulation has gained importance in many engineering appli-
cations, such as in the chemical and nuclear engineering communities, it 
is important to determine the dependence of the stability maps on the 
external parameters (IAEA, 2005).
  Natural circulation loop instabilities have been studied both 
theoretically and experimentally. The first theoretical studies on 

the subject were presented by Keller (1966) and Welander (1967). 
Further theoretical studies have focused on the stability analysis for 
different loop geometries (Chen, 1985; Swapnalee and Vijayan, 
2011; Vijayan et al., 2007, 2008). Using another approach, stability 
analysis of thermosyphon loops was studied via finite difference 
methods (Ambrosini and Ferreri, 1998, 2000; Misale et al., 2000). 
On the other hand, the first experimental studies on the subject 
were done by Creveling et al. (1975) and Gorman et al. (1986). 
Subsequent experimental studies have been performed by Vijayan 
et al. (2007), Swapnalee and Vijayan (2011), and others. These 
works have studied in detail natural circulation in a variety of 
closed loop configurations in which there is an external heat source 
and an external heat sink. However, no attention has been given to 
single-phase natural circulating flows with internally heated fluids 
(Pini et al., 2014).

This work studies oscillating instabilities in closed single-phase 
thermosyphon loops when internal heat generation is present. 
Until now, it is unknown how the stability of closed natural 
circulation loops is affected when internal heat generation effects 
are considered. A fluid with internal heat generation might be, for
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example, a fluid with internal exothermic chemical reactions or a 
molten salt fuel in a nuclear Molten Salt Reactor (MSR) (GIF, 2013; 
Serp et al., 2014). In MSRs, fission products decay inside the molten 
salt and release energy (Di Marcello et al., 2010; Fiorina et al., 2014; 
Luzzi et al., 2012, 2010). Other examples of fluids with internal heat 
generation might include fluids heated via electrical currents 
(ohmic heating). It is believed that the study of natural circulation 
of internally heated fluids may concern a number of engineering 
domains.

In the present paper, two methods were used in order to 
calculate the stability maps of the investigated natural circulation 
loops: a semianalytical linear method and a numerical nonlinear 
method. These methods were applied to investigate the stability of 
two closed loop configurations: the VERTICAL HEATER - HORIZONTAL 

COOLER (VHHC) and the VERTICAL HEATER - VERTICAL COOLER (VHVC) 
configurations. In these circuits, the heat sink position and orient-
ation are varied.

The present work is organized as follows. Section 2 presents 
the general procedures and mathematical tools used for the 
stability analysis. In Section 3, the obtained stability analysis 
methods are applied to study the dynamical stability of the 
VHHC and VHVC circuit loops. In Section 4, the main results 
are presented and discussed. Concluding remarks are given in 
Section 5.

2. General stability analysis methods

In the present section, the methods for performing the stability 
analysis are presented. The developed model allows for both 
external heating and internal heat generation. The section is 
organized as follows: first, a general description of the system 
with the governing equations is presented. Then, the procedure for 
determining the steady state is given. Finally, the linear stability 
analysis and the numerical nonlinear stability analysis methods 
are presented.

2.1. System description and governing equations

In this work, the closed loop configurations studied are 
composed of a single “heater” and a single “cooler” in a closed 
rectangular loop with a circular tube cross-section of constant 
diameter (see Fig. 1). In this configuration, the cooler length is 
denoted as Lc. The tube section connecting the “cooler” with the 
“heater” is called the “cold leg” of length Lcl. The length of the 
“heater” is denoted Lh. Finally, the tube section transporting the 
hot fluid from the “heater” to the “cooler” is called the “hot leg” of
length Lhl. The total length of the circuit is Lt ¼_ Lc þLcl þLh þLhl.

1 

This general notation to designate the sections of the closed-loop
circuit will be used throughout the work.

The system governing equations refer to an incompressible 
fluid, with the following additional assumptions:

� The fluid flow is considered one-dimensional. The curvilinear 
coordinate “s” denotes the position inside the closed loop, and

it follows the direction of the fluid flow. The origin is taken at
the entrance of the system heat sink or “cooler”.

� The Boussinesq approximation is considered. A linear variation
of the fluid density due to temperature change is considered in
the gravitational term of the conservation of momentum
equation.

� Two heat sources are included. The first heat source is that of
the system external heater (this could be an electrical heater in
a test-loop facility or a nuclear reactor). The second heat source

is the fluid internal heat generation, which is considered
uniform inside the circuit.2

� The system heat sink is modeled as a constant wall tempera-
ture cooler.

� Dissipative terms of the energy conservation equation are
neglected.

� Heat conduction inside the fluid is neglected.
� It is supposed that the circuit has constant diameter D.
� Regarding the pressure losses due to friction inside the circuit,

flit is supposed that the same ow regime (laminar or turbulent) 
exists for the whole circuit. Also, the fluid dynamic viscosity, μ, 
is supposed to be constant along the circuit. The previous two 
assumptions were relaxed in the work of Vijayan et al. (2008).

Throughout the present work, the velocity of the fluid is
defined as v _¼ vesðsÞ, where esðsÞ is the unit vector of the flow
and vZ0. The governing equations with the above assumptions
are

∂G
∂s

¼ 0; ð1Þ

∂G
∂t

þ ∂
∂s

G2

ρn

 !
¼ �∂p
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�ρgez � es�

1
2
f
G2

ρn
1
D
; ð2Þ
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¼
�hðT�TwÞPA þq‴ cooler

q″
P
A
þq‴ heater

q‴ otherwise

8>>>><>>>>: ; ð3Þ

ρðTÞ ¼ ρn 1�β T�Tn
� �� �

; ð4Þ

where ρn _¼ ρ0ðs¼ 0Þ is the reference density (taken at the cooler
entrance) at steady state, GðtÞ _¼ ρnv is the mass flux, Tðs; tÞ is the
fluid temperature field, β is the thermal expansion coefficient,
f _¼ a=Reb is the Darcy friction factor, Tw is the cooler wall
temperature, cp is the fluid specific heat, D is the diameter of the
circuit, P is the perimeter of the tube, A is the area of the tube
cross-section, and h is the heat transfer coefficient.

It is important to notice that in Eq. (3) there are two heat
source terms. The first source term denoted by q″ represents the
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Fig. 1. General schema of a natural circulation closed loop. The symbols “E” and “S”
denote the entrance and exit cross-sections, respectively.

1 Throughout this paper, we denote a _¼ b meaning that “a” is defined as “b”.

2 For nuclear applications with circulating-fuel MSRs, it is well known that for
nominal operating conditions the decay heat varies by a small percentage inside
the circuit. The strongest decay heat release takes place inside or immediately
outside the core and is caused by the fastest decaying fission products. During
emergency or accidental conditions, in which the nuclear core is shut down, the
decay heat may be considered uniform.



constant heat flux injected into the system by the heater. The
second source term, q‴, represents the fluid internal heat genera-
tion (considered uniform inside the loop). The scope of this work is 
to investigate how this last term affects the stability of natural 
circulating flows.

2.1.1. Friction factor
Natural circulation flow covers from laminar to turbulent flow 

conditions. At low thermal powers, the fluid flow would tend to be 
small and could be laminar. In this case, the Darcy friction factor is
f laminar ¼ 64=Re. For high Reynolds numbers, the fluid flow is 
turbulent, and the friction factor can be evaluated as follows:
f turbulent ¼ 0:316=Re0:25 (De Nevers, 1970).
The region covering the transition between laminar and turbu-lent 

is not very well known. For a straight-infinite tube flow, the
transition zone is considered to be at Re � 2000. For closed loop 
natural circulation flows, the transition has been reported to be as
low as Re � 340 (Hallinan and Viskanta, 1986; Swapnalee and 
Vijayan, 2011). In order to model the transition from laminar to
turbulent regimes, some authors have defined a transition Rey-
nolds number (e.g., as the Re value in which the laminar and 
turbulent correlations intersect Vijayan et al., 1995). A more 
detailed description of the modeling of the friction factor in 
Swapnalee and Vijayan (2011).

Although many models use piecewise-defined functions for the 
friction factor that are continuous, their derivatives at the transi-
tion points are not continuous. This inconvenience brings discon-
tinuities in the stability maps, which will be explained later in 
Section 4. In order to solve this problem, this work uses a 
continuous and derivative continuous friction factor that covers 
from laminar to turbulent flow conditions. The friction factor was 
built by fitting experimental steady-state data on fluid flow inside a 
straight infinite tube (Perry and Green, 2008). The developed 
correlation is

f _¼ a

Reb
; ð5Þ

where

a _¼ 64γ0:3161� γ ; ð6Þ

b _¼ γþð1�γÞ0:25; ð7Þ

γðReÞ _¼ 1
1þexp ðRe�2530Þ=120� �: ð8Þ

The correlation uses a “Fermi–Dirac distribution” factor, γ, to  
model the transition between laminar and turbulent flows. By taking 
the asymptotic limits of γ in Eqs. (5)–(8), the proposed correlation 
converges towards the laminar and turbulent friction factors:

f laminar ¼ lim
Re-0

f C64=Re;

f turbulent ¼ lim
Re-þ1

f ¼ 0:316=Re0:25:

Fig. 2 compares the proposed correlation (5) with the Churchill 
experimental data points for the friction factor. As it can be seen, the 
proposed correlation closely fits the transition zone while also 
having a continuous derivative. This friction correlation will be used 
throughout the present work.

2.2. Stationary state

For closed loops  composed of only one  heater and one 
cooler,  the stationary temperature distribution can be written in a 
general form. By using Eqs. (1)–(3), the stationary temperature 
distribution is

given by

T0ðsÞ ¼

T0ðs¼ 0Þþ Twþq‴
A

hP
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� 	
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; ð9Þ

where T0ðs¼ 0Þ is the stationary temperature at the cooler entrance,
G0 is the stationary mass flux, and T0ðLcÞ is the temperature of the
fluid at the cooler exit. As shown, the calculated temperature
distribution respects continuity between the various sections of the
loop. As boundary condition for the temperature field, T0 must be
continuous at s¼0 and s¼ Lt:

T0ðs¼ 0Þ ¼ T0ðs¼ LtÞ ð10Þ

⟹T0ðs¼ 0Þ ¼ Twþq‴
A

hP
þΔTheaterþΔTint

1�exp �φLcð Þ;

with

φ _¼ hP
G0cpA

¼ 4Nu
RePr

1
D
¼ 4 St

Lt
D
1
Lt
¼ Stm

1
Lt
;

ΔTheater _¼ q″
G0cp

P
A
Lh;

ΔTint _¼ q‴
G0cp

ðLt�LcÞ; ð11Þ

where φ is the Stanton number Stm divided by the total length of the 
circuit, ΔTheater is the temperature variation of the fluid caused by the 
surface heat flux inside the heater, and ΔT int is the temperature 
variation caused by the internal heat generation term outside the heat 
sink. In other words, ΔT int is the temperature difference between the 
cooler entrance and exit when only internal heat generation is present. 
From these calculations, a typical steady-state temperature distribu-tion 
from Eq. (9) is shown in Fig. 3 as an example.

In Eq. (9), the temperature field is obtained in terms of the 
steady-state flux G0. The flux G0 can be determined using the 
conservation equation of momentum. Eq. (2) is integrated over the
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entire loop in order to eliminate the pressure variable:

1
2
f 0
G2
0

ρn
Lt
D
þ
X
j ¼ 1

Kj

24 35¼ ρngβ
I

T0ðsÞez � esðsÞ ds; ð12Þ

where Kj is a factor allowing for the local pressure losses inside the
circuit. The line integral of the temperature distribution depends
on the loop geometry. Since the total temperature variation out-
side the cooler is due to the heat introduced by the external heater
and the internal heat generation, the line integral of the steady
state temperature field is written as

ΔTheaterLheaterþΔTintLint _¼
I

T0ðsÞez � esðsÞ ds; ð13Þ

where the Lheater and Lint factors depend only on the loop
geometry and the direction of the flow (clockwise or counter-
clockwise). We now introduce the following variables:

ΔT0 _¼ ΔTheaterþΔTint ; α _¼ ΔTheater=ΔT0; ð14Þ

where ΔT0 is the total change of the fluid temperature at steady-
state, and αA ½0;1� is related to the ratio of the heating power
inside the heater to the total heating power. Hence, it is possible to
write Eq. (12) as

1
2
f 0
G2
0

ρn
Lt
D
þ
X
j ¼ 1

Kj

24 35¼ ρnβgΔT0 αLheaterþð1�αÞLint½ �: ð15Þ

The variable α will be particularly important for the remainder
of this work. Modifying α changes the relative ratio between the
heat inserted by the external heater and the heat coming from the
internal heat generation. To further illustrate this, α¼ 1 represents
a situation in which no internal heat generation is considered
(q‴¼ 0). The convection movement is driven by the thermal
energy introduced by the heater. When α¼ 0, the heat is only
supplied internally by the fluid. It is later shown in Section 4 that
the circuit stability maps depend strongly on the parameter α.

In the literature, a convenient dimensionless group used to
express Eq. (15) is using the modified Grashof number and the
Reynolds number (Vijayan, 2002; Vijayan et al., 2007). Eq. (15) can
be hence written as

a
2
Re3�b

0
Lt
D
þ
X
j ¼ 1

Kj

24 35¼ Grm; ð16Þ

where Grm is the modified Grashof number which is defined as

Grm _¼ ρn2gD3

μ2
βΔTm: ð17Þ

The modified total temperature variation ΔTm is defined as

ΔTm _¼ G0

μ
ΔTheaterLheaterþΔTintLint½ �: ð18Þ

It is important to state that besides the approximations used 
when writing Eqs. (1)–(3), the solutions obtained in Eqs. (15) and 
(16) do not have other approximations. The only terms left to be 
calculated are Lheater and Lint , which are obtained when specifying 
the loop geometry and the flow direction.

The field variables G and T are perturbed around the stationary 
solution:

GðtÞ ¼ G0þG1ðtÞ; G1ðtÞ{G0

Tðs; tÞ ¼ T0ðsÞþT1ðs; tÞ; T1ðs; tÞ{T0ðsÞ: ð19Þ
The perturbed variables G and T are inserted inside Eqs. (2)–(4). 
When neglecting second-order terms, the following linear time-
dependent equations are obtained3:

Lt
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2
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G0G1
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24 35
¼ ρngβ
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T1ðt; sÞez � esðsÞ ds; ð20Þ
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P
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cooler

0 heater
0 otherwise

8>><>>: : ð21Þ

Due to the invariance of the equations regarding time transla-
tions, the following form for the perturbations is proposed:
θ1ðs; tÞ ¼ bθðsÞ exp ωtð Þ, where ωAC and θ1 can be any field such as
G1 or T1. Besides eliminating the partial derivatives, the Fourier
transform has the advantage of providing a simple stability
condition for the perturbation, which states that the real part of
ω must be negative: R ωð Þo0.

It is more convenient to work with dimensionless variables.
Hence, the following variable changes are adopted:

ω≐ωLtρn=G0; G≐bG=G0; T≐bT=ΔT0;

s≐s=Lt ; φ≐φLt ; Li≐Li=Lt : ð22Þ
It is important to note that the dimensionless variable ω is scaled
using the time needed for the flow to complete a full turn around
the circuit. When adopting the former variable changes, the
dimensionless linear equations are

ωGþ1
2
f 0

Lt
D
þ
X
j ¼ 1

Kj

24 35 ð2�b0ÞG
h

� Lt
αLheaterþð1�αÞLint

I
T ðsÞez � esðsÞ ds

	
¼ 0; ð23Þ

dT
ds

þωT þG
1

ΔT0

dT0

ds
¼

�φT cooler
0 heater
0 otherwise

8><>: ; ð24Þ

where f 0 _¼ f ðRe0Þ is the steady state friction factor.
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Fig. 3. Example illustrating a steady-state temperature field.

3 The dependence of a and b on the time varying G1ðtÞ is not considered when 
obtaining the linear momentum equation. This approximation only introduces an
error inside the laminar-turbulent transition zone. Outside the transition zone 
shown in Fig. 2, a and b are almost constant. Hence, the above approximation is 
valid in the far laminar and turbulent regions.
Since a friction factor with continuous derivative is adopted, the momentum 

equation will vary smoothly when transitioning between the laminar and turbulent 
regimes.
Even though the heat transfer coefficient h may have a dependence on Re 

(especially in turbulent conditions), the variation of h due to the perturbation G1 is 
neglected in this work. A preliminary investigation in this direction has been 
carried out by Pini et al. (2014).



As noted, the momentum Eq. (23) is expressed as function of the 
stationary Reynolds number Re0. However, it can be also written in 
terms of the modified Grashof number Grm. This last form can be 
easily written using Eq. (16). Even though the Grashof number 
describes the amount of natural circulation inside the closed loop, 
it was chosen to express the Eq. (23) in terms of Re0 rather than in 
terms of Grm, since Re0 gives a clearer idea of the flow conditions 
(laminar, turbulent) inside the circuit. This will be useful in order to 
identify the flow regime transitions in the stability maps.

2.2.1. Calculation of the temperature perturbation
Eq. (24) is solved for all the sections inside the closed-loop. The 

temperature perturbation inside the cooler is given by

T ðsÞ ¼ T ðs ¼ 0Þ exp � ωþφð Þsð ÞþGφ
ω

1
1�expð�φLcÞ

� expð�φsÞ�exp � ωþφð Þsð Þ½ �: ð25Þ
The temperature perturbation distribution inside the cold leg is

T ðsÞ ¼ T ðLcÞ exp �ωðs�LcÞ
� ��G

ω

1�α

1�Lc
� 1�exp �ωðs�LcÞ

� �� �
;

ð26Þ
where T ðLcÞ is the temperature perturbation at the cooler exit. The
temperature perturbation T ðsÞ inside the circuit heater is

T ðsÞ ¼ T ðLcþLclÞ exp �ω½s�ðLcþLclÞ�
� �

�G
ω

α

Lh
þ 1�α

1�Lc

� 	
1�exp �ω½s�ðLcþLclÞ�

� �� �
; ð27Þ

where T ðLcþLclÞ is the temperature perturbation at the cold leg
exit. Finally, the perturbed temperature distribution inside the hot
leg is

T ðsÞ ¼ T ðLcþLclþLhÞ exp �ω½s�ðLcþLclþLhÞ�
� �

�G
ω

1�α

1�Lc
1�exp �ω½s�ðLcþLclþLhÞ�

� �� �
; ð28Þ

where T ðLcþLclþLhÞ is the temperature perturbation at the
heater exit.

The temperature perturbation T ðsÞ after one circuit loop must
also be continuous at s ¼ 0. Hence, the boundary condition for the
temperature perturbation, T ðs ¼ 0Þ ¼ T ðs ¼ 1Þ, gives the following
relation:

T ð0Þ ¼ T ð1Þ�T ð0Þ exp �ðωþφLcÞ
� �

1�exp �ðωþφLcÞ
� � ; ð29Þ

where T ð1Þ is the temperature perturbation at the hot leg exit and 
is given by Eq. (28). Since Eqs. (20) and (21) are linear, the
temperature perturbation T ðsÞ depends linearly on the perturba-
tion mass flux G. It is simple to verify that the numerator in
Eq. (29) does not depend on T ð0Þ and that it is proportional to G.

2.2.2. Dispersion relation
In order to find the dispersion relation for ω, the conservation

Eq. (23) is used. Since it is known that T pG from Eq. (29), the line 
integral in Eq. (23) can be written as

GAðω;φ; αÞ _¼
I

T ðsÞez � esðsÞ ds;

¼
Z
up
T ðsÞ ds�

Z
down

T ðsÞ ds; ð30Þ

where Aðω;φ;αÞ is a function that does not depend on G;
R
down is

the line integral of the temperature perturbation taken along the
loop sections in which the fluid is falling and

R
up is the line integral

taken along the sections in which the fluid is rising. Using the
temperature perturbation given by Eqs. (25)–(28), these integrals

are later calculated for several circuit configurations (see Section 3).
When inserting the defined function Aðω;φ; αÞ in Eq. (23), the
dispersion relation for ω is

ωþ1
2
f 0

Lt
D
þ
X
j ¼ 1

Kj

24 35 ð2�b0Þ�
LtAðω;φ; αÞ

αLheaterþð1�αÞLint

� 	
¼ 0: ð31Þ

As shown, the dispersion relation depends on the steady-state 
Reynolds number Re0 (acting through f0 and b0), the modified 
Stanton number (proportional to φ), the flow direction, the para-
meter α, and the system geometry. From the dispersion relation 
(31), the stability maps for different closed loop circuits will be 
constructed in which the free parameters are Re0, Stm, and  α.

2.3. Numerical nonlinear stability analysis

The linear analysis method is a powerful mathematical tool that 
allows determining the stability behavior of a convective natural 
circulation system. During the process of making the Eqs. (1)–(3) 
linear, second-order terms were neglected. This approximation is 
convenient when the perturbations are consid-ered small. For 
larger perturbations, numeric codes are usually implemented in 
order to solve the nonlinear time-independent Eqs. (1)–(3). In the 
present work, the numerical nonlinear analysis is simply used to 
confirm the results given by the linear stability analysis.

The goal is to numerically calculate the temporal evolution of
the flow flux G(t) and the temperature distribution Tðs; tÞ when a
perturbation is given around the stationary state of the system. It
is considered that the mass flux and the temperature distribution
have the form

GðtÞ ¼ G0þG1ðtÞ;
Tðs; tÞ ¼ T0ðsÞþT1ðs; tÞ: ð32Þ
When inserting these variables into Eqs. (1)–(3) and using the 
variable changes presented in Eq. (22) together with the dimen-
sionless time variable t ¼ tG0=ðLt ρnÞ, the following nonlinear equa-
tions are obtained:

dG
dt

¼ 1
2
f 0

Lt
D
þ
X
j ¼ 1

Kj

24 35 1� f
f 0
ð1þGÞ2

�

þ Lt
αLheaterþð1�αÞLint

I
T ðs; t Þez � esðsÞ ds

	
; ð33Þ

∂T
∂t

þð1þGÞ∂T
∂s

þ G
ΔT0

dT0

ds
¼

�φT cooler
0 heater
0 otherwise

8><>: : ð34Þ

There are several aspects in Eq. (33) that should be noted. Here,
f 0 ¼ f ðG0Þ denotes the friction coefficient calculated in the sta-
tionary state while f ¼ f ðG0þG1Þ denotes the friction coefficient
when the perturbation is present. It must be noted that a key
difference between the momentum conservation eqs. (23) and
(33) is that the dependence of the friction factor coefficients,
a and b, with G1ðtÞ is considered. In the linear analysis, these
variations are neglected because the variations of a and b are
negligible outside the flow regime transition zone. Hence, it is
expected that the stability maps generated by the linear and
nonlinear formulations will show differences in the laminar-
turbulent transition zone (Section 4.1).

In this work, Eqs. (33) and (34) are discretized using a MacCor-
mack Scheme (MacCormack, 1969). This scheme has been used
previously to calculate the stability maps of natural circulating
systems (Ambrosini and Ferreri, 1998, 2000). The numerical simula-
tions were performed in a MATLAB (2013) environment.



3. Stability analysis on rectangular loops of circular cross
section

In this section, the general stability analysis methods of Section 2
are applied to study the dynamical stability of different configura-
tions of rectangular closed loops. Two circuit configurations are
analyzed. The first circuit is the VERTICAL HEATER – HORIZONTAL COOLER

(VHHC) circuit. In this loop, the heater is placed in a vertical position
while the cooler is placed in an horizontal position above the heater.
The second analyzed circuit is the VERTICAL HEATER – VERTICAL COOLER

(VHVC) circuit. Both heater and cooler are placed in vertical positions
in different legs. These configurations will be analyzed separately.

3.1. Vertical heater–horizontal cooler (VHHC) loop

Fig. 4 shows a diagram of the VHHC system with a clock-wise
fluid circulation. Following the notation presented in Section 2.1,
the origin of the curvilinear coordinate, s, is located at the cooler
entrance. The length of the cold leg is Lcl ¼ L1þL2þL3þL4, while
the length of the hot leg is Lhl ¼ L5þL6.

The stationary state of the system is calculated from Eq. (12).
The line integral of the steady state temperature field must be
calculated:I

T0ðsÞez � esðsÞ ds¼
Z
〈L4 þLh þL5〉

T0ðsÞ ds�
Z
〈L2〉

T0ðsÞ ds; ð35Þ

where the notation 〈 � 〉 denotes the circuit segments in which the
integration must be made. After evaluating of the line integral, a
relation between the steady state fields, G0 and ΔT0, is obtained:

1
2
f 0
G2
0

ρn
Lt
D
þ
X
j ¼ 1

Kj

24 35
¼ ρnβgΔT0 α L5þ

Lh
2


 �
þð1�αÞL2

L2þL3
Lt�Lc

� 	
: ð36Þ

From Eq. (36), it is now possible to identify the variables,
Lheater ¼ L5þLh=2 and Lint ¼ ðL2ÞðL2þL3Þ=ðLt�LcÞ, which were
introduced in Eqs. (13) and (15). Lheater and Lint have a physical
meaning. Lheater represents the height difference between the
thermal barycenters of the heater and the cooler. The

interpretation for Lint is more complicated, namely the ratio
ðL2þL3Þ=ðLt�LcÞ shows that the effective convective force given
by the internal heat generation comes from the heat generated
inside segments L2 and L3; the contribution in temperature change
by segments L2 and L3 is then multiplied by L2, which is the circuit
total height.

In order to proceed with the linear stability analysis, the
procedure described in Section 2.2 is followed. The line integral
of the temperature perturbation field given in Eqs. (30) and (31)
needs to be calculated:

GAVHHC _¼
I

T ðsÞez � esðsÞ ds ¼
Z
up
T ðsÞ ds�

Z
down

T ðsÞ ds: ð37Þ

Using the calculated expressions for the temperature perturbation,
Eqs. (25)–(28), the line integrals areZ
up
T ðsÞ ds ¼

Z
〈L4 þLh þL5〉

T ðsÞ ds

¼ �T ðLcÞ
1
ω
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h i
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ω
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1
ω
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1
ω
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h i
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ω
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1�Lc
L5þ

1
ω
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; ð38Þ

Z
down

T ðsÞ ds ¼
Z
〈L2〉

T ðsÞ ds

¼ �T ðLcÞ
1
ω

e�ωðL2 þ L1Þ �e�ωL1
h i

�G
ω

1�α

1�Lc
L2þ

1
ω

e�ωðL1 þL2Þ �e�ωL1
� � 	

: ð39Þ

Eqs. (37)–(39) together with Eq. (29) and the dispersion relation
(31) form a closed system of equations for which ω can be solved
as function of the flow parameters: Re, Stm, and α.

3.2. Vertical heater–vertical cooler (VHVC) loop

This type of circuit is of special importance because it exem-
plifies better the current dominating designs for natural circulat-
ing systems in the nuclear industry (IAEA, 2005). In the following
analysis, the circulation of the fluid is considered clockwise
because this motion is known to be more stable (Wu and
Sienicki, 2003). Following the notation of Section 2.1, the origin
of the coordinate s is located at the cooler entrance. The length of
the cold leg is given by Lcl ¼ L1þL2þL3, while the length of the hot
leg is written as Lhl ¼ L4þL5þL6.

As done previously for the VHHC system, the steady state of the
VHVC system must be determined first. The line integral of the
steady state temperature field T0ðsÞ in Eq. (12) is calculated:I

T0ðsÞez � esðsÞ ds¼
Z
〈L3 þ Lh þ L4〉

T0ðsÞ ds�
Z
〈L6 þ Lc þ L1〉

T0ðsÞ ds: ð40Þ
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Fig. 4. Schema of the VHHC system.



By using the general steady state temperature distribution (9), the
expressions for Lheater and Lint are obtained:

Lheater ¼
Lh
2
þL4�L6þ

Lc
eφLc �1

�1
φ
;

Lint ¼H
L1þL2
Lt�Lc

�L6
Lt�Lc�L6
Lt�Lc

þ1
2
H2�L26�L21

Lt�Lc
þ Lc
eφLc �1

�1
φ
: ð41Þ

Here, we have defined H _¼ L3þLhþL4 is the height of the circuit
(see Fig. 5). As it can be seen, the expressions for Lheater and Lint are
more complicated than those calculated previously for the VHHC
circuit. However, it can be still seen that Lheater always represents
the height difference between the heater and cooler thermal
barycenters. The terms in Lint are more complicated to interpret.

In order to continue with the linear stability analysis, the
procedure described in Section 2.2 is followed. The line integral
of the temperature perturbation T ðsÞ in Eqs. (30) and (31) needs to
be calculated. Evaluation of the line integral gives

GAVHVC _¼
I

T ðsÞez � esðsÞ ds ¼
Z
up
T ðsÞ ds�

Z
down

T ðsÞ ds; ð42Þ

whereZ
up
T ðsÞ ds ¼
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Here, the line integrals were calculated using Eqs. (25)–(28) for the
temperature perturbation. Eqs. (29) and (42)–(44) are inserted
into Eq. (31) in order to determine ω as function of the flow
parameters: Re, Stm, and α.

4. Results and discussion

4.1. Vertical heater–horizontal cooler (VHHC) loop

Before presenting the main results, the developed codes of this
work are verified. For the verification process, the generated
stability maps of this work are compared with those previously
published by other authors in which no internal heat generation
was considered. Table 1 presents the dimensions of the VHHC
circuit that was used. The VHHC circuit has the same dimensions
of the VHHC loop studied in a previous work by Vijayan et al.
(2007). The same geometry is used in order to compare our results
in the case where no internal heat generation (α¼ 1) is present.

Before discussing the obtained stability maps, it is worth
mentioning the procedure used to calculate the stability maps.
The stability maps plot the curve Re¼ ReðStmÞ that shows the
boundary between the unstable and stable operating regimes. This
curve is obtained by solving Eqs. (29), (31), and (37)–(39). First, the
operating parameters Re and α are specified. In order to obtain the
stability boundary, we force R ωf g ¼ 0. Then, the real and imagin-
ary components of Eq. (31) are solved in order to obtain Stm and
I ωf g. In this work, the Trust-Region-Dogleg algorithm of MATLAB
(2013) was used to solve the system of equations.

In Fig. 6, the stability map of the VHHC circuit with no internal
heat generation (α¼ 1) generated by our code is compared with
previously published stability maps (Vijayan et al., 2007). In this
mentioned work, the stability maps for laminar and turbulent
regimes are presented separately by having the friction factor
function held fixed. Fig. 6 compares the generated stability maps
using the same laminar and turbulent friction correlations. As
shown, the previous results are replicated by our code.

Fig. 7 presents the generated stability maps with the friction
factor given in Eq. (5). As shown, the generated stability maps
correctly match the previous results for low and high Grashof
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Fig. 5. Schema of the VHVC system.

Table 1
Dimensions of the VHHC and VHVC circuits studied.

Circuit L1 (m) L2 (m) L3 (m) L4 (m) L5 (m) L6 (m) Lc (m) Lh (m) H (m) Lt (m) D (m)

VHHC 0.31 2.20 1.42 0.35 1.12 0.31 0.80 0.73 2.20 7.24 0.0269
VHVC (I) 1.18 1.42 0.35 1.12 1.42 0.22 0.80 0.73 2.20 7.24 0.0269
VHVC (II) 1.40 1.42 0.00 1.47 1.42 0.00 0.80 0.73 2.20 7.24 0.0269



numbers, where the fluid flow is surely in a full laminar or
turbulent regime. However, differences in the stability maps
appear around Grm � 1011. This difference is due to the transition
region of the friction factor (see Fig. 2). These results show that the
choice of the friction factor has a strong impact on the shape of the
stability maps near the transition region.

For further verification, the stability map generated by the
linear method is compared to that generated by the numerical
nonlinear method. In order to generate the stability maps using
the nonlinear formulation, Eqs. (33) and (34) are numerically
solved for given Re, Stm, and α. For a small positive initial
perturbation on the mass flux density, GðtÞ is evolved in time.
Fig. 8 shows typical examples of the temporal evolution of the
mass flux perturbation. The simulation parameters used are
shown in Fig. 9. In order to determine if the flow is stable, the
logarithmic growth rate of the oscillation maxima is calculated. If
the logarithmic growth rate is larger than a certain tolerance level,
the flow is considered unstable. Simulations are made for fixed Re
and α while iterating the Stm until the flow regime is stable. Once
the Stm parameter is obtained for stable flow, the Reynolds number
is iterated, and the process is repeated again until the whole
stability map is calculated.

Fig. 9 compares the stability maps using the linear and non-
linear analysis methods. As it can be seen, the two approaches
show good agreement. Since the two approaches are independent,
this result validates, in a certain sense, the methods and codes
developed in this work.

As mentioned in the Introduction, internal heat generation can
affect significantly the stability maps of natural circulating loops.
Fig. 10 shows the stability maps of the VHHC circuit for different
levels of internal heat generation. The stability maps shown
correspond to α¼ 1 (only external heating), α¼ 0:5, α¼ 0:3, and
α¼ 0 (only internal heat generation). As shown, the unstable zone
increases steadily when the portion of power coming from inter-
nal heat generation increases, α-0. The increase of the instability
zone might be explained as follows: when α¼ 1, the fluid
preferably flows in the clockwise direction. When α¼ 0 (no
heater), the situation is different. In this case, the loop has left-
right symmetry with the cooler located in the top center part of
the circuit. The fluid does not have any preferable flowing direc-
tion. The lack of any preferable flow direction could be the cause of
the large increase of the instability zone at low Re. However, the
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Fig. 6. Stability maps of the VHHC circuit with no internal heat generation (α¼ 1).
The curves are calculated using fixed friction factors. The results are compared with
previously published results (Vijayan et al., 2007).
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Fig. 7. Stability maps of the VHHC circuit with no internal heat generation (α¼ 1).
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effect is less noticeable at high Re. These findings suggest that the
effects of internal heat generation on natural circulation stability
should be considered when designing internally heated loops.

To further verify this result, the stability maps with only
internal heat generation ðα¼ 0Þ generated by the linear analysis
and the numerical nonlinear method are compared. Fig. 11 pre-
sents both stability maps. As it can be seen, there is an overall good
agreement between the stability maps. However, at Re� 2500
differences appear between the linear and nonlinear stability
maps. This is caused by the transition zone of the friction factor.
In the linear analysis, Eq. (20) ignores the dependence of the
friction correlation a and b factors on the flux perturbation G1. On
the other hand, the nonlinear numerical analysis does not use this
approximation and thus predicts a slight gain of stability. The gain
in instability is due to the minimum in the friction factor at the
transition zone. Nevertheless, the results of the linear stability
analysis should not be undermined because of the error seen in
the transition zone. In reality, the transition zone is not very well
understood, and most engineers try to avoid operating in this
region.

4.2. Vertical heater–vertical cooler (VHVC) loop

The dimensions of the analyzed VHVC circuits are presented in
Table 1. Notice that the geometries of the VHVC circuits are very
similar to that of the VHHC circuit analyzed previously. Both loops
have the same total length Lt, the same vertical height H, and the
same tube diameter D. In fact, only the placement of the cooler
inside the loop is modified with respect to the VHHC loop
previously studied. The similar characteristics between the circuits
will allow us to compare their stability maps.

Fig. 12 presents the stability maps for the VHVC (I) and VHVC
(II) circuits with parameters: α¼ 1 (only external heating), α¼ 0:5,
and α¼ 0 (only internal heat generation). The first feature that can
be noticed is that the unstable region for the VHVC circuits is
significantly smaller than the one of the VHHC circuit analyzed
earlier (see Fig. 10). When internal heat generation is present, the
unstable zone also grows but does not increase as much as in the
case of the VHHC circuit. A possible reason why the unstable zone
grows slower might be that the VHVC loop still remains asym-
metric even when the external heater is removed from the circuit
(α¼ 0). The asymmetry due to the position of the cooler brings
more stability to the system. The more stable behavior shown by
the VHVC circuit makes this circuit configuration interesting for
engineering applications.

The effects due to the height difference between the cooler and
heater thermal barycenters were also investigated. In the VHVC (II)
loop, the cooler was raised 22 cm while the heater was lowered
35 cm with respect to the configuration of the VHVC (I) loop.
Hence, the overall geometry of the two circuits is the same;
however, the thermal barycenter height difference between the
heater and cooler is larger for the VHVC (II) loop. Fig. 12 shows the
variation of the stability maps for α¼ 1, α¼ 0:5, and α¼ 0. As
shown, the instability zone decreases for all α when the vertical
height difference between the heater and cooler is smaller. Even
though the instability zone is smaller for the VHVC (I) loop, the
drawback of this loop is that the convective driving force is also
smaller (Welander, 1967). From an engineering point of view, a
good natural circulation loop will be the one that guarantees
a sufficient mass flux for the envisioned applications while
avoiding as much as possible the unstable operating modes. To
perform such analysis, it is also required to solve the steady state
Eqs. (9)–(12) with the appropriate equations of state for the fluid
parameters (ρ0; β; μ) to map the steady-state operating curves on
the stability maps. This endeavor was not pursued in this work.
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Fig. 10. Stability maps for a VHHC system for various levels of internal heat
generation. The instability zone grows as the internal heat generation becomes
more dominant.
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Fig. 11. Stability maps for the VHHC loop with internal heat generation only (α¼ 0).
The maps calculated by the linear and numerical nonlinear methods show good
agreement except in the transition region. The differences arise due to the strong
nonlinear behavior of the friction factor at the transition zone.
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5. Conclusions

In this work, the effects of internal heat generation on the stability
of natural circulation closed-loop systems are investigated. Two
methods are used: a linear semianalytical method and a numerical
nonlinear method. These methods are applied to study the stability
maps of different configuration loops when internal heat generation is
present. In this study, it is found that the unstable region of the
stability maps increases when the fluid internal heat generation
becomes larger. Among the studied configurations, the VERTICAL HEATER -
VERTICAL COOLER (VHVC) circuit loop shows a better behavior regarding
stability when internal heat generation is present (see Fig. 13). The
unstable region of this circuit is the smallest and has only a small
growth when the internal heat generation becomes dominant. These
findings suggest that internal heating effects should be taken into
consideration when designing internally heated closed-loop convec-
tive systems.

For future work, the authors believe that it is fundamental to
validate the predictions of the presented model against experimental
data. To this purpose, a testing facility (DYNASTY – DYnamics of
NAtural circulation for molten SalT internallY heated) is currently being
designed at the Politecnico di Milano. It is envisioned that DYNASTY
will also provide useful information on 3D effects that were not
discussed in this paper, such as: non-uniform power generation, cross-
stream temperature gradients effects, and non-uniformity of the fluid
parameters. Construction of the facility will begin in the near future.

Nomenclature

Greek symbols

α parameter describing the ratio between external
heating power and the total heating power

β thermal expansion coefficient (K�1)
γ parameter used in the friction factor
ΔT temperature difference (K)
μ dynamic viscosity (Pa s)
ρ volumetric density (kg m�3)
ω oscillating frequency of the Fourier transform (s�1)

Latin symbols

a coefficient inside the friction factor

A cross-section area of circuit tube (m2)

b coefficient inside the friction factor
cp specific heat (J kg�1 K�1)
D hydraulic diameter (m)
esðsÞ unit vector following the fluid flow
ez unit vector pointing towards the positive vertical

direction
f Darcy friction factor
g gravitational acceleration (m s�1)
G(t) mass flux (kg m�2 s�1)
Gr Grashof number ¼ ðρ2gD3=μ2ÞβΔT

� 
Grm modified Grashof number ¼ ðρ2gD3=μ2ÞβΔTm

� 
h heat exchange coefficient (W m�2 K�1)

I ωf g imaginary part of ω
k thermal conductivity (W m�1 K�1)
Li length of section i of the closed loop (m)
Lt total length of the closed loop (m)
Lheater geometrical factor describing the contribution of the

external heating to the buoyancy force (m)
Lint geometrical factor describing the contribution of the

internal heating to the buoyancy force (m)
Nu Nusselt number ¼ hD=k

� 
p pressure (Pa)
P perimeter of circuit tube (m)
Pr Prandtl number ¼ cpμ=k

� �
q″ external heat flux (W m�2)
q‴ internal heat generation (W m�3)
Re Reynolds number ¼ GD=μ

� �
R ωf g real part of ω
s curvilinear coordinate (m)
St Stanton number ¼Nu Re=Pr

� �
Stm modified Stanton number ¼ 4 StðLt=DÞ

� �
t time (s)
Tðs; tÞ fluid temperature (K)
vðs; tÞ fluid velocity (m s�1)

Subscripts and superscripts

0 steady state
1 perturbation
n reference
c cooler
cl cold leg
h heater
hl hot leg
int internal
m modified
t total
w wall

Acronyms

MSR molten salt reactor
VHHC vertical heater–horizontal cooler
VHVC vertical heater–vertical cooler
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