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Abstract: Finite-time H
∞
 control for switched systems with time-varying delay using delta operator 

approach is investigated in this paper. Firstly, by using the average dwell time approach and delta oper-

ator theory, sufficient conditions for H
∞
 finite-time boundedness of the underlying systems are derived. 

Then a state feedback controller is proposed such that the resulting closed-loop system is H
∞
 finite-

time bounded. All the obtained results are formulated in terms of linear matrix inequalities (LMIs). Fi-

nally, an example is presented to show the validity of the proposed results. 
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1. INTRODUCTION

A switched system is a hybrid dynamic system that is 

composed of a family continuous-time or discrete-time 

subsystems with certain maps for switching among them. 

Many dynamical systems can be modeled as switched 

systems [1-4], and many important achievements and 

remarkable researches have been developed [5,6]. 

The delta operator which creates the rapprochement 

between continuous- and discrete-time systems, and 

establishes the natural framework to investigate the 

behavior of discrete-time systems in the fast sampling 

limit has been investigated by Goodwin and Middleton 

in [7]. The delta operator is defined by 

( ) ,    0,
( )

( ( ) ( )) ,    0,

dx t dt T
x t

x t T x t T T
δ

=⎧
= ⎨

+ − ≠⎩

Since then, more researches based on delta operator have 

been highlighted [10-13]. To mention a few, stability of 

uncertain systems was established in [14]. Recently, 

robust control for delta operator systems was 

investigated in [15-18]. In [19], robust stabilization 

problem for discrete-time systems with time-varying 

delays was discussed. Some results on filter and observer 

design of delta operate systems were obtained in [20,21]. 

It should be pointed out that the aforementioned results 

are on Lyapunov stability. 

Finite-time stability is another stability concept which 

admits that the state does not exceed a certain bound 

during a fixed finite-time interval. The early results on 

finite-time stability date back to the 1950s, when it was 

introduced in the Russian literature. It should be 

emphasized that a finite-time stable system may not be 

Lyapunov stable, and finite-time stability is more useful 

to study the behavior of the system within a finite 

interval. Recently, a few results on finite-time stability of 

switched systems have been given in [22,23]. Some 

results on finite-time H
∞
 control for switched systems 

have been reported in the literature [24-29]. However, to 

the best of our knowledge, there are few results available 

on finite-time stability and finite-time boundedness of 

delta operator switched systems with time-varying delay, 

and this is the motivation for our study. 

In this paper, the finite-time H
∞
 controller design 

problem for delta operator switched systems with time-

varying delay is considered. The main contributions of 

this paper can be summarized as follows: 1) The 

definition of H
∞
 finite-time boundedness is extended to 

delta operator switched systems with time-varying delay; 

2) Sufficient conditions for the existence of H
∞
 finite-

time boundedness of the underlying systems are given

through constructing a new Lyapunov-Krasovskii

functional candidate and using the average dwell time

approach; 3) By virtue of linear matrix inequality

approach, a state feedback controller is designed to

guarantee that the closed-loop delta operator switched

system is H
∞
 finite-time bounded.

where T is the sampling period. The transformations 

between shift operator and delta operator transfer 

function models were investigated in [8]. The delta 

operator can avoid the numerical instability problems 

caused by the conventional shift operator when fast 

sampling, and also can improve the performance of 

adaptive algorithms. In addition, it was shown in [9] that 

a technique was developed to obtain an approximate 

delta operator system for a given continuous system. 
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The paper is organized as follows. In Section 2, the 

formulation of the considered systems and some 

corresponding definitions and lemmas are given. The H
∞
 

finite-time boundedness analysis and control are 

developed for the underlying systems in Section 3. A 

numerical example is provided to illustrate the proposed 

results in Section 4 and concluding remarks are 

presented in Section 5. 

Notations: In this paper, 0 ( 0)A > ≥  means that the 

matrix A is positive (nonnegative) definite; AT is the 

transpose of matrix A; n

R  represents the n-dimensional 

real vector space; m n

R
×  stands for the set of all (m×n) -

dimensional real matrices; 
2 0
[ , )l k ∞  represents the

space of square summable functions on 
0

[ , );k ∞ { }diag �  

refers to a block-diagonal matrix; I is an identity matrix 

of an appropriate dimension; 
min

( )λ ⋅  and 
max

( )λ ⋅  denote 

the minimum and maximum eigenvalues of a matrix, 

respectively; 
2

⋅� � means the Euclidean norm. The

symbol * represents the symmetric term in a symmetric 

matrix. 

2. PROBLEM FORMULATION AND

PRELIMINARIES 

Consider the following delta operator switched system 

with time-varying delay: 

( ) ( )

( ) ( )
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 (1) 

where ( ) n

x k R∈  represents the state vector; ( ) m

u k R∈

means the control input; ( ) l
z k R∈  is the controlled 

output; ( ) w

w k R∈  denotes the disturbance input satisfy-

ing 

2

0

( ) ( ) ,T

k

w k w k d

∞

=

<∑ 0.d ≥ (2) 

( ) : [0, ) {1,2, , }k N Nσ ∞ → = �  is the switching signal 

with N being the number of subsystems. ( )ϕ θ  denotes 

the discrete vector-valued initial function. ( )kτ  stands 

for the time-varying delay satisfying 0 ( )kτ τ τ≤ ≤ ≤  

for known constants τ  and .τ k represents the time 

t kT=  and 0T >  is the sampling period. Ci, i
D  and 

,
i

G ,i N∈  are constant matrices with appropriate 

dimensions. ˆ ( ),
i

A k ˆ ( )
di

A k  and ˆ ( )
i

B k  are uncertain

real-valued matrices with proper dimensions and are 

briefly denoted by ˆ ,
i

A ˆ
di

A and ˆ ,
i

B respectively. ˆ ,
i

A

ˆ
di

A and ˆ
i

B  can be expressed as follows: 

ˆ ˆ ˆ[ ] [ ]

( )[ ],

i di i i di i

i i ai adi bi

A A B A A B

H F k E E E

=

+

(3)

where ,
i

A ,
di

A ,
i

B ,
i

H ,
ai

E
adi

E  and 
bi

E  are known 

real constant matrices with suitable dimensions and the 

uncertain time-varying matrix ( )
i

F k  satisfies 

( ) ( ) .T

i i
F k F k I≤ (4)

Next, we will give some definitions and lemmas which 

will be essential in our later development for the 

following switched system: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ( )) ( ),

( ) ( ) ( ),
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k d k k

k k
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x
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δ τ
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Definition 1 [26]: (Finite-time stability) Given positive 

constants ,fT 1
η  and 

2
η  with 

1 2
,η η<  a positive 

definite matrix R and a switching signal ( ),kσ  if 

[0, ),fk T∀ ∈  we have 

1 2

0

sup { ( ) ( )} ( ) ( ) ,
T T
x Rx x k Rx k

τ θ

θ θ η η

− ≤ ≤

≤ ⇒ <

then switched system (5) with ( ) 0w k ≡  is said to be 

finite-time stable with respect to 
1 2

( , , , , ( )).fT R kη η σ  If 

the above condition is satisfied for any switching signal 

( ),kσ  system (5) with ( ) 0w k ≡  is said to be uniformly 

finite-time stable with respect to 
1 2

( , , , ).fT Rη η  

Definition 2 [26]: (Finite-time boundedness) Given 

positive constants ,fT 1
η  and 

2
η  with 

1 2
,η η<  a 

positive definite matrix R and a switching signal ( ),kσ  

if [0, ),fk T∀ ∈  one has 

1 2

0

sup { ( ) ( )} ( ) ( ) ,
T T
x Rx x k Rx k

τ θ

θ θ η η

− ≤ ≤

≤ ⇒ <

then switched system (5) is said to be finite-time 

bounded with respect to 
1 2

( , , , , , ( )).fd T R kη η σ  If the 

above condition is satisfied for any switching signals 

( ),kσ  system (5) is said to be uniformly finite-time 

bounded with respect to 
1 2

( , , , , ).fd T Rη η  

Definition 3 [29]: (weighted H
∞
 finite-time bounded-

ness) For a given time constant ,fT 1
η  and 

2
η  with 

1 2
η η<  and a positive definite matrix R, switched system 

(5) is said to be H
∞
 finite-time bounded with respect to

1 2
( , , , , , ( )),fd T R kη η σ  if the following conditions are 

satisfied: 

1) Switched system (5) is finite-time bounded with

respect to 
1 2

( , , , , , ( ));fd T R kη η σ  

2) Under zero-initial condition, i.e., ( ) 0,ϕ θ = θ =

, 1, , 1,0,τ τ− − + −… it holds that 

1 1

2 22 2

0 0

(1 ) ( ) ( ) ,
f fT T

k

k k

T z k w kα γ

− −

−

= =

− ≤∑ ∑ (6)

where 0,α < 0γ >  and ( )w k  satisfies (2).  

Definition 4 [16]: For any switching signal ( )kσ

and 
2 1

0,k k> ≥  let 
1 2

( , )N k k
σ

 denote the switching 

number of ( )kσ  over the interval 
1 2

[ , ).k k  For given 

0
a

τ > and
0

0,N ≥  if the inequality 

2 1

1 2 0
( , )

a

k k
N k k N
σ

τ

−
≤ +

holds, then the positive constant τ
a
 is called the average 

dwell time and N0 is called the chattering bound. As 



commonly used in the literature, we choose N0 = 0 in this 

paper. 

Lemma 1 [16]: For a given matrix 11 12

12 22

,
T

S S

S S

S
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=

where S11 and S22 are square matrices, the following 

conditions are equivalent: 

(i) 0;S <

(ii) 
11

0,S <
1

22 12 11 12
0;

T
S S S S

−

− <

(iii) 
22

0,S <
1

11 12 22 12
0.

T
S S S S

−

− <

Lemma 2 [16]: Let U, V, W and X be real matrices of 

appropriate dimensions with X satisfying ,

T
X X=

then for all ,

T
V V I≤

0,
T T T

X UVW W V U+ + <

if and only if there exists a scalar ε such that 

1
0.

T T
X UU W Wε ε

−

+ + <

Lemma 3 [18]: For any time function ( )x t  and ( ),y t  

the delta operator has the following property 

( ( ) ( )) ( ( )) ( ) ( ) ( ( ))

( ( )) ( ( )),

x t y t x t y t x t y t

T x t y t

δ δ δ

δ δ

= +

+

(7)

where T is the sampling period. 

The aim of the paper is to find a class of switching 

signals ( )kσ  and design a state feedback controller 

( )( ) ( )
k

u k K x k
σ

=  for delta operator switched system (1) 

such that the corresponding closed-loop system is H
∞
 

finite-time bounded. 

3. MAIN RESULTS

3.1. Finite-time stability and boundedness 

In this section, we focus on finite-time boundedness of 

system (5). 

Theorem 1: For given positive constants ,fT ,R
1

η  

and 
2

η  satisfying 
1 2

,η η<  and a constant 0,α <  if 

there exist positive scalars ,
g

λ 1,2,3, 4,g =  and positive 

definite symmetric matrices ,
i
P

i
Y  and ,

i
S ,i N∈  with 

appropriate dimensions, such that 

(1 ) 0,

1

T T

i i di i i di i i i i i

T T

di i di i di i i

T

i i i i

P A TA PA PD TA PD

TA PA T S TA PD

TD PD Y
T

τ

α

⎡ ⎤
Ω + +⎢ ⎥
⎢ ⎥
∗ − − ≤⎢ ⎥

⎢ ⎥
∗ ∗ −⎢ ⎥

⎢ ⎥⎣ ⎦

 

(8)

1 2
,χ λη< (9)

where 

( 1) ,T T

i i i i i i i i i i i
P A A P TA P A P Sα τ τΩ = + + + + − +

2

2 3 1

2

4

(1 ) (( ( )(1 ) )

( )),
1

fT
T T T

d

T

τ

χ α λ τ τ τ τ α λ η

λ

α

= − + − + −

+

−

1 2
,

i
R P Rλ λ≤ ≤

3
,

i
S Rλ≤

4
,

i
Y Iλ≤

then under any switching signal σ(k) with the following 

average dwell time scheme 

*

1 2

ln
,

ln( ) ln

f

a a

T μ
τ τ

λη χ
> =

−

(10)

system (5) is finite-time bounded with respect to 1( ,η  

2
, , , , ( )),fd T R kη σ  where 1µ ≥  satisfies 

,
i j
P Pµ≤ ,

i j
S Sµ≤ , .i j N∀ ∈ (11)

Proof: Choose the following Lyapunov-Krasovskii 

functional candidate 

1 2 3( ) ( ) ( ) ( ),
i i i i

V k V k V k V k= + +  ,i N∀ ∈ (12)

where 

1
( ) ( ) ( ),T

i i
V k x k P x k=  
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2
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k

k s T
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τ
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1
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3

1

( ) (1 ) ( ) ( ).
k

k s T
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l s k l
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τ

τ

α

− −
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=− + = +
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Taking the delta operator manipulations of Lyapunov 

functional candidate ( )
i

V k  along the trajectory of 

system (5) with ( ) 0,w k ≡  by Lemma 3 we have 

1( ) ( ( ) ( ))

( ( ) ) ( ) ( ) ( ( ))
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τ
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+
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where 
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⎡ + + +
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1 1
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3 3 3

1
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1

1
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τ
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δ
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( )

1

( ) ( ) ( )

(1 ) ( ) ( ).

T

i

k

k s T
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x k S x k

T x s S x s

τ

τ

τ τ

α

−

−

= + −

+ −

− −∑
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Combining (13)-(15), we have 

( ) ( )

( ) ( )

( ( )) ( ( ))

( ) ( )

( ) ( ) ( 1) ( ) ( )

(1 ) ( ( )) ( ( ))

( ) ( )

( ( )) ( ( )) ,

( ) ( )

i i

T

i

T T

i i

T

i

T

i

V k V k

x k x k

x k k x k k

w k w k

x k Px k x k S x k

T x k k S x k k

x k x k

x k k x k k

w k w k

τ

δ α

τ τ

α τ τ

α τ τ

τ τ

+

⎡ ⎤ ⎡ ⎤
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− − − −
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�

(16)

where 

(1 ) ,

T T

i i di i i di i i i i i

T T

i di i di i di i i

T

i i i

PA TA PA PD TA PD

TA PA T S TA PD

TD PD

τ

α

⎡ ⎤Ω + +
⎢ ⎥

Ω = ∗ − −⎢ ⎥
⎢ ⎥
∗ ∗⎢ ⎥⎣ ⎦

�  

( 1) .T T

i i i i i i i i i i i
PA A P TA P A P Sα τ τΩ = + + + + − +

According to (8) and (16), we can easily obtain 

1
( ) ( ) ( ) ( ).T
i i iV k V k w k Y w k

T
δ α+ ≤ (17)

It follows from (17 ) that 

( 1) ( ) 1
( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( )

( 1) (1 ) ( ) ( ) ( ).

Ti i
i i i

T
i i i i

T
i i i

V k V k
V k V k w k Y w k

T T

V k V k TV k w k Y w k

V k T V k w k Y w k

δ α

α

α

+ −

= ≤ − +

⇒ + − ≤ − +

⇒ + ≤ − +

(18)

Let 
1

0
q

k k< < <�  denote the switching instants of 

( )kσ  over the interval [0, ).fT  For 
1

[ , ),
p p

k k k
+

∈  one 

obtains from (18) that 

( )

( ) ( )

1
( 1)

( )

( ) (1 ) ( )

(1 ) ( ) ( ).

p

p

p

p

k k

k k p

k
k s T

k

s k

V k T V k

T w s Y w s

σ σ

σ

α

α

−

−

− −

=

≤ −

+ −∑
 (19) 

Consider the following piecewise Lyapunov functional 

candidate for system (5) 

( ) ( )( ) ( ) ( ),
pk k

V k V k V k
σ σ

= =  [ , 1),
p p

k k k∀ ∈ +  

0,1, , .p q= � (20)

From (11), we can obtain 

( ) ( )
( ) ( ),

p
p

k p pk
V k V k
σ

σ

µ
−

−

≤  0,1, , .p q= � (21)

From (19), (21) and Definition 4, we can obtain 

1

( )

( ) ( )

1
( 1)

( )

( )

( )

1
( 1)

( )

(0, )
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(0)

0

( ) (1 ) ( )

(1 ) ( ) ( )

(1 ) ( )

(1 ) ( ) ( )

(1 ) (0)
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q

q
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k
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k
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k
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k
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s
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σ σ

σ
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σ
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σ

α
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μ α

α

μ α
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=
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−
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=

−

− −

=

≤ −

+ −

≤ −
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∑

…
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1
( , ) ( 1)

( )

0

(0)

1
( 1)(0, )
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σ
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=
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=
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=
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1
( 1)

( )

0

(1 ) ( ) ( )).f
k

T T

s

s

T w s Y w s
σ

α

−

−

=

+ − ∑  (22) 

Considering that 
1 2

,
i

R P Rλ λ≤ ≤
3i

S Rλ≤  and 
4
,

i
Y Iλ≤

,i N∀ ∈  it yields that 

( ) ( )

1
( 1)

( )

( )

1
( 1)

( )

1

( ) ( ) ( )

(1 ) ( ) ( )

(1 ) ( ) ( )

T

k k

k
k s T

k

s k k

k
k s T

k

l s k l

V k x k P x k

T T x s S x s

T T x s S x s

σ σ

σ

τ

τ

σ

τ

α

α

−

− −

= −

− −

− −

=− + = +

=

+ −

+ −

∑

∑ ∑



( )

1 1 1 1

2 2 2 2
( )

1

( ) ( )

( ) ( ) ( )

( ) ( ),

T

k

T

k

T

x k P x k

x k R R P R R x k

x k Rx k

σ

σ

λ

− −

≥

=

≥

(23)

( ) (0)

( )

0

2
(0) 4

( ) (1 ) ( (0)

( ) ( ))

(1 ) ( (0) ),

f

fa

f

fa

T

T

k

k
T

s

s

T

T

V k T V

w s Y w s

T V d

τ

σ σ

σ

τ

σ

μ α

μ α λ

=

≤ −

+

≤ − +

∑ (24)

2
(0) 2

3
0

2
2 3 1

(0) (0) (0) ( )(1

) sup { ( ) ( )}

( ( )(1 ) ) .

T

T

V x Rx T

T x Rx

T T

σ

τ

τ θ

τ

λ τ τ τ τ

α λ θ θ

λ τ τ τ τ α λ η

− ≤ ≤

≤ + − +

−

≤ + − + −

 (25) 

Combining (23)-(25), we obtain 

1
( ) ( ) ,

f

a

T

T
x k Rx k

τ

λ μ χ≤ (26)

where 

2

2 3 1

2

4

(1 ) (( ( )(1 ) )

( )).
1

fT
T T T

d

T

τ

χ α λ τ τ τ τ α λ η

λ

α

= − + − + −

+

−

Substituting (10) into (26), we have 

2
( ) ( ) .T

x k Rx k η≤  

According to Definition 2, system (5) is finite-time 

bounded with respect to 
1 2

( , , , , , ( )).fd T R kη η σ  

The proof is completed. 

Remark 1: When 1µ =  in (11), which leads to 

,
i j
P P= ,i jS S= , ,i j N∀ ∈  and *

0
a

τ =  by (10), system 

(5) has a common Lyapunov-Krasovskii functional

candidate and the switching signal can be arbitrary.

Remark 2: Compared with the existing results on fi-

nite-time boundedness of switched systems [24-26], the 

results derived in this paper is based on delta operate 

theory, and the proposed Lyapunov-Krasovskii function-

al candidate is dependent on the sampling time T. Fur-

thermore, the proposed results unify some existing re-

sults of finite-time boundedness into the delta operator 

framework. 

3.2. H
∞
 performance analysis 

The following subsection will consider the problem of 

H
∞
 finite-time boundedness of system (5). 

Theorem 2: For given positive constants ,fT ,R
1

η  

and 
2

η  satisfying 
1 2

,η η<  and constants 0α <  and 

0,γ >  if there exist positive scalars ,gλ 1,2,3,g =  and 

positive definite symmetric matrices 
i
P  and ,

i
S ,i N∈

with appropriate dimensions, such that 

1 2

3

(1 ) 0,

T

i i di i i di i

T T

di i di i di i i

i

PA TA PA

TA PA T S TA PD
τ

α

⎡ ⎤Θ + Θ
⎢ ⎥
∗ − − ≤⎢ ⎥

⎢ ⎥
∗ ∗ Θ⎢ ⎥⎣ ⎦

 (27) 

1 2
,χ λη< (28)

where 

1
( 1) ,T T T

i i i i i i i i i i i i i
PA A P TA PA P S C Cα τ τΘ = + + + + − + +

1

2
,

T T

i i i i i i i i
PD TA PD T C G

−

Θ = + +

1 1 2

3
,

T T

i i i i i i
TD PD T G G T Iγ

− −

Θ = + −

2

2 3 1

2

4

(1 ) (( ( )(1 ) )

( )),
1

fT
T T T

d

T

τ

χ α λ τ τ τ τ α λ η

λ

α

= − + − + −

+

−

1 2
,

i
R P Rλ λ≤ ≤

3
,

i
S Rλ≤

2

4
,Tγ λ=

then under any switching signal σ(k) with the following 

average dwell time scheme 

*

1 2

ln ln
max , ,

ln( ) ln ln(1 )

f

a a

T

T

μ μ
τ τ

λη χ α

⎧ ⎫⎪ ⎪
> = ⎨ ⎬

− −⎪ ⎪⎩ ⎭
 (29) 

system (5) is H
∞
 finite-time bounded with respect to 

1 2
( , , , , , ( )),fd T R kη η σ  where 1µ ≥  satisfies (11). 

Proof: Setting 2

i
Y TIγ=  in Theorem 1, (8) can be 

directly derived from (27). We can obtain from (27), (28) 

and (11) that system (5) is finite-time bounded with 

respect to 
1 2

( , , , , ).fd T Rη η  

Choosing the Lyapunov-Krasovskii functional 

candidate (12) and following the proof line of Theorem 1, 

we can get 

1 1 2

1 2

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ( ) ( )) ( ( ) ( ))

( ) ( )

( ( )) ( ( )) ,

( ) ( )

T T

i i

T

i i

T

T

i

V k V k T z k z k T w k w k

V k V k T w k w k

T Cx k Gw k Cx k Gw k

x k x k

x k k x k k

w k w k

δ α γ

δ α γ

τ τ

− −

−

−

+ + −

= + −

+ + +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − Θ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�

 (30) 

where 

1 2

3

(1 ) .

T

i i di i i di i

T T

i di i di i di i i

i

PA TA PA

TA PA T S TA PD
τ

α

⎡ ⎤Θ + Θ
⎢ ⎥

Θ = ∗ − −⎢ ⎥
⎢ ⎥
∗ ∗ Θ⎢ ⎥⎣ ⎦

�  

It follows from (27) and (30) that 

( )

( ) ( )

1
( 1)

( ) (1 ) ( )

(1 ) ( ),

p

p

p

k k

k k p

k
k s

s k

V k T V k

T s

σ σ
α

α

−

−

− −

=

≤ −

− − Λ∑
(31)

where 
2 22( ) ( ) ( ) .s z s w sγΛ = −  

Following the proof line of (22), for any [0, ),fk T∈  we 

can get 



(0, )
( ) (0)

1
( , ) ( 1)

0

( ) (1 ) (0)

(1 ) ( ).

N k k

k

k
N s k k s

s

V k T V

T s

σ

σ

σ σ
μ α

μ α

−

− −

=

≤ −

− − Λ∑
(32)

Under the zero initial condition, we have 

1
2( , ) ( 1)

0

1
2( , )2 ( 1)

0

(1 ) ( )

(1 ) ( ) .

k
N s k k s

s

k
N s k k s

s

T z s

T w s

σ

σ

μ α

γ μ α

−

− −

=

−

− −

=

−

< −

∑

∑

(33)

Multiplying both sides of (33) by 
(0, )N k

σµ
−

 leads to 

1
2(0, ) ( 1)

0

1
2(0, )2 ( 1)

0

(1 ) ( )

(1 ) ( ) .

k
N s k s

s

k
N s k s

s

T z s

T w s

σ

σ

μ α

γ μ α

−

− − −

=

−

− − −

=

−

≤ −

∑

∑

(34)

From (29), we have 

(0, )
(1 ) .

N s s
Tσμ α

− −

≥ − (35)

Then, we can obtain 

1
2( )

0

1
22 ( )

0

(1 ) (1 ) ( )

(1 ) ( ) .

k
s k s

s

k
k s

s

T T z s

T w s

α α

γ α

−

− −

=

−

−

=

− −

≤ −

∑

∑

(36)

Let ,fk T=  then multiplying both sides of (36) by 

(1 ) fT
Tα

−

−  leads to 

1 1

2 22 2

0 0

(1 ) ( ) ( ) .
f fT T

s

s s

T z s w sα γ

− −

−

= =

− ≤∑ ∑ (37) 

According to Definition 3, we can conclude that the 

theorem is true. 

The proof is completed. 

3.3. Finite-time H
∞
 control 

Considering system (1) under the state feedback 

controller ( )( ) ( ),
k

u k K x k
σ

=  the corresponding closed-

loop system is given by 

( ) ( ) ( )

( ) ( )

( ) ( )

ˆ ˆ( ) ( ( ) ( ) ) ( )

ˆ ( ) ( ( )) ( ),

( ) ( ) ( ),

( ) ( ), , 1, ,0.

k k k

d k k

k k

x k A k B k K x k

A k x k d k D w k

z k C x k E w k

x

σ σ σ

σ σ

σ σ

δ

θ ϕ θ θ τ τ

⎧ = +
⎪
⎪ + − +⎪
⎨

= +⎪
⎪

= = − − +⎪⎩ …

 (38) 

Theorem 3: Consider system (1), for given positive 

constants ,fT ,R
1

η  and 
2

η  satisfying 
1 2

,η η<  and 

constants 0α <  and 0,γ >  if there exist positive scalars 

εi and ,
g

λ 1,2,3,g =  positive definite symmetric 

matrices Xi and ,
i

Q  and any matrices ,
i

W ,i N∈  with 

appropriate dimensions, such that 

1 2

( )

(1 ) 0

T

i di i i i i i i

T

i i di

T

i

i

A X D T A X BW

T Q TX A

T I TD

TX

τ

α

γ
−

⎡Ξ +
⎢
∗ − −⎢

⎢
∗ ∗ −⎢

⎢ ∗ ∗ ∗ −
⎢
∗ ∗ ∗ ∗⎢

⎢ ∗ ∗ ∗ ∗⎢
⎢ ∗ ∗ ∗ ∗⎣

( )

0 0

0 0

0,0 0

0 0

0

T T

i i i i ai i bi i

T

i adi

T

i

i i

i

i

X C H E X E W

X E

G

TH

TI

I

I

ε

ε

ε

ε

⎤+
⎥
⎥
⎥
⎥
⎥ ≤
⎥

− ⎥
⎥∗ − ⎥
⎥∗ ∗ − ⎦

 (39) 

1 2
,χ λη< (40)

where 

( ) ( )

( 1) ,

T

i i i i i i i i i

i i i

A X BW A X BW

X Qα τ τ

Ξ = + + +

+ + − +

2

2 3 1

2

4

(1 ) (( ( )(1 ) )

( )),
1

fT
T T T

d

T

τ

χ α λ τ τ τ τ α λ η

λ

α

= − + − + −

+

−

1

1 2
,

i
R X Rλ λ

−

≤ ≤
1 1

3
,

i i i
X Q X Rλ

− −

≤
2

4
,Tγ λ=

then under any switching signal ( )kσ  with the average 

dwell time scheme (29), the closed-loop system (38) is 

H
∞
 finite-time bounded with respect to 

1 2
( , , , ,fd Tη η  

, ( )),R kσ  where 1µ ≥  satisfies 

,
i j

X Xµ≤ ,
i j

Q Qµ≤ , .i j N∀ ∈ (41)

Proof: Replacing Ai and 
di

A  in (27) with ˆ ˆ

i i i
A B K+

and ˆ ,
di

A we can get 

1

1 1 2

ˆ ˆ ˆˆ ˆ( )

ˆ ˆ (1 )

ˆ ˆ( )

ˆ 0,

T

i i di i i i i di

T

di i di i

T T

i i i i i i i i i

T

di i i

T T

i i i i i

PA T A B K PA

TA PA T S

PD T A B K PD T C G

TA PD

TD PD T G G T I

τ

α

γ

−

− −

⎡Θ + +
⎢
∗ − −⎢

⎢
∗ ∗⎢⎣

⎤+ + +
⎥
≤⎥

⎥
+ − ⎥⎦

 (42) 

where 

ˆ ˆˆ ˆ ˆ( ) ( )
T

i i i i i i i i i i i
P A B K A B K P PαΘ = + + + +

ˆ ˆˆ ˆ( ) ( )
T

i i i i i i i
T A B K P A B K+ + +

1
( 1) .

T

i i i
S T C Cτ τ

−

+ − + +

By Lemma 1, (42) is equivalent to 



1 2

1

ˆ ˆ ˆˆ ( )

ˆ(1 ) 0 0

0

T T

i i di i i i i i i

T

i di

T T

i i

i

P A PD T A B K C

T S TA

T I TD G

TP

TI

τ

α

γ
−

−

⎡ ⎤Ξ +
⎢ ⎥
∗ − −⎢ ⎥

⎢ ⎥
∗ ∗ −⎢ ⎥

⎢ ⎥
∗ ∗ ∗ −⎢ ⎥

⎢ ⎥∗ ∗ ∗ ∗ −⎣ ⎦

0,≤  (43) 

where 

ˆ ˆˆ ˆˆ ( ) ( )

( 1) .

T

i i i i i i i i i

i i i

P A B K A B K P

P Sα τ τ

Ξ = + + +

+ + − +

Using 1 1{ }
i i

diag P P I I I
− −  to pre- and post- 

multiply the left term of (43), respectively, we can obtain 

1 1

1 3

1

2

1 2

1

ˆ

ˆ0 0

0,

0

T

i di i i i i i

T

i i di

T T

i i

i

A P D P C

TP A

T I TD G

TP

TI

γ

− −

−

−

−

⎡ ⎤Ξ Ξ
⎢ ⎥
∗ Ξ⎢ ⎥

⎢ ⎥ ≤∗ ∗ −⎢ ⎥
⎢ ⎥
∗ ∗ ∗ −⎢ ⎥

⎢ ⎥∗ ∗ ∗ ∗ −⎣ ⎦

 (44) 

where 

1 1 1

1

1 1

ˆ ˆˆ ˆ( ) ( )

( 1) ,

T

i i i i i i i i i i i

i i i

A B K P P A B K P

P S P

α

τ τ

− − −

− −

Ξ = + + + +

+ − +

1 1

2
(1 ) ,

i i i i
T P S P

τ

α
− −

Ξ = − −

1

3
ˆ ˆ( ) .T

i i i i i
TP A B K

−

Ξ = +  

Denote 1 1
,

i i i i
Q P S P

− −

=

1

i i
X P

−

=  and ,
i i i

W K X=  the

n substituting (3) into (44) and applying Lemmas 1 and 2, 

(44) and (41) is equivalent to (39) and (11), respectively.

The proof is completed.

Based on Theorem 3, we are now in a position to

present an effective algorithm for constructing the 

desired controller. 

Algorithm 1: 

Step 1: Input the system matrices. 

Step 2: Choose the parameters 0α <  and 0.γ >  

By solving (39) and (40), one can get the solutions of εi, 

Wi, Xi and Qi. 

Step 3: From 1

i i i
K W X

−

=  with the obtained Wi and 

Xi, one can compute 
i

K . 

Step 4: Compute µ  and *

a
τ  by (29) and (41). 

4. NUMERICAL EXAMPLE

In this section, a numerical example will be presented 

to demonstrate the validity of the proposed results. 

Consider system (1) with parameters as follows: 

1

4 1
,

1 3
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1

0.2 0.1
,

0.2 0.1
d

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

1

0.5 0.1
,

0.3 0.2
B

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1

0.1 0.1 ,C ⎡ ⎤= −⎣ ⎦ 1

0.1
,

0.2
D

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

1
0.2,G =

1

0.05
,

0.05
H

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1

0.01
,

0.03

T

a
E

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1

0.03
,

0.1

T

ad
E

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

1

0.02
,

0.01

T

b
E

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

5 2
,

2 3
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

2

0.1 0.2
,

0.1 0.2
d

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
2

0.6 0.2
,

0.4 0.3
B

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

2
0.1 0 ,C ⎡ ⎤= ⎣ ⎦ 2

0.2
,

0.1
D

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

2
0.1,G =

2

0.07
,

0.1
H

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

0.06
,

0.03

T

a
E

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

2

0.01
,

0.03

T

ad
E

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

0.04
,

0.01

T

b
E

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1 2
( ) ( ) sin( ),F k F k k= =  1,τ = 0.τ =

Taking 
1

1,η =
2

5,η = 0.25,T = 0.4,α = − 1.2,γ =  

0.1d =  and ,R I=  and solving (39) and (40) in 

Theorem 3 lead to 

1

4.4082 0.0142
,

0.0142 4.5037
X

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1

3.7646 0.0188
,

0.0188 3.7844
Q

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

2

4.3821 0.0688
,

0.0688 4.4141
X

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2

3.7734 0.0272
,

0.0272 3.7869
Q

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

1
0.2219,λ =

2
0.2311,λ =

3
0.2032,λ =

and the state feedback gain matrices can be given as 

follows: 

1

5.2693 3.0743
,

3.0873 5.1986
K

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

2

5.9941 3.8432
.

1.6713 1.3216
K

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 

According to (41), we have 1.0278.µ =  Then from 

(29), we get *

1.2950.
a

τ =  Choosing 2,
a

τ =  the simu-

lation results are shown in Figs. 1-2, where the initial 

conditions are (0) [1 0] ,T
x = ( ) [0 0] ,T

x k = 1,k = −

and the exogenous disturbance input is 0.5( ) 0.05 .kw k e
−

=  

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

k(sample)

M
o
d

e
 S

y
s
te

m

Fig. 1. Switching signal. 



Fig. 1 depicts the switching signal. The state trajectory of 

the closed-loop system is shown in Fig. 2. Furthermore, 

the evolution of ( ) ( )T
x k Rx k is plotted in Fig. 3, where 

“sup” denotes the value of 
0

sup { ( ) ( )}.
T
x Rx

τ θ

θ θ

− ≤ ≤

 It is easy 

to see that the closed-loop system is finite-time bounded 

with respect to (1,5,0.1,10, , ( )).I kσ  This demonstrates 

the effectiveness of the proposed method.  

5. CONCLUSIONS

This paper has dealt with the finite-time H∞ control for 

switched systems with time-varying delay using delta 

operator approach. Sufficient conditions for finite-time 

stability and H∞ finite-time boundedness of the 

underlying systems are given. The desired state feedback 

controller is designed such that the closed-loop system is 

H∞ finite-time bounded. Finally, a numerical example 

illustrates the effectiveness of the proposed method. In 

our further work, we will extend the proposed results to 

switched nonlinear systems or switched systems with 

Markov jump framework [30-32]. 
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