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Abstract

The purpose of this paper is to derive various representations of the Dirac delta distri-
bution, including a Bony-type twisted Radon decomposition, from boundary values of 
monogenic functions. This leads to a new and simpler approach based on the properties 
of the analogue of the Cauchy kernel in the context of monogenic functions.
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§1. Introduction

An important problem in the theory of distributions is the way in which distribu-

tions with very large microsupport can be written in terms of distributions each 
of which has a comparably smaller microsupport.

Maybe the first and clearest examples occurs for the Dirac delta δ in R which is 
supported at the origin, but whose microsupport contains both directions, namely it 
is (0, ±i). As is well known, one can represent the delta distribution as a sum of two 
distributions, each of which has a microsupport composed of a single point,

i.e. δ = δ+ + δ−.
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The same decomposition is true in the case of several variables, though now

the sum is replaced by an integral over the unit sphere. This result is known as

the Radon decomposition of the delta distribution.

The first goal of this paper is to show how Clifford analysis can be used

to obtain this kind of results by exploiting the properties of the Cauchy kernels

that are available in that context. In so doing, however, we will also discover

new and different representations that are available because, for example, the

delta distribution in Rm can be thought of as the sum of 2m boundary values of

holomorphic functions in Cm, as well as the boundary values of two monogenic

functions on Rm+1.

We begin by reviewing the classical work of Kaneko and others on plane wave

decomposition. We then consider the case of distributions in R3 as boundary values

of the Cauchy kernel for regular functions on the space H of quaternions. We then

extend the analysis to the higher dimensional case using monogenic functions and

Clifford analysis.

The paper consists of three sections, besides the introduction. Section 2 deals

with the various representations of the delta distribution, both in one and several

variables. We also discuss how an idea inspired by the Fourier–Bros–Iagolnitzer

transform leads to a representation of the Dirac delta by taking the real part of

the restriction of the Cauchy kernel to a parabola, multiplied by a suitable factor,

i.e.

(1.1) δ(x) = 2 Re

[
− 1

2πiz

∣∣∣∣
y=ax2

(1 + ax)

]
.

Section 3 treats the specific case of dimension 3 by making use of the represen-tation 
of the so-called Cauchy–Fueter kernel and other techniques of quaternionic 
analysis. We generalize formula (1.1) to the three-dimensional case and, as a corol-

lary, we derive a Bony-type formula. Finally, Section 4 generalizes this discussion to 
the case of dimension greater than 3 by using Clifford analysis techniques.

§2. Representations of the delta distribution

The delta distribution can be written in several ways. For example, it decomposes 
as the sum

(2.1) δ(x) = δ+(x) + δ−(x)

where

(2.2) δ±(x) =
1

2

(
δ(x)± i

π
PV

1

x

)
,



where PV denotes principal value. As a hyperfunction, the delta corresponds to[
− 1

2πiz

]
.

We now use the Fourier–Bros–Iagolnitzer transform (see [2]) to represent the delta 
distribution. We recall (see [6, Lemma 3.33]) that

δ(x) =
∫ ∞
−∞

e2π(ixξ−ax
2|ξ|)(1 + iax sgn ξ) dξ, a > 0.

We use this result to show that the decomposition (2.1) holds.

Definition 2.1. Let a be a positive real number. For every f ∈ S(R) we define the 
functionals

〈f, T+〉 :=
∫ ∞
−∞

dx f(x)
∫ ∞
0

e2π(ix−ax
2)ξ(1 + iax) dξ,(2.3)

〈f, T−〉 :=
∫ ∞
−∞

dx f(x)
∫ 0
−∞

e2π(ix+ax
2)ξ(1 − iax) dξ.(2.4)

We have the following result (see [6]):

2

Theorem 2.2. Let T± be the functionals defined in (2.3) and (2.4). Then T± define 
the distributions T± = δ±.

Remark 2.3. An interesting consequence of the fact that our reasoning is carried 
out in the algebra of complex numbers, not in the real setting, is the following. From 
(2.2) it is immediate that the real part of δ+ coincides with 1 δ. Instead of

considering δ(x) as the boundary value of 1/2πiz, we can restrict this function to 
the parabola y = ax2 and obtain the equality

(2.5) δ(x) = 2 Re

[
− 1

2πiz

∣∣∣∣
y=ax2

(1 + ax)

]
.

This equality is crucial in this paper because we will show how it can be generalized

in the Clifford algebra setting by using the notion of scalar part of a Clifford number

(in particular, of a quaternion).

Let us now consider the case when x is a variable in Rn, i.e. x = (x1, . . . , xn);

then the delta distribution is defined as

δ(x) := δ(x1) . . . δ(xn) =
n∏
j=1

− 1

2πi

(
1

xj + i0
− 1

xj − i0

)
.



Let σ = (σ1, . . . , σn), where σj = ±1, let sgn(σ) = σ1 . . . σn, and define a cone,

called the σ-orthant, by

Γσ := {x ∈ Rn : xjσj > 0, j = 1, . . . , n}.

Then

δ(x) =

(
− 1

2πi

)n∑
σ

sgn(σ)

(x1 + iσ10) . . . (xn + iσn0)
.

Each summand can be interpreted as the boundary value on the wedge Rn + iΓσ
of the holomorphic function

sgn(σ)

(−2πi)nz1 . . . zn
.

More generally, any hyperfunction f on Ω ⊆ Rn can be written in the form

(2.6) f(x) =
N∑
j=1

Fj(x+ iΓj0),

where {Fj}Nj=1 are holomorphic functions and each Fj is defined on the infinites-

imal wedge Rn + iΓj0. Let us recall that the singular support of a hyperfunction

defined in a set U is defined as the complement of the largest open subset on which

the hyperfunction is real analytic. It is immediate that the singular support of δ

is {0}.

Definition 2.4. Let f be a hyperfunction defined on Ω ⊆ Rn. We say that f is

microanalytic at the point (x, 1i ξdx∞), where ξ = (ξ1, . . . , ξn), if for a suitable

boundary value representation of the form (2.6) of f in a neighborhood of x we 
have

Γj ∩ {y = (y1, . . . , yn) ∈ Rn : ξ1y1 + . . . + ξnyn > 0} 6= ∅ ∀j = 1, . . . , N.

The set of points at which f is not microanalytic is called the singular spectrum 
and it is denoted by S.S. f .

Remark 2.5. To simplify the notation we will write ∓iξdx∞ instead of±(1/

i)ξdx∞. Note that the singular spectrum is contained in a set that can be

identified with Rn × Sn−1 where Sn−1 denotes the unit sphere centered at the origin 
in Rn.

Remark 2.6. Let π : Rn × Sn−1 → Rn be the canonical projection. Then (see

e.g. [9])

π(S.S. f) = sing suppf.

In the case of the delta distribution, S.S. δ = {0} × Sn−1.



A different well known representation for δ can be formally obtained by the

inverse Fourier transform

δ(x) =
1

(2π)n

∫
Rn

ei〈x,ξ〉 dξ

where 〈x, ξ〉 = x1ξ1 + · · · + xnξn is the usual inner product in Rn. Then by con-

sidering polar coordinates ξ = rω, r ∈ R+, ω ∈ Sn−1, we obtain

δ(x) =
1

(2π)n

∫
Rn

ei〈x,ξ〉 dξ =
1

(2π)n

∫
Sn−1

dS(ω)

∫ ∞
0

ei〈x,ω〉rrn−1 dr(2.7)

=
(n− 1)!

(−2πi)n

∫
Sn−1

dS(ω)

(〈x, ω〉+ i0)n
,

where dS(ω) denotes the scalar element of surface area. This is usually referred to as 
the plane wave decomposition or Radon decomposition and its formally correct 
proof can be found e.g. in [8], [9]. Note that the singular spectrum of the integrand is 
{〈x, ω〉 = 0} + iω. To obtain the decomposition in terms of objects for which the 
singular spectrum is just one point, one has to deform this Radon decomposi-tion. 
This leads to the so-called Bony’s twisted Radon decomposition (see e.g. [9, 4.2.10]):

δ(x) =
(n− 1)!

(−2πi)n

∫
Sn−1

1 + i〈x, ω〉
(〈x, ω〉+ i|x|2 + i0)n

dS(ω).

We will show how this decomposition can be easily obtained in the framework of

quaternionic and Clifford analysis (see Corollaries 3.11 and 4.9).

§3. The delta distribution in three dimensions

Let us now consider the delta distribution in the three-dimensional space by iden-

tifying R3 with the set of purely imaginary quaternions. So, from now on, we will

work in the real associative algebra H of quaternions with the standard basis 1, i,

j, k such that

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

We write an element q ∈ H in the form

q = x0 + ix1 + jx2 + kx3,

where x` ∈ R for ` = 0, 1, 2, 3, and we set

Re q = x0, Im q = q = ix1 + jx2 + kx3, |q| =
√
x20 + x21 + x22 + x23;



Re q, Im q and |q| are called the real (or scalar) part, the imaginary part and the

modulus of q, respectively. The conjugate of a quaternion q is q̄ = Re q − Im q =

x0 − ix1 − jx2 − kx3. We will consider the so-called Cauchy–Fueter operator

∂l
∂q̄

=
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
;

H̃

H̃

we say that a real differentiable function f : U → H, where U ⊆ H is an open set, is 
Cauchy–Fueter regular if it is in the kernel of the Cauchy–Fueter operator. We refer 
the reader to [3] and [14] for further details. In [5], [10] (see also [11], [12] for a more 

general case) it is shown how to develop a hyperfunction theory on the space of 
purely imaginary quaternions in complete analogy with the theory of classical 

hyperfunctions in one real variable. In this case, in particular, hyperfunctions on

are defined as sums of boundary values of functions which are regular on H \ H̃. 
Therefore one can expect that the arguments that we have just illustrated in the

real case should also hold true in the case of H̃.

Let us recall that the analogue of the Cauchy kernel for functions regular in 
the sense of Cauchy–Fueter is the function

G(q) =
1

2π2

q̄

|q|4
.

We now prove the following result:

Theorem 3.1. Let S2 be the sphere of unit, purely imaginary quaternions and let

x0 6= 0. Then

(3.1) G(q) =
1

(2π)3

∫
S2

(〈q, ω〉 − x0ω)−3ω dS(ω)

where dS(ω) denotes the scalar element of surface area.

Proof. First of all we note that both sides are regular functions of axial type

(see [1]), thus it is sufficient to verify the formula by taking q = 0. The result

follows immediately.

Let us recall that, as hyperfunctions on H̃,

δ(q) = BV

[
1

2π2

q̄

|q|4

]
,

where BV stands for boundary value, and therefore

δ(q) =
1

(2π)3

∫
S2

BV[(〈q, ω〉 − x0ω)−3ω] dS(ω).



In addition (see e.g. [12])

(3.2) δ+(q) =
1

2
δ(q)− 1

2π2

q

|q|4
,

from which it follows that the scalar part of 2δ+ gives δ.

As is well known, in the sense of hyperfunctions,

δ′′(x) = − 1

πi
BV

[
1

z3

]
,

and by formally replacing in z = x + iy: x by 〈q, ω〉, y by x0 and i by −ω, we

obtain (see e.g. [7])

(3.3) δ(q) =
1

2π2

∫
S2

δ′′(〈q, ω〉) dS(ω),

which expresses the Dirac delta over 3-dimensional space by means of the derivative

of the one-dimensional delta. There exists a more refined Radon decomposition of

the delta for which we first prove an alternative form of the Radon decomposition

of the Cauchy kernel in Clifford analysis. We also have the following result:

Proposition 3.2. If x0 6= 0, then

(3.4) G(q) = −i 1

(2π)3

∫
S2

1 + iω

(〈q, ω〉+ ix0)3
dS(ω).

Proof. Let us consider the two mutually annihilating idempotents

Ω± :=
1

2
(1± iω), ω ∈ S2,

and observe that

1 = Ω+ + Ω−.

Simple computations show that

ωΩ± = ∓iΩ±.

Let us rewrite the integrand in (3.1) as

Ω+ + Ω−
(〈x, ω〉 − x0ω)3

ω;

we have

Ω+

(〈x, ω〉 − x0ω)3
ω =

Ω+(〈x, ω〉+ x0ω)3

(〈x, ω〉2 + x20)3
ω =

(〈x, ω〉 − ix0)3(−i)Ω+

(〈x, ω〉2 + x20)3

= −i Ω+

(〈x, ω〉+ ix0)3



and similarly
Ω−

(〈x, ω〉 − x0ω)3
ω = i

Ω−
(〈x, ω〉 − ix0)3

.

Thus, from (3.1), we have

G(q) =
1

(2π)3

∫
S2

(〈q, ω〉 − x0ω)−3ω dS(ω)

=
1

(2π)3

∫
S2

(−i)Ω+

(〈x, ω〉+ ix0)3
dS(ω) +

1

(2π)3

∫
S2

(+i)Ω−
(〈x, ω〉 − ix0)3

dS(ω)

=
1

(2π)3

∫
S2

(−i)Ω+

(〈x, ω〉+ ix0)3
dS(ω) +

1

(2π)3

∫
S2

(−i)Ω+

(〈x, ω〉+ ix0)3
dS(ω),

from which the desired equality follows.

Remark 3.3. This result is a refinement of (3.3) in the sense that in (3.3) the 
singular spectra of the delta (which is the entire {0} × S2) and of the integrand are 
the same. Here the singularities belong to the plane 〈q, ω〉 = 0 in the direction of ω 
only.

We are now ready to prove the quaternionic version of the planar Radon 
decomposition (2.7), which will allow us to write the delta as the integral of dis-

tributions each of which has singular support in a specific direction of S2.

Theorem 3.4. The delta distribution on H̃ can be represented as

δ(q) = −i 1

(2π)3

∫
S2

1

(〈q, ω〉+ i0+)3
dS(ω).

Proof. By taking the limit of (3.4) as x0 → 0+ we obtain the new formula

δ+(q) = −i 1

(2π)3

∫
S2

1 + iω

(〈q, ω〉+ i0)3
dS(ω)

whose scalar part (in the sense of the complexified algebra of quaternions HC)

gives the delta distribution on H̃ as in the statement.

Remark 3.5. Note that the singular spectrum of

1

(〈q, ω〉+ i0)3

is {q + iω : 〈q, ω〉 = 0}. This is the analog of the decomposition of the delta as

δ+ + δ− in R. In fact the singular spectrum of the delta is {0}×S0 while δ± have

singular spectra 0± i.



Remark 3.6. Until now we have looked at the delta as the boundary value of a

function which is Cauchy–Fueter regular in H \ H̃. On the other hand, the δ at

the origin of R3 can also be considered as a suitable sum of boundary values of

holomorphic functions in cones in C3. Specifically, we can go back to the planar

Radon decomposition for the δ in R3,

δ(q) = −i 1

2π2

∫
S2

1

(〈q, ω〉+ i0+)3
dS(ω),

and note that 〈q, ω〉+ i0 can be rewritten as 〈q+ ip, ω〉 with 〈p, ω〉 > 0 and p→ 0.

Thus the integrand in the Radon decomposition can be seen as the boundary value

of

1

(〈q, ω〉+ i0)3
= lim
〈p, ω〉>0,〈p,ω〉→0

1

(〈q + ip, ω〉)3
= lim
p→0

BV
1

〈z, ω〉

∣∣∣∣
〈p,ω〉>0

,

where z = q + ip is an element of H̃C.

Notation. The scalar part of a quaternion q will be denoted by [q]0.

Proposition 3.7. The delta distribution can be written in the form

(3.5) δ(q) =
1

2π2

[∫
H̃
ei〈q,ξ〉−x0|ξ|

(
1 + i

ξ

|ξ|

)
dξ1 dξ2 dξ3 (1− aq)

]
0

.

Proof. To prove this result, we need to deform the contour of integration and

instead of looking at the delta as

δ(q) =
1

(2π)3

∫
R3

ei〈q,ξ〉 dξ1 dξ2 dξ3,

we can consider the integral over the curve γ(ξ) = ξ + iaq|ξ|. We thus rewrite the

integral by replacing ei〈q,ξ〉 with

ei〈q,ξ+iaq|ξ|〉 = ei〈q,ξ〉−a|q|
2 |ξ|;

the volume form V (dξ) := dξ1 dξ2 dξ3 becomes(
dξ1 + iax1

ξdξ

|ξ|

)(
dξ2 + iax2

ξdξ

|ξ|

)(
dξ3 + iax3

ξdξ

|ξ|

)
= V (dξ)

(
1 + ia

〈q, ξ〉
|ξ|

)
.

We now use the following identity (which can be easily verified by direct compu-

tations):

1 + ia
〈q, ξ〉
|ξ|

=

[(
1 + i

ξ

|ξ|

)
(1− aq)

]
.

0

By setting x0 = a|q|2 we see that δ(q) can be written in the form (3.5).



Remark 3.8. Similarly, when x0 = a|x|2 we obtain a Fourier type integral with

a monogenic exponential:

(3.6) 2G(q) =
1

2π2

∫
H̃
ei〈q,ξ〉−x0|ξ|

(
1 + i

ξ

|ξ|

)
dξ1 dξ2 dξ3,

without using the Radon transform.

This leads to the following result, analogous to (2.5) and (3.5), which will be 
proved using quaternionic analysis:

Theorem 3.9. Let x0 = a|q|2. Then

(3.7) δ(q) =
1

2π2

[
x0 − q
|x0 + q|4

(1− aq)
]
0

=
1

2π2

[
a|q|2 − q∣∣a|q|2 + q

∣∣4 (1− aq)
]
0

.

To prove this result we need the following lemma which, for simplicity, will

be proved for the paraboloid x0 = a|q|2 with a = 1. The result can be proven with

a similar technique also for every a > 0.

Lemma 3.10. Let f be a Fueter regular function for x0 > 0. Then

∂x0
f(x0 + q)

∣∣
x0=|q|2

= −
2q + 1

4|q|2 + 1
∂qf(|q|2 + q).

Proof. We will write ∂̇rf(x0, q̇) to indicate that the derivative ∂̇r acts only on the

variable q̇. Setting q = rω we have

∂rf(r2, q) = 2r∂x0f(x0, q)
∣∣
x0=r2

+ ∂̇rf(x0, q̇).

For Fueter regular functions we also have

∂̇qf(r2, q̇) = ω

(
∂̇r +

1

r
Γ̇ω

)
f(r2, q̇) = −∂x0f(x0, q)

∣∣
x0=r2

.

Since Γ̇ωf(r2, q̇) = Γωf(r2, q) we have

∂̇qf(r2, q̇) = ω∂x0
f(x0, q)

∣∣
x0=r2

− 1

r
Γωf(r2, q)

and we get (
∂r +

1

r
Γω

)
f(r2, rω) = (2r + ω)∂x0

f(x0, rω)
∣∣
x0=r2

,

so finally

(2q − 1)−1∂qf(r2, rω) = ∂x0f(x0, rω)
∣∣
x0=r2

.



Proof of Theorem 3.9. In order to prove the statement we put for simplicity a = 
1, and we compute the integral

∫
R3

1

2π2

[ |q|2 − q
||q|2 + q|4

(1− q)
]
0

dx1 dx2 dx3.

Denote by B(ε) the ball with center at the origin and radius ε; then the integral

equals

∫
R3\B(ε)

1

2π2

[ |q|2 − q
||q|2 + q|4

(1− q)
]
0

dx1 dx2 dx3

+

∫
B(ε)

1

2π2

|q|2 − q
||q|2 + q|4

(1− q) dx1 dx2 dx3

since the integral over B(ε) of the nonscalar part vanishes. Now observe that also

the integral over R3 \B(ε) vanishes, since

|−q|2 + q∣∣|−q|2 − q∣∣4 (1 + q) =
q(1− q)∣∣|q|2 − q∣∣4 (1 + q) = −

|q|2 − q∣∣|q|2 + q
∣∣4 (1− q);

thus it is sufficient to compute

(3.8)

∫
B(ε)

1

2π2

|q|2 − q∣∣|q|2 + q
∣∣4 (1− q) dx1 dx2 dx3.

Let us now set

Λ(x0, q) = − 1

π2

∫ ∞
0

(x0 + s)− q
|(x0 + s) + q|4

ds.

The function Λ(x0, q) is regular for x0 > 0 and Λ(0, q) ∈ Lloc
1 (R3). Its derivative

with respect to x0 is

∂x0Λ(x0, q) =
1

π2

x0 − q
|x0 + q|4

.

Let us set |q| = r and, using Lemma 3.10, let us write the integrand in (3.8) as

1

π2

r2 − q
|r2 − x|4

(1− q) = −
(2q + 1)(1− q)

4r2 + 1
∂qΛ(q);



denoting by H the Heaviside function, the integral (3.8) equals

− lim
ε→0

∫
R3

1 + 2r2 + q

4r2 + 1
H(ε2 − r2)Λ(q) dx1 dx2 dx3

= lim
ε→0

(∫
R3

∂q(H(ε2 − r2))
1 + 2r2 + q

4r2 + 1
Λ(q) dx1 dx2 dx3

+

∫
R3

H(ε2 − r2)∂q

(
1 + 2r2 + q

4r2 + 1

)
Λ(q) dx1 dx2 dx3

)
= lim
ε→0

(∫
R3

∂x(H(ε2 − r2))
1 + 2r2 + q

4r2 + 1
Λ(q) dx1 dx2 dx3

+

∫
B(ε)

∂q

(
1 + 2r2 + q

4r2 + 1

)
Λ(q) dx1 dx2 dx3

)
.

We have

lim
ε→0

∫
B(ε)

∂x

(
1 + 2r2 + q

4r2 + 1

)
Λ(q) dx1 dx2 dx3 = 0.

Since the integrand is infinitely differentiable and Λ is locally integrable, and

∂x(H(ε2 − r2)) = −2q
δ(ε− r)
ε+ r

,

we have

lim
ε→0

∫ ∞
0

∫
S2

δ(ε− r)
ε+ r

2r2 − 2x(1 + r2)

4r2 + 1
r2Λ(r, ω) dr dS(ω)

= lim
ε→0

∫
S2

2ε2 − 2εω(1 + r2)

4r2 + 1
r2Λ(r, ω) dS(ω) = lim

ε→0
(ε− ω)ε2Λ(r, ω);

but

Λ(r, ω) =
−2

A4

∫ ∞
0

ε2 + t− εω
(ε2 + t)2 + ε2

dt,

so

lim
ε→0

(ε− ω)ε2Λ(r, ω) = −2
A3

A4
lim
ε→0

(ε− ω)

∫ ∞
0

t− ω
(1 + t2)2

dt

=
2A3

A4

∫ ∞
0

1

(1 + t2)2
dt = 1.

Thus we have obtained the delta distribution, as stated.

Let us now show how to use Theorem 3.9 to recover Bony’s formula which 
corresponds to the right hand side of the formula in the next result.



Corollary 3.11. The delta distribution can be written as

δ(q) =

[
−i 1

(2π)3

∫
S2

1 + iω

(〈q, ω〉+ ia|q|2)3
dS(ω) (1− aq)

]
0

= −i 1

(2π)3

∫
S2

1 + ia〈q, ω〉
(〈q, ω〉+ ia|q|2)3

dS(ω).

Proof. Consider x0 > 0 and substitute the expression (3.4) in formula (3.7). Simple

computations give the result.

Lemma 3.12. Let f(q0 + q) be a regular function. If the function

q 7→ f(a|q|2 + q) in H̃ \ {0}

has a distributional extension to H then the function

q 7→ (∂q0f)(a|q|2 + q) in H̃ \ {0}

has a canonical distributional extension to H.

Proof. Consider the paraboloid P defined by x0 = a|q|2 and let v1 := v01 + v1,

v2, v3, be a basis for the tangent space at a point of the paraboloid. There exist

smooth functions A(|q|2), B(|q|2), C(|q|2) such that

∂x0
+A(|q|2)v1〈v1,∇x0,q〉+B(|q|2)(v2〈v2, ∂q〉+ v3〈v3, ∂q〉) = C(|q|2)(∂x0

+ ∂q).

Denoting by Q(∂q) the operator Av1〈v1,∇x0,q〉 + B(v2〈v2, ∂q〉 + v3〈v3, ∂q〉),
which acts on f(x0 + q)

∣∣
P

= f(a|q|2 + q), we can write

∂x0
f(x0 + q)

∣∣
P

= Q(∂q)f(a|q|2 + q).

Thus if f̃ is the distributional extension of f(a|q|2+q) then Q(∂q)f̃ is the extension

of ∂x0f(x0 + q)
∣∣
P

.

Theorem 3.13. Let f(q0 +q) be a regular function. Suppose that f(q0 +q) locally

satisfies, for q0 > 0, the estimate

|f(q0 + q)| ≤ C|q0|−k,

where C is a positive constant and k ∈ N. Then the function

q 7→ f(a|q|2 + q) in H̃ \ {0}

has a distributional extension to H.

Proof. This is an immediate consequence of [1, 26.2].



Example 3.14. As an application of Theorem 3.13, we can construct the 
follow-ing distributions.

1. The following expression and its scalar part are distributions:

1

π2

a|q|2 − q
|a|q|2 − q|4

(1− aq).

2. The following expression and its scalar part are distributions:

(1 + iω)(1− aq)
(〈q, ω〉+ ia|q|)3

.

§4. The delta distribution in m dimensions using Clifford analysis

In this section we will show how to generalize the discussion of the previous sections

to the m-dimensional case. We will use the setting of Clifford analysis. We will

work in a Clifford algebra Rm over m ≥ 2 imaginary units e1, . . . , em satisfying the

standard defining relations eiej + ejei = −2δij . An element in the Clifford algebra

will be denoted by
∑
A eAxA where A = i1 . . . ir, i` ∈ {1, . . . ,m}, i1 < · · · < ir, is

a multi-index, eA = ei1 . . . eir and e∅ = 1. As is well known, for m > 2, the Clifford

algebras Rm have zero divisors.

In the Clifford algebra Rm, we can identify some specific elements with the

vectors in the Euclidean space Rm: an element (x1, . . . , xm) ∈ Rm can be identified

with a so called 1-vector in the Clifford algebra through the map (x1, . . . , xm) 7→
x = x1e1 + · · ·+ xmem.

An element (x0, x1, . . . , xm) ∈ Rm+1 will be identified with the element

x = x0 + x = x0 +
m∑
j=1

xjej ,

called a paravector. Given an element a ∈ Rm, its scalar part will be denoted by [a]0.
The standard Radon decomposition already given in the three-dimensional 

case is described in the following result whose statement can also be found in 
[13, Theorem 1]. Below, Am+1 will denote the surface area of the sphere of unit

1-vectors in Rm+1.

Theorem 4.1. Let Sm−1 be the sphere of unit 1-vectors. Then for m even and x0 6= 
0,

(4.1)
1

Am+1

x0 − x
|x0 + x|m+1

= sgn(x0)(−1)m/2(m− 1)!
1

2(2π)m

∫
Sm−1

(〈x, ω〉 − x0ω)−m dS(ω),



and for m odd and x0 6= 0,

(4.2)
1

Am+1

x0 − x
|x0 + x|m+1

= (−1)m+1/2(m− 1)!
1

2(2π)m

∫
Sm−1

(〈x, ω〉 − x0ω)−mω dS(ω).

Proof. The proof (see also Theorem 3.1) is based on the fact that both sides are

axially monogenic, thus it is sufficient to verify the statement for x = 0.

Theorem 4.2. For m even we have

δ(x) = (−1)m/2
(m− 1)!

(2π)m

∫
Sm−1

PV[〈x, ω〉−m] dS(ω).

For m odd we have

δ(x) = (−1)(m+1)/2 (m− 1)!

2(2π)m

∫
Sm−1

BV[(〈x, ω〉 − x0ω)−m] dS(ω).

Proof. It is sufficient to take the limit as x0 → 0+ in the scalar part of (4.1) and

(4.2) and to recall the well known formula δ+(x) = 1
2δ(x)− 1

Am+1

x
|x|m+1 , the scalar

part being 1
2δ.

Remark 4.3. Observe that

δ(x) = BV

[
−1

2πiz

]
,

so

δ(m−1)(x) = BV

[
(−1)m(m− 1)!

2πizm

]
;

we now replace

x 7→ 〈x, ω〉, y 7→ x0, i 7→ −ω,

to get

δ(x) =
(−1)(m−1)/2

2(2π)m−1

∫
Sm−1

δ
(m−1)
R (〈x, ω〉) dS(ω)

where δ(x) =
∏m
`=1 δ(x`).

We now prove the following result:

Lemma 4.4. For x0 > 0 we have

1

Am+1

x0 − x
|x0 − x|m+1

=
im(m− 1)!

2(2π)m

∫
Sm−1

1 + iω

(〈x, ω〉+ ix0)m
dS(ω).



Proof. We limit ourselves to the case of m even; the case of m odd can be treated 
as in the proof of Proposition 3.2. Since x0 > 0 we have

1

Am+1

x0 − x
|x0 − x|m+1

=
im(m− 1)!

2(2π)m

∫
Sm−1

1

(〈x, ω〉 − x0ω)m
dS(ω).

Set

Ω± := 1
2 (1± iω), ω ∈ Sm−1,

ωΩ± = ∓iΩ±.
and observe that

1 = Ω+ + Ω−,

Reasoning as in Proposition 3.2, we have

Ω+

(〈x, ω〉 − x0ω)m
=

Ω+(〈x, ω〉+ x0ω)m

(〈x, ω〉2 + x20)m
=

(〈x, ω〉 − ix0)mΩ+

(〈x, ω〉2 + x20)m
=

Ω+

(〈x, ω〉+ ix0)m
,

and similarly
Ω−

(〈x, ω〉 − x0ω)m
=

Ω−
(〈x, ω〉 − ix0)m

.

So we have

1

Am+1

x0 − x
|x0 − x|m+1

=
(−1)m/2(m− 1)!

2(2π)m

∫
Sm−1

Ω+

(〈x, ω〉+ ix0)m
dS(ω)

+
(−1)m/2(m− 1)!

2(2π)m

∫
Sm−1

Ω−
(〈x, ω〉 − ix0)m

dS(ω),

from which the desired equality follows, since the second summand equals the

first.

Remark 4.5. This result leads to the expansion

δ(x) =
im(m− 1)!

(2π)m

∫
Sm−1

1

(〈x, ω〉+ i0)m
dS(ω).

Note that the singular spectrum of

1

(〈x, ω〉+ i0)m

is {x+ iω : 〈x, ω〉 = 0}.

Remark 4.6. We have

(〈x, ω〉+ i0+)−m = lim
y→0

BV(〈x+ iy, ω〉)−m
∣∣
〈y,ω〉>0

,

and so the singular spectrum of (〈x, ω〉+ i0+)−m is {〈x, ω〉 = 0}+ iω.

Our main result, whose proof mimics the proof of Theorem 3.9, is:



Theorem 4.7. Let x0 = a|x|2. Then

δ(x) =
2

(2π)m

[
a|x|2 − x

|a|x|2 + x|m+1
(1− ax)

]
0

.

We now have:

Theorem 4.8. Let f(x0+x) be a monogenic function for x0 > 0 satisfying locally

the inequality

|f(x0 + x)| ≤ C|x0|−k.

Then

f(x0 + x)
∣∣
x0=a|x|2

= lim
ε→0+

f(x0 + ε+ x)
∣∣
x0=a|x|2

.

Proof. This is an immediate consequence of [1, 26.2].

As we already proved in Section 3, if we combine Lemma 4.4 and Theorem

4.7 we obtain Bony’s decomposition:

Corollary 4.9. The delta distribution can be written as

δ(x) =

[
im(m− 1)!

(2π)m

∫
Sm−1

1 + iω

(〈x, ω〉+ ia|x|2)m
dS(ω) (1− ax)

]
0

=
im(m− 1)!

(2π)m

∫
Sm−1

1 + ia〈x, ω〉
(〈x, ω〉+ ia|x|2)m

dS(ω).

Corollary 4.10. The following equality holds in the distributional sense:

1 + ia〈x, ω〉
(〈x, ω〉+ ia|x|2)m

=
1 + ia〈x, ω〉

(〈x, ω〉+ i(a|x|2 + 0))m
.

Remark 4.11. The singular spectrum for a = 1 is {0} × ω and if we complexify

and write x = x+ iy then 〈x, ω〉+ i|x|2 becomes 〈x, ω〉− 2〈x, y〉+ i(〈y, ω〉+ |x|2−
|y|2). If we set the imaginary part 〈y, ω〉 + |x|2 − |y|2 > 0 we obtain a region G

containing Rm. Hence

1 + ia〈x, ω〉
(〈x, ω〉+ ia|x|2)m

= lim
y→0, z∈G

1 + ia〈z, ω〉
(〈z, ω〉+ ia|z|2)m

.
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