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1. Introduction

The need to limit the environmental impact of human activities, 
particularly in agriculture, and the search for renewable energy sou-
rces, have recently favored the spread of biogas power plants, based 
on the anaerobic digestion process.

The use of heterogeneous substrates, such as agricultural wastes, 
and the complexity of the biochemical process, subjected to instability, 
make the control of anaerobic digestion plants a complex task, which 
needs an accurate process modelling. Moreover, modelling of anaero-
bic digestion is of fundamental importance not only to monitor and 
control the plant performance, but also to study the sensitivity of the 
plant behavior to operational parameters, and to assess to feasibility of 
the use of new substrates with varying characteristics, biodegrad-
ability and operational conditions.

The best known and the most sophisticated model, able to describe 
the anaerobic degradation of various substrates (even if designed con-
sidering activated sludge as substrate), is the Anaerobic Digestion Model 
No. 1 (ADM1) (Batstone et al., 2002), developed by the IWA Task Group 
for Mathematical Modelling and later modified by several authors 
(Blumensaat & Keller, 2005; Galí, Benabdallah, Astals, & Mata-Alvarez, 
2009) to improve accuracy and robustness and to fit the  model to 
other specific applications.

While being very detailed in the description of the anaerobic 
digestion process, it can be hardly used for design and control 
purposes. In fact, a large number of parameters (about a hundred), 
depending on the specific substrate, need to be estimated, which is

particularly difficult in complex plant operations and also because 
of the scarce data available in the literature. Moreover, many 
parameters of the ADM1 model cannot be identified on the basis of 
field data typically included in conventional protocols applied in 
digesters operation and monitoring. Therefore, dedicated measure-
ment campaigns are to be planned in order to get the required 
characterization of the chemical nature of the substrate to be deg-
raded and its specific degradation pathways. Those campaigns are 
complex and time consuming, although valuable when seeking a 
deeper process understanding.

These facts have motivated the research of simpler models, focused 
for example on a few number of processes or specifically designed for 
particular substrates. Among them, the AMOCO model (Bernard, Hadj-
Sadok, Dochain, Genovesi, & Steyer, 2001), reaches a good compro-mise 
between simplicity and accuracy. The AMOCO model has been 
developed mainly as a tool to monitor and control the anaerobic dig-
estion process, rather than as a tool for accurate numerical simulation. 
Nonetheless, this model has been conceived to describe the degrada-
tion of soluble organic matter that is readily acidified under anaerobic 
conditions, and is not adequate to be applied to the degradation of 
particulate matter that needs an initial disintegration and hydrolysis 
prior to be acidified. Therefore, in order to widen its field of app-
licability, a modified AMOCO model has been proposed including a first 
order hydrolysis step, during which alkalinity is produced because of the 
release of ammonium from proteins hydrolysis (Allegrini, 2010).

While being of reduced order, the modified AMOCO model is 
however still nonlinear, therefore the identification of its para-
meters cannot be performed through classical methods, generally 
based on a linear time-invariant (LTI) model formulation (Ljung, 
1999). In particular, applying a maximum likelihood approach to an 
output error nonlinear model, as done in this work, results in an Corresponding author.
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nonlinear least-squares minimization, which can be solved 
through nonlinear programming.

A main problem with standard nonlinear programming (NLP) 
methods is the need of gradient and/or Hessian computations (Dennis & 
Schnabel, 1996), performed in general via computationally inefficient 
finite-difference approximations. On the other hand, if an equivalent 
linear fractional transformation (LFT) formulation of the original 
nonlinear model is considered, the said quantities can be very efficiently 
computed by simply simulating index-1, semi-explicit, differential-
algebraic equations (DAE) systems. Apart from this major advantage, it 
must be also emphasized that the generality of the LFT approach allows 
for a treatment of important issues such as identifia-bility, persistence 
of excitation, convergence, robustness and expe-riment design under a 
single unified framework (Hsu, Vincent, Wolodkin, Rangan, & Poolla, 
2008).

However, manually deriving a LFT model formulation is a non-
trivial task in general, so symbolic computing tools are needed. In 
this work, one of these tools, partially developed in Donida, 
Romani, Casella, and Lovera (2009) with reference to linear models, 
has been fully implemented for application to the general non-
linear case and, in particular, to the modified AMOCO model.

Two different test cases have been considered. In a first case, the 
data used for parameter identification have been generated by 
simulating the ADM1 model, considering waste activated sludge as 
substrate. A first set of (simulated) data has been considered for the 
identification of 6 parameters: 5 stoichiometric coefficients and the 
specific hydrolysis rate, while a second set of data has been used for 
model validation, obtained by simulating a nominal loading 
operation.

In a second test case, the experimental data collected on a 
laboratory scale equipment, performing the anaerobic digestion of 
ultra-filtered cheese-whey, have been considered for the identifi-
cation of 4 stoichiometric coefficients.

The paper is organized as follows. Section 2 describes the modified 
AMOCO model. Section 3 recalls the concepts of LFT modelling and 
identification. Section 4 discusses the results obtained from the 
identification of the modified AMOCO model based on the simulation 
of the ADM1 model. Section 5 shows the results obtained from data 
collected from the anaerobic digestion of ultra-filtered cheese-whey in 
a laboratory setup. Finally, Section 6 draws some conclusion.

2. Modified AMOCO model

The original AMOCO model was just developed to support mon-
itoring and control system design, rather than as a tool for numerical
simulation of the process behavior, and was mainly focused on the
description of the anaerobic digestion of soluble substrates or with a
negligible particulate content. Only two bacterial populations were
considered, in particular acidogenic and methanogenic, while the
hydrolysis and acetogenic phases were no longer considered explicitly.
In the first step, the acidogenic bacteria X1 consume the organic
substrate S1 and produce CO2 and volatile fatty acids (VFAs) S2. The
population of methanogenic bacteria X2 uses, in the second step, the
VFAs as substrate for growth and produces CO2 and methane. The
bacteria biomass is expressed in terms of volatile solids (VS) which is
typically used in environmental engineering to quantify the organic
matter content, therefore concentrations of X1 and X2 are expressed as
gVS L�1. As for the organic substrate S1, COD (chemical oxygen
demand) has been chosen as measuring unit since it reflects the
chemical energy content of S1 that is made available for the growth of
X1 and X2. Therefore, S1 concentration is expressed as gCOD L�1. As for
VFAs, CO2 and alkalinity their concentrations are expressed in molar
terms (mmol L�1).

In this work, three modifications are introduced with respect to
the original model.

At first, the hydrolysis step is taken into account, where the 
particulate organic matter fed to the digester (X0) is solubilized into 
a soluble and degradable organic compound (S1). The process 
kinetics is described as first order, having μ0 as kinetic constant.

Then, a decay term in the growth rates of the biomasses, 
described by a first order kinetics having kd1 and kd2 as kinetic 
constants, has been considered, becoming increasingly important 
at high hydraulic retention times tHR.

Finally, the contribution of inorganic nitrogen to alkalinity Z 
(mmol L�1) is taken into account (Ficara et al., 2012). In fact, the 
AMOCO model considers alkalinity as non-reactive and, conse-
quently, its dynamics is just described by the dilution effect of the 
reactor. On the contrary, the dynamics of alkalinity is determined 
by its constituents: bicarbonates, VFAs, hydroxide ions and, above 
all, free ammonia. The alkalinity state equation has been therefore 
modified with respect to the original AMOCO model to account for 
the inorganic nitrogen, introducing as parameters the nitrogen 
content of the substrate S1 dependent on its protein content, NS1

(gN/gCOD), which would be released into the reactor liquor during 
the acidogenic process and the nitrogen content in the biomass 
Nbac (gN/gVS) respectively uptaken from or released into the 
reactor liquor during biomass growth or decay. While nitrogen 
release was included into the alkalinity mass balance, ammonium 
has not been added as an additional state variable, since its 
dynamics was not considered of special interest.

The modified AMOCO model is thus defined by 7 differential 
equations: 1 for the hydrolysis dynamics, 2 for the mass-balances 
of the bacterial populations X1 and X2, 2 for the organic substrate S1 

and the VFAs S2 and, finally, 2 for alkalinity Z and inorganic carbon 
C (mmol L�1):

dX0

dt
¼ 1
tHR

ðX0;in�X0Þ�μ0X0 ð1Þ

dS1
dt

¼ 1
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rCH4 ¼ k6μ2;max
S2

S2þKS2þS22=KI2
X2 ð10Þ

where μ0 (d�1) is the specific hydrolysis rate, ki ði¼ 0;…;6Þ are
stoichiometric coefficients, μi;max (i¼1,2) (d�1) are the maximum
specific growth rates, KS1 (gCOD L�1) and KS2 (mmol L�1) are the
half-saturation constants, KI2 (mmol L�1) is the inhibition con-
stant, KH is the Henry's constant for CO2 (mmol L�1 atm�1), PT¼1
(atm) is the atmospheric pressure, kLa (d�1) is the liquid–gas
transfer coefficient, rC (mmol L�1 d�1) quantifies the amount of
CO2 that is transferred by the liquid to the gaseous phase by
stripping and rCH4 (mmol L�1 d�1) is the methane production rate.
The quantities X0;in, S1;in, S2;in, Zin and Cin are the concentrations of
each component in the influent stream and represent the model
inputs.

Note that the inorganic carbon is assumed to be mainly
composed of dissolved carbon dioxide (mmol L�1) and bicarbo-
nate (mmol L�1), neglecting the amount of carbonate in the
normal operating conditions,1 while VFAs are assumed as fully
dissociated.

3. LFT modelling and parameter identification

In order to deal with parameter identification, in this work a
linear fractional transformation (LFT) model formulation, a widely 
used formalism both in modern control (Hecker, Varga, & Magni, 
2004; Zhou, Doyle, & Glover, 1996) and identification (Casella & 
Lovera, 2008; Hsu, Poolla, & Vincent, 2008; Hsu, Vincent et al., 
2008; Lee & Poolla, 1999), is investigated.

The general form of a LFT model can be written as

_x ¼AxþB1wþB2ζþB3u ð11Þ

z¼ C1xþD11wþD12ζþD13u ð12Þ

ω¼ C2xþD21wþD22ζþD23u ð13Þ

y¼ C3xþD31wþD32ζþD33u ð14Þ

w¼Δz¼ diagfδ1Ir1 ;…; δqIrq gz ð15Þ

ζ ¼ΘðωÞ ð16Þ
where xARn, yARp, uARm are the state, output and input vectors 
respectively, zARnz , ωARnω , wARnw , ζ ARnζ are vectors of aux-
iliary variables, δi (i¼1,…,q) are the unknown parameters, A, Bi, Ci, 
Dij are known constant matrices, ri are the sizes of the correspond-
ing identity matrices Iri in the Δ block and ΘðωÞ : Rnω-Rnζ is a
known nonlinear vector function.

It must be pointed out that deriving such formulation is non-
trivial if carried out manually. To this aim, a symbolic computing 
approach, partially developed in Donida et al. (2009) with refer-
ence to linear models, has been first fully implemented for 
application to the general non-linear case in this work.

It is also worth mentioning that, in order to deal with 
parameter estimation, it is essential to rewrite model (11)–(16)
by introducing normalized unknown parameters δ i, varying 
between 71 as parameter δi varies between a maximum δi;max 
and a minimum δi;min.

2

The problem of model identification formulated over LFT model 
structures has been a subject of active research for more than 10 
years, see, e.g., Lee and Poolla (1999), Demourant and Ferreres 
(2002), and Hsu, Vincent et al. (2008). In particular, the parameter

estimation method proposed in Hsu, Vincent et al. (2008) is
extended here to account for the nonlinear functions ΘðωÞ.

First, with a slight abuse of notation, denote with yðkÞ and uðkÞ the
values of yðtÞ and uðtÞ at the sampling instant tk then, the identifica-
tion problem can be formulated as follows: given model (11)–(16) and
given input and output measurements fuðkÞ; yðkÞg; k¼ 1;…;N, gener-
ated by the plant, find the values of the unknown parameters ~δ
minimizing the cost function:

JðδÞ ¼ 1
2
〈eðδÞ; eðδÞ〉N ¼ 1

2N
∑
N

k ¼ 1
eT ðk;δÞeðk;δÞ ð17Þ

where eðk;δÞ ¼ yðkÞ� ŷðk;δÞ is the prediction error between the
measured output yðkÞ and the output ŷðk;δÞ, predicted by the model.

As it is well known, ~δ is a maximum-likelihood estimate of the
model parameters δ for output-error plants (Ljung, 1999), and can
be obtained through well known iterative optimization procedures
such as, for example, the Gauss–Newton algorithm:

δ̂ðνþ1Þ ¼ δ̂ðνÞ�αðνÞĤ�1ðδ̂ðνÞÞgðδ̂ðνÞÞ ð18Þ
where ν is the iteration number, αðνÞ is the step size, gðδÞ : Rq-Rq

and ĤðδÞ : Rq-Rq�q are respectively the gradient vector and a
positive semi-definite approximation of the Hessian of the cost
function with respect to the unknown parameters:

gðδÞ ¼ 1
N

∑
N

k ¼ 1
ET ðk;δÞeðk;δÞ; ð19Þ

ĤðδÞ ¼ 1
N

∑
N

k ¼ 1
ET ðk;δÞEðk;δÞ ð20Þ

where Eðk;δÞARp�q is the Jacobian of eðk;δÞ and is given by

Eðk;δÞ ¼ ∂eðk;δÞ
∂δ1

∂eðk;δÞ
∂δ2

⋯ ∂eðk;δÞ
∂δq

h i
ð21Þ

In this work, the optimization has been performed through the
MATLAB function fminunc, receiving as input parameters the cost
function JðδÞ, the gradient gðδÞ and the approximated Hessian
ĤðδÞ. In turn, the said parameters have been computed without
resorting to finite differences, by exploiting the LFT formulation of
the model, as described in the following.

The computation of the predicted output ŷðk;δÞ (first stage of
the scheme in Fig. 1) can be dealt with by rewriting model (11)–
(16) as follows:

M _~x ¼ fð ~x ;uÞ ð22Þ

y¼ gð ~x ;uÞ ð23Þ
where ~x ¼ xT zT ωT

� �T and

M¼
In 0n�nz 0n�nω

0nz�n 0nz�nz 0nz�nω

0nω�n 0nω�nz 0nω�nω

2
64

3
75 ð24Þ

fð ~x ;uÞ ¼
AxþB1ΔzþB2ΘðωÞþB3u

C1xþ D11Δ�Inz
� �

zþD12ΘðωÞþD13u
C2xþD21ΔzþD22ΘðωÞ�ωþD23u

2
64

3
75 ð25Þ

gð ~x ;uÞ ¼ C3xþD31ΔzþD32ΘðωÞþD33u ð26Þ
thus by sampling the output of a dynamic system defined by the 
algebraic transformation output (23) and by an index-1, semi-
explicit DAE system defined by Eq. (22), fed by the sampled input
uðkÞ.

The numerical integration of the DAE system (22) has been
dealt with in MATLAB through the ode15s.m function, which 
implements a variable order BDF method and allows to define
separately the mass matrix M and the vector function fðx~ ; uÞ.

1 Values of pH range between 6 and 8, and temperature between 35 and 38 1C.
2 δi ¼ ðδi;maxþδi;minÞ=2þδ iðδi;max�δi;minÞ=2:



Moreover, in order to improve reliability and efficiency, the
Jacobian matrix ∂f=∂ ~x has been analytically computed.

It must be also pointed out that since matrix M is singular, thus
properly defining (22) as an index-1 DAE system, a consistent
value for _~x ð0Þ must be supplied,3 i.e.

M _~x ð0Þ ¼ fð ~xð0Þ;uð0ÞÞ ð27Þ
In turn, the sensitivity ∂ŷ ðk; δÞ=∂δi ¼ �∂eðk; δÞ=∂δi of the pre-

dicted output ŷ ðk; δÞ with respect to parameter δi can be computed
(Appendix A) by sampling the output y0iðtÞ of the following LFT
system (second stage of the scheme in Fig. 1):

_x 0
i ¼ Ax0

iþB1w0
iþB2ζ

0
iþB1Δδiz ð28Þ

z0i ¼ C1x0
iþD11w0

iþD12ζ
0
iþD11Δδiz ð29Þ

ω0
i ¼ C2x0

iþD21w0
iþD22ζ

0
iþD21Δδiz ð30Þ

y0i ¼ C3x0
iþD31w0

iþD32ζ
0
iþD31Δδiz ð31Þ

where

Δδi ¼
∂Δ
∂δi

¼ diag 0r1�r1 ;…; Iri ;…;0rq�rq

	 
 ð32Þ

w0
i ¼Δz0i ð33Þ

ζ 0i ¼
∂ΘðωÞ
∂ω

ω0
i ¼ΘωðωÞω0

i ð34Þ

By substituting (33) and (34) in (28)–(31) and solving (29) and
(30) with respect to z0i and ω0

i the following time-variant, linear
system is obtained:

_x 0
i ¼ ~AðωÞx0

iþ ~BðωÞΔδiz ð35Þ

y0i ¼ ~CðωÞx0
iþ ~DðωÞΔδiz ð36Þ

where

~AðωÞ ¼Aþ B1Δ B2ΘωðωÞ
h i

WðωÞ
C1

C2

" #
ð37Þ

~BðωÞ ¼ B1þ B1Δ B2ΘωðωÞ
h i

WðωÞ
D11

D21

" #
ð38Þ

~CðωÞ ¼ C3þ D31Δ D32ΘωðωÞ
h i

WðωÞ
C1

C2

" #
ð39Þ

~DðωÞ ¼D31þ D31Δ D32ΘωðωÞ
h i

WðωÞ
D11

D21

" #
ð40Þ

WðωÞ ¼
Inz �D11Δ �D12ΘωðωÞ
�D21Δ Inω �D22ΘωðωÞ

" #�1

ð41Þ

   In order to account for the fact that the time instants te selected by 
the solver when integrating (22) are different in general from the 
time instants tsi selected by the solver when integrating (35), while 
also improving numerical efficiency, system (35) is rewritten as

_x 0
i ¼ΓðωÞ

x0
i

Δδiz

" #
ð42Þ

with

ΓðωÞ ¼ ~AðωÞ ~BðωÞ
h i

ð43Þ

and matrix ΓðωÞ is stored as a function of the time instants te
during the computation of the prediction error. Then, when
integrating (42), the matrix Γðωðtsi ÞÞ is computed from the stored
values ΓðωðteÞÞ by interpolation, while also exploiting its sparsity.

An important issue is the notion of identifiability itself, parti-
cularly in the case of nonlinearly parameterized models (Dötsch &
Van den Hof, 1996; Van Doren, Van den Hof, Hansen, & Bosgra,
2008). Local identifiability in ~δ, minimizing (17), can be verified by
testing if the Hessian Ĥ is positive definite in ~δ, i.e. if its rank is
equal to q. If the Hessian Ĥ in ~δ is not full rank then the estimated
parameters are not unique and the system is not identifiable. In
this case, to select the identifiable parameter space, we can
consider the singular value decomposition (SVD) of the Hessian:

Ĥ ¼ U1 U2
� � Σ1 0

0 Σ2

" #
VT
1

VT
2

" #
ð44Þ

where the separation between Σ1 and Σ2 is chosen in such way
that the singular values in Σ2 are considerably smaller than those
in Σ1. Accordingly, the column space of U1 represents the sub-
space of the original parameters δi that will be identifiable from
the measurements.

Fig. 1. Simulation scheme for the computation of the sensitivity functions.

3 Anyway, if _~x ð0Þ and ~xð0Þ are not consistent, the solver treats them as guesses,
tries to compute consistent values close to the guesses, and then goes on with the
integration.



4. Parameter identification based on ADM1 model simulation 
data

In this work, the data used for parameter identification have 
been first generated by simulating the ADM1 model, which has 
been therefore considered as the “plant”. Specifically, the ADM1 
model version proposed in Blumensaat and Keller (2005) and 
Rosen, Vrecko, Gernaey, Pons, and Jeppsson (2006) was consid-
ered, applied to the anaerobic digestion of waste sludge in a single 
stage CSTR (completely stirred tank reactor) with constant liquid 
volume and temperature and with no biomass retention. The 
model consists of a DAE system of 35 differential and 1 algebraic 
equation: 29 state variables are given by the concentrations in the 
liquid outflow and in the gas outflow, the other 6 variables are 
given by the concentrations of ionized volatile fatty acids, bicar-
bonate and free ammonia. The differential equations are given by 
the mass balances of the dynamic (state) variables, and involve 19 
biochemical processes, 3 gas–liquid transfer processes and 6 addi-
tional acid–base dissociation processes. According to the authors, 
the input values may not be completely realistic for all variables 
but they have been chosen so that every input is active (i.e. non-
zero) and able to excite all internal modes of the ADM1 model.

Since the modified AMOCO model (1)–(10) has a cascade structure, 
where the first block is made up by the first 5 equations and its outputs, 
namely X0, S1, S2, X1, X2, appear as inputs for the remaining equations, 
the identification can be focused on the parameters governing the 
dynamics of substrates and biomasses only.

Then, the following reduced model can be considered, obtained 
by simply rewriting Eqs. (1)–(5) and (10) accordingly to the 
parameters chosen for the identification and to the measurements
assumed available ðd¼ 1=tHRÞ:
_x1 ¼ �dx1�δ6x1þdu1 ð45Þ

_x2 ¼ �dx2þδ1δ6x1�δ2μ1;max
x2

x2þKS1
x4þdu2 ð46Þ

_x3 ¼ �dx3þdu3þδ3μ1;max
x2

x2þKS1
x4

�δ4μ2;max
x3

x3þKS2þx23=KI2
x5 ð47Þ

_x4 ¼ �dx4þμ1;max
x2

x2þKS1
�kd1

� �
x4 ð48Þ

_x5 ¼ �dx5þμ2;max
x3

x3þKS2þx23=KI2
�kd2

!
x5 ð49Þ

y1 ¼ x3 ð50Þ

y2 ¼ x1þx2þcðx4þx5Þ ð51Þ

y3 ¼ δ5μ2;max
x3

x3þKS2þx23=KI2
x5 ð52Þ

where

x¼ ½x1 x2 x3 x4 x5�T ¼ ½X0 S1 S2 X1 X2�T ð53Þ

u¼ ½u1 u2 u3�T ¼ ½X0;in S1;in S2;in�T ð54Þ

δ¼ ½δ1 δ2 δ3 δ4 δ5 δ6�T ¼ ½k0 k1 k2 k3 k6 μ0�T ð55Þ
Of course, it is assumed that all inputs and outputs are measurable,
while the parameters reported in Table 1 are assumed fixed and
known. In particular, the measurable outputs are respectively
given by the volatile fatty acids concentration y1 ¼ x3 ¼ S2
(mmol L�1), the sum of the others substances concentrations
y2 ¼ x1þx2þcðx4þx5Þ9S3 (gCOD L�1), where c is a scaling factor

from (gVS L�1) to (gCOD L�1), and the methane flow rate y3 ¼ rCH4

(mmol L�1 d�1). Accordingly, the relevant LFT model is defined in
Appendix B.

A first main issue in obtaining synthetic data from the ADM1
simulation is the need of lumping several variables of the ADM1
model into single variables of the modified AMOCO model (see
also Della Bona, Ferretti, Ficara, & Malpei, 2015).

First of all, having extended the model to account for the
hydrolysis step, the particulate substrate, described by composite,
carbohydrates, proteins and lipids concentrations, has been aggre-
gated in the variable X0.

The soluble organic matter (sugar, amino acids and fatty acids
concentrations) corresponding to the ADM1 variables, Ssu, Saa, Sfa,
has been aggregated in the variable S1.

The variable S2 has been considered accounting for the total
concentration of VFAs, given by the soluble compounds valeric,
butyric, propionic and acetic acids.

The ADM1 bacterial populations in charge of the degradation of
sugars, amino acids, fatty acids and volatile acids (with exception
of acetic acid) can be grouped into the variable X1.

Finally, the concentration of biomasses converting acetic acid
and hydrogen into methane can be grouped into the variable X2.

A sequence of steps of type “3-2-1-1”4 in the input variable u1
has been considered as test signal, shown in Fig. 2. An overall
simulation interval of 40 days has been considered while, for the
sake of realism, a white noise disturbance, with a signal-to-noise
ratio of 30, has been added to the simulated outputs, sampled with
a period of 1 day.

Figs. 3, 4 and 5 compare the simulated measurements y1, y2
and y3 (denoted by circles), obtained by a simulation of the ADM1
model, with the simulated outputs of the identified modified
AMOCO model ŷ1 ¼ Ŝ2, ŷ2 ¼ Ŝ3 and ŷ3 ¼ r̂ CH4 (solid line) respec-
tively. As it is apparent, a good correspondence has been obtained.

In terms of estimated parameters, the results of the identification
are reported in Table 2, together with the initial parameter values. As
for parameters k1–k6 they represent the stoichiometry of the pro-
cesses of acidogenesis and methanogenesis. For this reason, a first
guess for their values can be obtained by referring to average
stoichiometric values suggested in the ADM1model for the acidogenic
processes and for the methanogenic process, and by taking into
account the appropriate change in measuring units. As reported in
Table 2, final estimates do not differ significantly from initial values,
suggesting that, although the modified AMOCO model is lumping
several substrates and bacteria populations in few variables, the
general meaning and order of magnitude of the stoichiomet-
ric coefficients is, in this case, preserved. This cannot however be
considered as a general conclusion, since stoichiometry is strictly

Table 1
Fixed parameters for identification based on ADM1 model simulations.

d (d�1) μ1;max (d�1) μ2;max (d�1)
0.05 0.206 0.2

KS1 (kgCOD m�3) KS2 (mmol L�1) KI2 (mmol L�1)
1.096 6.86 433,968

kd1 kd2 c (gCOD (gVS)�1)
0.1 0.1 1.55

4 The numbers denoting the test signal indicate the duration of the “high” and
“low” signal intervals. Such a shape of signal is frequently used in the aeronautical
field (Klein & Morelli, 2006), where the period “2” correspond to the semiperiod of
the expected mode to be identified, while in our case is equal to half tHR, thus
10 days.



dependent with the substrate composition and complexity and is
therefore case specific.

Note that, in order to test the performance of the identification
algorithm, a much lower initial value for the parameter μ0, with
respect to the actual behavior of the ADM1 model, has been
considered. This test can be considered as representative of the
case where a more easily hydrolyzable load is introduced in the
digester, marked just by a rapid decrease of the parameter μ0.

A different variation of the input variable u1 has been con-
sidered for the sake of validation of the identified model, obtained
by increasing the said variable at a rate of 50%/day along 6 days
(Fig. 6). The obtained transients of the aggregate ADM1 model
variables y1, y2 and y3 (circles), and of the simulated outputs of the
identified modified AMOCO model ŷ1, ŷ2 and ŷ3 (solid lines) are
shown in Figs. 7, 8 and 9 respectively, where a quite good
matching between the ADM1 model and the identified modified
AMOCO model can still be appreciated.

It must be finally pointed out that the choice of the number of
identified parameters has been actually validated through a local
identifiability analysis, based on the analysis of the Hessian condition
number. Fig. 10 shows the trend of the said condition number with
respect to the identification steps, considering the assumed uncer-
tain parameters (solid line), and the same trend obtained by
identifying also the parameters μ1;max and μ2;max (dashed line). As
it is apparent, with a greater number of parameters the higher value

Fig. 2. Input u1 for identification.

Fig. 3. ADM1 output y1 (circles) and reduced model output ŷ1 ¼ Ŝ2 (solid line).

Fig. 4. ADM1 output y2 (circles) and reduced model output ŷ2 ¼ Ŝ3 (solid line).

Fig. 5. ADM1 output y3 (circles) and reduced model output ŷ3 ¼ r̂ CH4 (solid line).

Table 2
AMOCO initial and estimated parameters from identification based on ADM1 model
simulations.

Parameter Initial value Optimal value

k0 1 0.7387
k1 (gCOD gVS�1) 15 14.8410
k2 (mmol gVS�1) 200 200.1184
k3 (mmol gVS�1) 440 321.0709
k6 (mmol gVS�1) 27 26.1949
μ0 (d�1) 0.5 5.8874

Fig. 6. Input u1 for validation.

Fig. 7. ADM1 output y1 (circles) and reduced model output ŷ1 ¼ Ŝ2 (solid line).

Fig. 8. ADM1 output y2 (circles) and reduced model output ŷ2 ¼ Ŝ3 (solid line).

Fig. 9. ADM1 output y3 (circles) and reduced model output ŷ3 ¼ r̂ CH4 (solid line).



of the condition number values indicates a worst identifiability
condition.

5. Parameter identification based on experimental data

A semi-batch experiment was performed on the anaerobic
digestion of ultra-filtered cheese-whey (UF-CW). Cheese whey is
the main residue of cheese production, representing up to the 90%
of the volume of processed milk. Cheese whey is mainly made of
lactose, milk proteins and salts. Valuable milk proteins can be
recovered by a well-established membrane separation process
(ultra-filtration), producing a residual lactose stream that can be
fed to anaerobic digestion.

The experiment was performed by using a laboratory scale
equipment made of two glass bottles of 1140 mL each one, con-
nected as sketched in Fig. 11. Each bottle is endowed with three
openings: one in the central bottle-neck and two lateral ones.
Bottle A is filled with the anaerobic suspension and it is mixed by
means of a magnetic mixer. The central opening is provided with a
sampling port for sampling/feeding, and one of the lateral open-
ings is connected to a gas line that connects the head space of
bottle A to that of bottle B, through one of the lateral opening of
bottle B. The second lateral opening of bottle A is sealed by a gas-
tight rubber septum. Bottle B is filled with an alkaline solution for
CO2 absorption and a pressure transducer with a data logger
(OxiTop Control System, WTW) is accommodated in the central
opening. The second lateral opening allows for the manual gas
discharge, once the maximum overpressure is achieved. The gas is
released in a water bath to prevent oxygen penetration. The whole
equipment is kept in a thermostated chamber at a temperature of
3570.5 1C. Manually operated valves are available on the sam-
pling port and on the gas lines.

Two identical setups (later referred to as setup 1 and setup 2)
were operated in parallel in a semi-continuous mode, according to
a spiking strategy described in Fig. 12. Both were started by filling
bottle A with a digested sludge from the anaerobic digester of a
municipal wastewater treatment plant. The digested sludge was
diluted 1:1 with tap water to a total solid content of 10 gVS/L. Each
bottle B was filled with 200 mL of a 3 M NaOH solution.

The feeding solution was freshly prepared before each spike
and was made of lactose (44.6 g/L), nitrogen (0.3 gN-NH4Cl/L), and
NaOH (0.065 M). Nitrogen and alkalinity were added in order to
avoid nutrients or pH limitation. Before each spike, a volume of 1/
20 of the anaerobic suspension was withdrawn from the reactor
through the sampling port of bottle A and substituted by an
equivalent volume of the feeding solution.

Then, setup 1 was left unmodified until the next spike, and the
measure of the overpressure due to methane productionwas collected
by the pressure transducer. By knowing the overall headspace of
bottles A and B and the operational temperature, the cumulated
volume of methane produced was assessed from pressure data, by
applying the ideal gas law equation. Finally, the methane production
rate was assessed by a linear regression on the data of cumulated
methane production versus time.

Setup 2 was used to assess the time trend of the relevant
suspension parameters. To this purpose, samples of 25–45 mL each
one were taken at defined intervals from the central opening of bottle
A. Overpressure data were not used for the computation of the
methane production because of the interferences on pressure data
generated by each sampling event. The sampling procedure in setup B
caused a decrease of the anaerobic suspension volume from the initial
1000 mL to 375mL at the end of the experiment. Therefore, the
volume of the feeding solution was reduced during the course of the
experiment in order to maintain the same volumetric loading rate
applied to setup A.

The following parameters were measured on samples collected
from setup 2:

� total suspended solids (TSS) and volatile suspended solids (VSS)
assessed according to APHA, AWWA, WEF (2005);

� chemical oxygen demand (COD) on 0.45 μm filtered samples
(APHA, AWWA, WEF, 2005);

� volatile fatty acids by using the H-lange spectrophotometric kit
(LCK 365).

Since in this case no hydrolysis takes place, the model is
characterized by 4 state equations, moreover, the flow rate qin
(m3 d�1) is now considered as an input ðqin ¼ u1Þ therefore, the
dilution rate d in Eqs. (45)–(49) has been replaced by d¼ qin=V ,
where V¼0.001 m3 is the reactor volume, while the organic
substrate y1 ¼ x2 ¼ S1 (gCOD L�1), the volatile fatty acids concen-
tration y2 ¼ x3 ¼ S2 (mmol L�1), and the methane flow rate
y3 ¼ rCH4 (mmol L�1 d�1) have been measured as outputs. Accord-
ingly, Eqs. (2)–(5) and (10) have been rewritten as follows:

_x1 ¼
u1

V
ðu2�x1Þ�k1

x1
x1þδ1

δ3x3 ð56Þ

Fig. 10. Condition number with 6 (solid line) and 8 (dashed line) parameters.

Fig. 11. Experimental setup scheme. Fig. 12. Input flow rate variation.



_x2 ¼
u1

V
ðu3�x2Þþk2

x1
x1þδ1

δ3x3

�k3
x2

x2þδ2þx22=KI2
δ4x4 ð57Þ

_x3 ¼ �u1

V
x3þδ3

x1
x1þδ1

�kd1

� �
x3 ð58Þ

_x4 ¼ �u1

V
x4þδ4

x2
x2þδ2þx22=KI2

�kd2

!
x4 ð59Þ

y1 ¼ x1 ð60Þ

y2 ¼ x2 ð61Þ

y3 ¼ δ5δ4
x2

x2þδ2þx22=KI2
x4 ð62Þ

where:

x¼ ½x1 x2 x3 x4�T ¼ ½S1 S2 X1 X2�T ð63Þ

u¼ ½u1 u2 u3�T ¼ ½qin S1;in S2;in�T ð64Þ

δ¼ ½δ1 δ2 δ3 δ4 δ5�T ¼ ½KS1 KS2 μ1;max μ2;max k6�T ð65Þ
the fixed parameters are reported in Table 3, the relevant LFT
model is defined in Appendix C, while the initial and estimated
values of the parameters δi are reported in Table 4.

It is worth noting that all kinetic parameters but the KI2 were
selected for identification. This latter parameter is included in the
Haldane model, that is in turn used to describe the dependence of
the X2 growth from its substrate S2. Specifically, KI2 quantifies the
negative effect that an excess of substrate S2 may have on biomass
growth, so that any increase in substrate concentration above the
threshold value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI2KS2

p
would cause a decrease in the biomass

growth rate, typically leading to process instability and, on the
long-term, to biomass washout . Therefore, the effect of KI2 bec-
omes relevant at high S2 concentrations (of the order of magnitude
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI2KS2

p
), making it identifiable only under process conditions

at which inhibition becomes relevant. Since this was not the case
for the available experimental data, the KI2 was not included in the
list of the parameters to be identified. As a matter of fact, the
experimentation was planned so that usual operational conditions
were represented, which means that the anaerobic reactor was
maintained around a stable equilibrium point.

Fig. 12 shows the variation of the input u1, while Figs. 13, 14 and
15 compare the measurements of y1, y2 and y3 (denoted by circles)
with the simulated outputs of the identified modified AMOCO

model ŷ1 ¼ Ŝ1, ŷ2 ¼ Ŝ2 and ŷ3 ¼ r̂ CH4 (solid line) and with the
simulated outputs obtained with the initial values of the para-
meters (dashed line) respectively.

As for the organic substrate (Fig. 13), a quite satisfactory corre-
spondence can be observed, while the experimental trends of VFAs
(Fig. 14) and methane production rate (Fig. 15) deserve more detailed
comments.

The data suggest that the biological response changed slightly from
spike to spike, although the same experimental conditions were
applied. Specifically, a faster and more substantial response was
observed in the last 3 spikes. This biochemical effect is likely due to
an acclimation phenomenon, that is typical of anaerobic sludge
samples in response to a relevant change in the nature of the substrate
to be degraded. Actually, this is what happened in this anaerobic
digestion test, where an anaerobic sludge inoculum, taken from a full
scale anaerobic digester fed on waste activated sludge, was used, i.e. a
complex mixture of organic substrates chemically very different from
deprotenized cheese whey. Acclimation is a transient phenomenon
that is neither described in the ADM1 model nor in the modified
AMOCO model. For this reason, the model is not fully capable to
interpret all data-points but it allows anyway to give a satisfactory
description of the general trend.

It is also worth noting that a residual VFA concentration of about
1 mmol/L is found at the end of each spike, which could be considered
as an offset not accounted for by the model. Nonetheless, the dynamic
responses of VFAs and methane production rate are fairly described,
despite the strong simplifying assumptions underlying the use of a
simplified model such as the modified AMOCO.

Table 3
Fixed parameters for identification based on experimental data.

k1 (gCOD gVS�1) k2 (mmol gVS�1) k3 (mmol gVS�1)
15 200 400

KI2 (mmol L�1) kd1 kd2
120 0.1 0.1

Table 4
Initial and estimated parameters from identification based on experimental data.

Parameter Initial value Optimal value

KS1 (kgCOD m�3) 1.5 1.6533
KS2 (mmol L�1) 7.5 15.6259

μ1;max (d�1) 0.2 0.57853

μ2;max (d�1) 0.2 0.19518

k6 (mmol gVS�1) 27 437.6786

Fig. 13. Measurements y1 (circles) and simulated model output ŷ1 ¼ Ŝ1 (solid line:
estimated parameters values, dashed line: initial parameters values).

Fig. 14. Measurements y2 (circles) and simulated model output ŷ2 ¼ Ŝ2 (solid line:
estimated parameters values, dashed line: initial parameters values).

Fig. 15. Measurements y3 (circles) and simulated model output ŷ3 ¼ r̂ CH4 (solid
line: estimated parameters values, dashed line: initial parameters values).



As stated before, the available experimental data set was
inadequate for the identification of the parameter KI2. Therefore,
one further case was conceived in order to test the feasibility of
identifying a full set of kinetic parameters, including KI2, once an
adequate data set is available. To this purpose, a synthetic data set
was obtained by simulating the degradation behavior of cheese
whey, as predicted by the previously described AMOCO model.

In this case however, the ADM1 model was considered as
unsuitable to generate artificial data. In fact, in this model, the
inhibition of methanogenic bacteria by high VFA levels is described
as due to the decrease in the suspension pH, which follows VFA
accumulation, according to an empirical S-shaped equation. In con-
trast, the AMOCO model describes this inhibition phenomenon as
directly related to the high concentration of acid, this mismatch being
due to the fact that no consensus has yet been achieved in the
literature on the most correct way to describe the inhibition of
methane production under VFA accumulation conditions. Because of
the mismatch, the same AMOCO model was used to generate the
artificial data set.

In this experiment, as for the anaerobic reactor, a CSTR was
again considered with an average tHR of 10 days, fed on S1 at a
concentration of 50 gVS/L, until a steady state was achieved. The
simulation of a large increase in the organic load fed to the
digester has been then simulated in order to cause VFA accumula-
tion, by modifying the influent concentration according to the
pattern shown in Fig. 16. A sampling time of 1 h was assumed and,
in order to better match a real experiment, a white noise
disturbance, with a signal-to-noise ratio of 20, 20, and 25, has
been added to the simulated outputs y1, y2 and y3 respectively. As
a matter of fact, when the S2 concentration approaches the limit
concentration of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KS2KI2

p
(i.e. the concentration above which any

further S2 increase would result in a slower growth of X2), the
inhibiting effect caused by VFA accumulation starts affecting the
digester behaviors and, therefore, the outputs yi. These data sets
are therefore expected to be adequate when both KS2 and KI2 are to
be identified.

Assuming the following vector of unknown parameters:

δ¼ δ1 δ2 δ3 δ4 δ5 δ6
h iT

¼ KS1 KS2 μ1;max μ2;max k6 1=KI2

h iT
ð66Þ

while maintaining the same values for the other fixed parameters
(Table 5), the rewriting of Eqs. (2)–(5) and (10) gives

_x1 ¼
u1

V
ðu2�x1Þ�k1

x1
x1þδ1

δ3x3 ð67Þ

_x2 ¼
u1

V
ðu3�x2Þþk2

x1
x1þδ1

δ3x3

�k3
x2

x2þδ2þx22δ6
δ4x4 ð68Þ

_x3 ¼ �u1

V
x3þδ3

x1
x1þδ1

�kd1

� �
x3 ð69Þ

_x4 ¼ �u1

V
x4þδ4

x2
x2þδ2þx22δ6

�kd2

!
x4 ð70Þ

y1 ¼ x1 ð71Þ

y2 ¼ x2 ð72Þ

y3 ¼ δ5δ4
x2

x2þδ2þx22δ6
x4 ð73Þ

where state and input vectors x and u are still defined as in (63)
and (64), and the relevant LFT model is reported in Appendix D.

Identification results are reported in Table 5, while the com-
parison between simulated measurements and model outputs is
shown in Figs. 17–19. As one can see from Table 5, the optimal
value is very close to the true one for all parameters but the KSi

estimates. This again is related to the practical identifiability issue
already commented earlier. As a matter of fact, this experiment

Fig. 16. Input S1 concentration.

Table 5
Initial, estimated and true parameters including KI2.

Parameter Initial value Optimal value True value

KS1 (kgCOD m�3) 1 1.2454 1.5
KS2 (mmol L�1) 10 10.7323 7.5

μ1;max (d�1) 0.3 0.18626 0.2

μ2;max (d�1) 0.3 0.216 0.2

k6 (mmol gVS�1) 30 27.0219 27
KI2 (mmol L�1) 150 108.3032 120

Fig. 17. Simulated measurements y1 (circles) and simulated model output ŷ1 ¼ Ŝ1

(solid line: estimated parameters values, dashed line: initial parameters values).

Fig. 19. Simulated measurements y3 (circles) and simulated model output ŷ3 ¼ r̂ CH4

(solid line: estimated parameters values, dashed line: initial parameters values).

Fig. 18. Simulated measurements y2 (circles) and simulated model output ŷ2 ¼ Ŝ2

(solid line: estimated parameters values, dashed line: initial parameters values).



was meant to gather experimental data allowing for the estima-
tion of KI2, therefore forcing the digester to operate under higher S1
and S2 concentrations. Under those operational conditions, the 
effect of KSi on the outputs is much less relevant, making them 
more difficult to identify.

On the other hand, it is well known that a reliable identification 
of Monod-like or Haldane-like parameters is not an easy task, and 
that the practical identifiability of these parameters is strongly 
dependent on data quality and reliability and on the experimental 
design, as already stressed by other authors (Nihtilä & Virkkunen, 
1977; Vanrolleghem, Daele, & Dochain, 1995; Versyck, Claes, & Van 
Impe, 1998). In this respect, the practical identifiability issue 
cannot be overcome by applying the LFT technique, since it is 
related to the quality of the data set and on the experimental 
design, whose optimization is out of the scope of this work.

6. Conclusion

A reduced order model of anaerobic digestion has been first 
proposed in this paper, with the main goal to develop an efficient 
tool for process monitoring and control. To this aim, the AMOCO 
model, originally conceived to describe the degradation of soluble 
organic matter, has been modified to include a first order hyd-
rolysis step.

In order to perform parameter estimation, the model has been 
then rewritten in a LFT formulation, using a symbolic tool originally 
developed for linear models and modified for the processing of 
nonlinear models. Based on this reformulation, the output error and 
the sensitivities with respect to the unknown parameters, needed in a 
maximum-likelihood estimation, can be computed respectively by 
simulating an index-1, semi-explicit DAE system and some linear but 
time-variant filters.

Two different test cases have been considered for the estima-
tion of the uncertain parameters of the modified AMOCO model. In 
a first case, the data used for parameter identification have been 
generated by simulating the well known and more complex ADM1 
model, considering waste activated sludge as substrate. In a 
second case, experimental data were collected on a laboratory 
scale equipment, operated in a semi-batch experiment, perform-
ing the anaerobic digestion of ultra-filtered cheese-whey.

The LFT formulation of the modified AMOCO model is currently 
under consideration for the implementation of MPC strategies, 
aimed at preventing instabilities due to sudden changes of the 
influent substrate.
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Appendix A. Derivation of the sensitivity functions

Differentiating Eqs. (11)–(16) with respect to parameter δi yields

∂ _x
∂δi

¼ A
∂x
∂δi

þB1
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∂δi
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∂ζ
∂δi
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which gives Eqs. (28)–(34) by renaming the partial derivatives:

x0
i ¼

∂x
∂δi

; z0i ¼
∂z
∂δi

; ω0
i ¼

∂ω
∂δi

; y0i ¼
∂ŷ
∂δi

; w0
i ¼

∂w
∂δi

; ζ 0i ¼
∂ζ
∂δi

Appendix B. LFT model for parameter identification based on
ADM1 model simulation data
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Appendix C. LFT model for parameter identification based on
experimental data
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Appendix D. LFT model for identification of parameter KI2
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;

w1

w2

w3

w4

w5

w6

2
6666666664

3
7777777775
¼

z1δ1
z2δ2
z3δ3
z4δ4
z5δ5
z5δ6

2
6666666664

3
7777777775
;

y1
y2
y3

2
64

3
75¼

x1
x2
w5

2
64

3
75;

ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω8

ω9

ω10

ω11

ω12

ω13

ω14

ω15

2
66666666666666666666666666666664

3
77777777777777777777777777777775

¼

x1
w1

w3

x2
w6

x2
w2

w4

u1

u2

ζ1
u3

ζ3
x3
x4

2
66666666666666666666666666666664

3
77777777777777777777777777777775
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