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Abstract

In this study, a high-order state transition polynomial with time ex-
pansion (STP-T) method is developed to propagate an initial orbital state
around its reference value to a variable final time based on the differential
algebra (DA) technique. STP-T is a high-order Taylor polynomial of the
final orbital state expanded around the reference initial state and reference
propagation time. Since the final state usually shows different nonlinear-
ity with respect to different components of initial state and propagation
time, a weighted-order scheme is combined with STP-T, which enables
the STP-T to have higher orders on the components with higher nonlin-
earity and lower orders on the components with lower nonlinearity. Then,
an error estimation method is presented, which can a priori provide the
error profiles of a STP-T and is useful for selecting a proper order and
determining the corresponding valid ranges of displacements. Finally, the
STP-T method is tested for orbit propagation under three typical or-
bital dynamics: the unperturbed Keplerian dynamics, the J2 perturbed
two-body dynamics, and the nonlinear relative dynamics. The numerical
simulation results indicate that the STP-T supplies a good approximation
of the final state within certain valid ranges of initial state and propaga-
tion time, the a priori estimated error is close to the exact error in sense
of trend and magnitude, and the computational cost can be significantly
saved by the weighted-order scheme without loss of accuracy.
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1 Introduction

As widely recognized, orbit propagation is a fundamental problem in astro-
dynamics. The initial orbital state under an orbital dynamics can be propa-
gated |1H3] by numerical integration of the corresponding ordinary differential
equation (ODE), or by an analytical or semi-analytical algorithm in some special
cases. In many application scenarios involving orbit propagation, such as orbit
determination, spacecraft navigation and control, space situational awareness,
and robust trajectory optimization, the orbital states belonging to a domain
around a reference trajectory are of interest. In such scenarios, propagating
many points one by one may turn out to be computationally intensive and more
efficient methods could be required. If the propagation time is fixed, several
linear and nonlinear methods have been developed to provide a mapping from
the initial state deviation to the final state [4-13]. However, if the propagation
time also varies, meaning that the orbital state corresponding to displaced ini-
tial state and propagation time is needed, to authors’ knowledge, the literature
lacks an efficient and accurate method.

For the problem with fixed propagation time, the classic state transition ma-
trix (STM) method [45] provides a linearized mapping of the initial state devia-
tion to the final epoch. Several nonlinear methods have been developed in recent
years to provide a higher-order version of this mapping. Thezse methods include
differential algebra (DA) [6H9], the state transition tensor (STT) [10,/11], and
the polynomial chaos expansion (PCE) [12,|13]. Moreover, a non-probabilistic
set-theory convex modeling method was also developed by Wang et al. [141[15] to
perform reliability analysis on uncertain-but-bounded parameters. Among these
methods, DA supplies a powerful tool to automatically compute the high-order
derivatives of a nonlinear function around a reference value. Thus, the high-
order Taylor expansion of the function can be obtained [16], which brings up
two advantages of the DA-based methods: 1) an arbitrary order can be selected
and the plenty of terms of the high-order expansions is automatically handled
in the DA framework; 2) the method would be self-adaptive to any regular non-
linear function, which may feature high-order derivatives that are hard to be
derived manually. In the literature [6-9], the final state is approximated by a
high-order Taylor polynomial with respect to the initial state, which is denoted
as state transition polynomial (STP) in this work. The STP has been well used
in many problems involving uncertain state propagation, such as to propagate
uncertain sets of initial orbital states and compute collision probabilities by DA-
based Monte Carlo simulation [6], to accurately estimate the moments of the
final state uncertainty under different dynamics [7], and even to solve two-point
boundary problems [§] and optimal control problems |9] in astrodynamics.

For the problem with variable propagation time, a linearized state and time
transition matrix method is available in the literature [17H19]. Starting from
the conventional STM, an additional term is added to include time pertur-
bations and compute the associated time partial derivative [17], so that the
corresponding STM terms for a time perturbation can be obtained. This turns
out to be useful in linear guidance or covariance analysis with multiple event



triggers |18/19]. Since orbital states usually show nonlinearity on time devia-
tion, a novel high-order method is here introduced to propagate state variation
throughout a relatively longer time duration. In the literature [20], an extended
STP with time expansion based on the DA technique, denoted as STP-T in
this work, was presented to compute the close encounter distance between the
Earth and an asteroid. In this method, the STP-T is a high-order expansion of
the final state with respect to initial state and propagation time, while the time
deviation is still relatively small with respect to the total propagation time.

In this study, the STP-T method is further developed by introducing a
weighted-order scheme, which allows STP-T to use different expansion orders on
the different components with different nonlinearity, so that the validity range
of time deviation can be enlarged. Then an a priori error estimation method
for STP-T is presented, which is useful for selecting the order and determining
the validity range of an STP-T. The paper is organized as follows. Firstly, a
brief overview of the DA technique is provided in Sect. [2] and the method of
STP with fixed time is introduced. Then, the DA-based STP-T method and
the weighted-order scheme are presented in detail in Sect. [3| Subsequently, the
a priori error estimation method is illustrated in Sect.[d] Finally, the accuracy
and computational cost of the STP-T are analyzed in Sect. [5| under different
typical orbital dynamics.

2 State Transition Polynomial with Fixed Time

2.1 Taylor Expansion of a Nonlinear Function

In the DA framework, by substituting the classical implementation of real al-
gebra with the implementation of a new algebra of Taylor polynomials, any
regular function f of n variables is expanded into its Taylor polynomial up to
an arbitrary order k. The DA technique employed in this work was implemented
in the free open-source software DACE |21].

Consider a generic n-dimensional, sufficiently regular, nonlinear function

y=17(z) (1)
and initialize [x] to be the DA counterpart of the independent variable & around
its reference value & by adding the perturbation dx to x, i.e.

[z] = & + oz (2)

As can be seen from Eq. (2)), [x] can already be interpreted as the Taylor ex-
pansion of & around the reference value .

Substituting [z] into Eq. and carrying out in the DA framework all the
operations involved in the evaluation of f yield

[y] = f ([z]) = Ty (6z)

— E P1 Pn 3
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where 7;’“ is the kth order Taylor expansion of the dependent variable y with
respect to dx, p1,...,p, = 0,1,2,... are the orders of components dx1,...,dx,,
and ¢p, .. p, are the Taylor coefficients of 7T,,':

1 it tpn £

c = ’ !

When the orders of the components all equal 0, i.e. p; = --- = p, = 0, the
corresponding coefficient ¢y, .., is just the reference value y.

The evaluation of Eq. at a selected value of dx supplies the kth order
Taylor approximation of y corresponding to the displaced independent variable.

2.2 State Transition Polynomial of a Dynamical System

For a case where the state of a dynamical system is subject to a nonlinear ODE,
the DA technique can also be used for automatic computation of the high-order
Taylor expansion of the solution flow with respect to either the initial conditions
or any parameter of the dynamics [g].

Consider the system state @ subject to a nonlinear ODE

%’f =9 (.’13, t) (5)
xr (to) = Xy

where the initial state at time tg is xg.

By adopting a numerical integration scheme, such as the forward Euler’s
scheme, or the Runge-Kutta schemes, the final state x; at time ¢y can be
computed. In the later numerical examples of this work, the 7/8 Dormand-
Prince Runge-Kutta integration scheme is used. Hereafter, as an example for
analysis, the forward Euler’s scheme is considered,

Tpt1 = x + At - g (g, tr) (6)

where £ =0,1,2,...
Initialize [x¢] to be the DA counterpart of the initial state &g by adding the
deviation dxg to the reference initial state Zg.

[.’130] =g+ 5380 (7)
Substitute the initial state [x(] into the first integration step, i.e.
[21] = [2o] + At - g ([wo] , to) (8)

If this step is carried out in the DA framework, the output, [z;], is the Taylor
expansion of the state @, at time ¢; with respect to the initial state deviation
dxy. The previous procedure can be iterated through the subsequent steps until
the last integration step is reached. The result at the final step is the kth order



Taylor expansion of the solution flow x; of the dynamic system in Eq. at
the final time ¢y,

[f] = Ta, (520)

" 9

= Z Cpy..pn 5358,11 e 5338,77, 9)
p1+-+pn<k

where dxg,; (1 = 1,2,...,n) are the ith components of the initial state deviation

dxy. This high-order Taylor polynomial links the initial state deviation dxq to

the corresponding final state ¢ and is referred to as state transition polynomial
(STP) in this work.

3 State Transition Polynomial with Time Ex-
pansion

3.1 Numerical Integration along Normalized Time

In the above workflow, the final state is related to the initial conditions or
any parameter of the dynamics while the propagation time is fixed. If the
relation between the final state and the propagation time is also of interest,
the dynamical system is properly modified to handle the propagation time as a
general parameter in the DA framework [20].

Considering the initial value problem in Eq. , define a normalized time
variable.

t—t
s=— 2 (10)
tr — to
The differential of time ¢ becomes
dt = (t; —to) ds (11)

By substituting Eq. into the dynamics in Eq. , the nonlinear ODE be-
comes

dx

25 = {r —t0) gz to+s(tr —to)) (12)

In this new ODE, the initial time ¢y and the final time ¢y can be interpreted as
general parameters of the dynamics.
Then, the numerical integration scheme, e.g. the forward Euler’s scheme,
becomes
Tpi1 =T+ As- (L —to) - g (xk, to + sk (tf — to)) (13)

where k = 0,1,2,... The state is propagated from ¢y to ¢;. Accordingly, the
value range of the normalized time is s € [0, 1].

In addition to the initial state x(, the propagation time ¢y and t; are also
initialized as the corresponding DA counterparts by adding the perturbations



dto, 8ty to their reference values g, tf, respectively, i.e.

[x0] = Zo + dxo
[to] = Eo + dtg (14)
[ty] =7 + oty

The initial state [z], and the initial and final propagation times, [to] and [t /],
of Eq. can now be inserted into the first integration step of Eq. (13), i.e.

[@1] = [2o] + As - ([t5] = [to]) - g ([zo] , [to] + s0 ([t5] = [t])) . (15)

Carrying out this step in the DA framework and iterating this procedure to
the last step, the output, [x¢], would be the kth order Taylor expansion of the
solution flow with respect to both the initial state &y and the initial and final
propagation times ¢y and ty,

[z5] = Ta, (0, 6to, 6t )

_ E p1 Dn Prt1 g1 Pnt2 16
- Cpr..pnya 6x0,1 e 6580,"71 : 5t0n 5tfn ( )
p1+-+pni2<k

where p1, ..., Pn42 are the orders of the components dzg 1, ..., 0o, and dtg, 6t s.

Thus, the kth order Taylor approximation of final state & can be obtained
by evaluating ’Eff of Eq. (16) at any selected initial state xq, initial time ¢ and
final time ¢; around their reference values. This Taylor polynomial is referred
to as STP with time expansion (STP-T) in this work.

3.2 Weighted-Order Scheme for STP-T

From the form of the kth order STP-T in Eq. , it is found that all the
components have the same potential maximum order, k. However in many cases,
the final state shows different nonlinearity with respect to different components
of initial state or propagation time. Consequently, for a given order k, the
STP-T may show low accuracy on the components with higher nonlinearity,
while the accuracy can be unnecessarily high for other components with lower
nonlinearity. Therefore, in order to improve the accuracy on the components
with higher nonlinearity and reduce the computational cost for the components
with lower nonlinearity, a weighted-order scheme is combined with STP-T [22].

At first, the deviations of the initial state and propagation time are initialized
as powers of the independent components in the DA framework, instead of
the first power of them as in Section Without loss of generality, the DA
components related to the initial state are all initialized with the same order,

whereas the components representing the time expansions are initialized with a
different order, as in Eq. (17)),

5(B0 :ngo
Sto=DF, . lLm=1,35,.. (17)
oty ZDng



wherein the operator D represents the independent components in the DA
framework, while | and m are the orders of the physical deviations on the DA
components. In this way, the Ith or mth power of a DA component represents
the deviation of the corresponding independent physical variable. It should be
noted that the values of [ and m should be positive odd numbers, in order
to guarantee the monotone increasing of the deviations of physical variables
with respect to the corresponding DA components. Thus, the initial state and
propagation time are initialized in the DA framework as follows.

[20] = &o + Dig,
[to] = 0+Dg;bo , I,bm=1,3,5,... (18)

[ty] =ts + Dy,
Then, similarly to Section substituting Eq. into the numerical in-
tegration scheme of Eq. and performing the numerical integration in the

DA framework yield the kth order Taylor expansion of the solution flow in the
weighted-order scheme, i.e.

(@] = T2, (Days Dy D, )

Il
SH8I

_ 2 : l-p1 l'pn M Pn+1 7yMPn+2 (19)
- cl‘pl-“m‘pn+2 : D(‘)‘JL’()J U DCS;E()," D6t0 D(Stf
Lpytotmepnp2 <k
where p1,...,ppto are the orders of the deviations of the initial state and prop-

agation time as in Eq. .
Thus, though the potential maximum order on the DA components in Eq.
k

is k, the maximum order on the initial state is p; = floor (7) fori=1,...,n,

and the maximum order on the propagation time is p; = floor (%) for ¢ =
n+ 1,n + 2. The function floor (-) means the maximum integer below a real
number.

Overall, this weighted-order scheme supplies a useful method for the STP
or STP-T to show different orders on different independent variables, where
the order p; on each variable is determined by initializing the deviations of
the independent physical variables with different orders on the associated DA

components.

4 FError Estimation of a State Transition Poly-
nomial

When an STP-T is used to propagate the orbital state for a displaced initial
state and propagation time, the order and the corresponding convergence radius
of the STP-T need to be first determined according to the accuracy requirement.
This means that the error of the high-order Taylor polynomial must be a priori
estimated. In this section, a least-squares fit as in the literature [23] is performed
to estimate the size of the coefficients of the (k4 1)th order terms and the
truncation error of the STP-T.



The approximation error between a k+ 1 times differentiable function f and
its Taylor expansion Py of order k, without loss of generality taken around the
origin, is given by Taylor’s theorem [24]:

|f (6x) — Py (6z)| < C - 62T (20)

where the constant C' > 0 is the bound on the coefficient of the (k + 1)th order
(k+1)

term, i.e. % ,& € [0,0x]. This means that we can preliminarily estimate

the error of a STP-T by approximately evaluating the size of the (k + 1)th order
terms.

As a direct consequence of Taylor’s theorem, the coefficients of the Taylor
polynomial expansion would decay exponentially independently of the function
being expanded [23]. Hence in this work, an exponential fit of the size of all the
known non-zero coefficients up to order k is performed to estimate the size of
the (k + 1)th order terms.

To be more precise, given a polynomial P of order k of the form

P(x) =) cox” (21)

written using multi-index notation. In the case of multivariate polynomials
P(x) = P(x1,x2,...,2,), the error with respect to component z; is esti-
mated. By evaluating the polynomial at certain values on the other components
Tlyeney Tim1,LTit1,---,Tn, we have

k

P(x) =Y cij-al (22)

=0

The size S; of the term of order j is computed as the absolute value of the
coefficient of exact order j
S; = leil (23)

We denote by I the set of indices j for which S; is non-zero. A least squares
fit of the exponential function

f)=A-exp(B-j) (24)

is used to determine the coefficients A, B such that f (j) = S;,j € I is approxi-
mated optimally in the least squares sense. Then the value of f (k + 1) is used
to estimate the size Siy1 of the truncated order k + 1 of P. The truncation
error with respect to component x; can be approximated by

e(z;) = f(k+1)- [z (25)

Moreover, for the weighted-order scheme of STP-T in Eq. , the polyno-
mial in Eq. can be reformulated as

i<k/m
P(Dy)= > cij - Dp? (26)
=0



where m is an odd positive number. For the orders that are not divisible by
m, the corresponding coefficients are zero. Since only non-zero coefficients
are counted in the least squares fit process, the size of the term of order
m - ([k/m] 4+ 1) is estimated, where [k/m] means the integer part of k/m. That
is to say, the truncation error of order [k/m| + 1 with respect to component z;
is then approximated by

=1 ([£] +1) [prE -

m

5 Numerical Simulations

5.1 Simulations under Different Dynamics

The presented STP-T is tested on orbit propagation problems involving typi-
cal orbital dynamical models, including the unperturbed Keplerian dynamics,
the Js perturbed two-body dynamics, and the nonlinear relative dynamics with
respect to a circular chief orbit. Moreover, for convenience, only the final prop-
agation time is imposed to vary and the initial time is kept fixed.

In the following examples, the orbital states obtained by numerical integra-
tion are referred to as the exact solution. Additionally, the states around the
reference final time obtained by STP-T are compared with the results of the
Picard iteration method [16], which is a fixed-point iteration method for solv-
ing an ODE. More specifically, the Picard iteration method is implemented in
the DA framework [25/26] and supplies a high-order polynomial that relates
the orbital state to the time around the reference epoch. The workflow of the
DA-based implementation of the Picard iteration is reported in Appendix [A]

5.1.1 Unperturbed Keplerian Dynamics

The unperturbed Keplerian dynamics is solved by numerically integrating the
corresponding ODE model [1]:

T=10g,Y =Vy,2 =17,
@mz—%z
oo M (28)
) T3y
U =L,
3

where r = [z,y, z]T and v = [v,, vy,vz]T are the position and velocity vectors
in the Earth-centered inertial (ECI) frame, and p is the gravitational parameter
of the primary.

To determine the initial reference Cartesian state of the spacecraft, the cor-
responding initial classical orbital elements are listed in Table [Il The reference
orbit is a nearly circular orbit, and the inclination is close to 0 such that the



z-y plane is nearly the orbital plane. The reference orbital period is determined
by the semi-major axis, i.e. T = 5554 s. The reference final propagation time
is selected to be ¢y = 107

Table 1: Initial state under unperturbed Keplerian dynamics

a (km) e i (rad) Q (rad) w (rad) @ (rad)
6778.137 0.001  0.001 0 0 0

Firstly, the final time ¢; and the initial state xo are initialized in the DA
framework with the same order, as in Eq. . The maximum order is set to
be k = 4. Thus the final STP-T is a 4th order Taylor approximation of the final
state with respect to the displaced initial state and final time. By evaluating
the STP-T at varying final time deviations, the orbital trajectory around the
reference final time can be efficiently obtained. With a zero initial state devia-
tion, the trajectory approximated by the STP-T is plotted and compared with
the trajectories obtained by numerical integration in Fig. Moreover, given
the reference final orbital state, the trajectory around the reference final time
can also be achieved by performing the Picard iterations, whose result is also
reported in Fig. From the figure, it can be seen that the STP-T trajectory
approximates the exact trajectory, obtained with the numerical integration, for
epochs close to the reference final time. The error increases for larger final
time deviations ty. In addition, the trajectory described by the STP-T almost
overlaps the trajectory obtained with the Picard iterations.

—— ——
P
-

-
-~

5tr=0.3T

6000

4000 1

2000 1

—— Integration
4th-order STP-T
== = Ath-order Picard iteration

y (km)
o

—2000 -

—4000 4
6tr= —0.3T
~

~6000 =~

B L —

—2000 0 2000 4000 6000
x (km)

Figure 1: 4th-order approximate trajectory around the final time under unper-
turbed Keplerian dynamics

Then, to reduce the error of the polynomial approximation of the trajectory

10



over a larger domain of final time, the weighted-order STP-T is employed. By
initializing the initial state and final time in the DA framework as in Eq.
with k = 6,1 = 3,m = 1, the final STP-T supplies the 2nd-order approximation
of the final state with respect to the initial state deviation, and the 6th-order
approximation on final time deviation. Since the initial state deviation is set to
zero, the resulting trajectory is a 6th-order approximation of the accurate orbit,
which is shown in Fig. |2l We can see that the 6th-order trajectory approximates
the exact trajectory significantly more accurately than its 4th-order counterpart.

6000 _—— T
PR
6tr=0.3T
4000 A
2000 1 Integration
£ 4th-order STP-T
3 04 === 4th-order Picard iteration 6tr=0
> —-— 6th-order STP-T
_20004 — " 6th-order Picard iteration
—4000
&tg= —0.3T
~
6000 SN~ ————

—2000 0 2000 4000 6000
x (km)

Figure 2: 6th-order approximate trajectory around the final time under unper-
turbed Keplerian dynamics

For the sake of completeness, the miss distances between the approximate
trajectories and the numerically integrated one are shown in Fig.[3] Apparently,
the error of the STP-T is close to the one of the Picard iterations at the same
order. In addition, the error significantly decreases for higher-order expansions.

5.1.2 J2 Perturbed Two-Body Dynamics

The motion in a two-body dynamics considering Jo perturbation is described
by the following ODE (1.

T ="Vg,Y =Vy,2 =0V

. 1 3uJo R? ( 5z2>
bp=—Zr— ——=<(1-— |z
r

73 215
. i 3uoR2 522 (29)
”y:‘wy‘grs(“rz)y

I 3uJoR? 522
V= 5T T (3‘r2>z
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Figure 3: Miss distances of the approximate trajectories obtained with the STP-
T and the Picard iterations around the reference final time under unperturbed

Keplerian dynamics

where the 2nd-order zonal harmonic coefficient for the Earth is J; = 1.08263 x
10~3 and Earth’s equatorial radius is R, = 6378.137 km.

In this example, the initial classical orbital elements are listed in Table
and corresponds to an inclined elliptical orbit. The reference final propagation
time is £y = 107. The orders adopted to compute the STP-T to approximate
the orbital state around the reference final time are k = 6,9, 12.

In Fig. |4, the approximate trajectories around the reference final time with
zero initial state deviation are compared with the exact trajectory from nu-
merical integration. Similarly to Fig. [3] the corresponding miss distances are
reported in Fig. |5l They illustrate the accuracy of the presented STP-T method
under the J; perturbed two-body dynamics. When the final propagation time
is close to the reference value, i.e. dt; is close to zero, all the three approximate
trajectories from STP-T are close to the numerically integrated one. As the fi-
nal time deviation increases, i.e. towards the tails of the trajectories, the errors
of the approximate trajectories increase. Moreover, apparently, the error of the
STP-T decreases for increasing expansion orders: the approximate trajectory
corresponding to the 12th-order expansion is the closest one to the exact tra-
jectory in Fig. 4] Overall, the STP-T method has nearly the same error as the
Picard iteration method at the same order.

Table 2: Initial state under Jo perturbed two-body dynamics

a (km) e i(rad) € (rad) w (rad) 6 (rad)
6778.137 0.2 T 0 0 0

12
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6th-order STP-T
—-= 6th-order Picard iteration
= 9th-order STP-T
----- 9th-order Picard iteration
== 12th-order STP-T
12th-order Picard iteration

Figure 4: Approximate trajectories around the reference final time under Jy
perturbed two-body dynamics

5.1.3 Nonlinear Relative Motion with Circular Chief Orbit

In this subsection, the STP-T is tested under nonlinear relative dynamics. Two
spacecraft are considered: one is termed chief and the other one is referred
to as deputy. The motion of the deputy can be expressed in the local-vertical
local-horizontal (LVLH) reference frame of the chief, and the origin is located
at the center of mass of the chief; the z-axis is along the radial direction; the
z-axis is along the angular momentum direction; and the y-axis completes the
right-handed system. If the chief follows a circular orbit, the x-axis can also be
called R-bar and y-axis can also be called V-bar, and the unperturbed relative
motion is subject to the following ODE model [2]:

i = 2ng +n’x — plate) 3/2+%
24,24 .2 a
(a+z)" +y*+=
Hy

i = —2ni + n’y — 373
{(a +a) oyt 22}
pz

= 3/2

[(a +2)° + 12 + 22}

where a represents the radius of chief orbit and n represents the orbital angular
velocity of the chief.

In this example, the radius of the chief orbit is selected as a = 6778.137 km.
An arbitrary initial relative state of the deputy is given in Table [3] The orders

13
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Figure 5: Miss distances of the approximate trajectories obtained with the STP-
T and the Picard iterations around the reference final time under .J5 perturbed
two-body dynamics.

adopted to compute the STP-T to approximate the orbital state around the
reference final time are k = 6,9, 12.

With a zero initial state deviation, the final trajectories after 10 orbital
periods are plotted in Fig. |§| for oty € [-0.7T,40.7T7] to illustrate the accuracy
of the STP-T under the nonlinear relative dynamics. The corresponding miss
distances are shown in Fig.[7] The 6th-order approximate trajectory is close to
the exact trajectory within a limited range of final time deviations: the error
steeply increases when the time deviation is outside the STP-T validity range.
As the order increases from 6 to 12, the validity range increases and the error
is efficiently reduced. Similarly to the previous test cases, the STP-T method
has nearly the same error as the Picard iteration method at the same order.

Table 3: Initial relative state of the deputy

z(m) y(m) z(m) v (mfs) vy (m/s) v (m/s)
0 0 0 5 5 0

Moreover, since the relative motion is a difference between the absolute
motion of the two spacecraft, the relative dynamics shows lower nonlinearity
than the absolute dynamics, such as in the previous unperturbed Keplerian
dynamics and the J, perturbed two-body dynamics. Comparing the trajectories
in Fig. [6] with the trajectories in Fig.[4] it can be seen that the validity range of
the STP-T under nonlinear relative dynamics is larger than the range obtained
under the J, perturbed two-body dynamics with the same order. Fig. [f] shows
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the trajectories around the reference final time within 6ty € [—0.7T,+0.7T],
while Fig. 4] shows the trajectories only within dty € [-0.2T,+0.277.

5.2 Sensitivity of Accuracy

Since the Jy perturbed two-body dynamics shows higher nonlinearity than the
unperturbed Keplerian dynamics and the nonlinear relative dynamics, the er-
ror of the STP-T is tested under the Jy perturbed two-body dynamics in this
section.

5.2.1 Error estimation

Considering the example in Section[5.1.2] the error of the STP-T for k = 6,9, 12
with respect to final time deviations is analyzed with zero initial state deviation.
First of all, the size of the coefficients of the higher order terms in STP-T are
estimated by a least-squares fit as described in Section [l The exact size of the
coefficient of each order and the corresponding estimated one are compared in
Fig. [l The exact size for each order is reported as a bar in the figure. The
6-order estimation uses the exact sizes of the coefficients of orders from 0 to 6
to estimate the sizes of the coefficients of orders from 0 to 7. The exact size
of the Tth order coefficient is considered as the reference. A similar approach
is adopted for the 9th and the 12th-order estimations. As can be seen, the
sizes of the 7th-order, 10th-order and 13th-order coefficients are approximated
reasonably well by this method.

Then, the estimated size of the coefficients is used to approximately evaluate
the higher order truncation error of the STP-T with respect to the final time
deviation, according to Eq. . The exact error at a specific final time is
instead obtained as the difference between the results of the STP-T method and
the ones of the numerical integrations. Fig. 0] shows the estimated and exact
errors on each component of the STP-T. It can be seen that the estimated error
is close to the exact error in sense of trend and magnitude, though there are
still some differences between them. Since the error estimation is performed
a priori, it supplies a useful tool for selecting a proper order and determining
the validity range of the STP-T according to the accuracy requirements for the
specific application. Moreover, it can be seen that the error decreases with the
order. In other words, given a fixed threshold on the error, higher-order STP-T
has a larger validity range. It is also worth highlighting that the error of a STP-
T increases exponentially with the final time deviation. For example, within the
range oty € [—0.1T,+0.17] in Fig. the error of the 12th-order STP-T on x ¢
is less than 100 m; when the final time deviation reaches about 6ty = +0.137,
the error increases to about 1 km.

5.2.2 Error versus deviations on initial state and final time

In the followings, the accuracy of the STP-T is further assessed on both initial
state deviation and final propagation time deviation. By initializing the initial
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state and final time in the DA framework as in Eq. with k£ = 12,1 =
3,m = 1, the STP-T supplies the 4th-order approximation of the final state
with respect to the initial state deviation, and the 12th-order approximation
for the displaced final time. Without loss of generality, the initial reference
state reported in Table [2]is adopted and the selected initial state deviations are
listed in Table 4] Given the initial orbital state and propagation time, the miss
distance between STP-T and numerical integration results is employed to assess
the error of the STP-T. The variation of the miss distance with respect to the

final propagation time is shown in Fig. [I0]

Table 4: Deviations of the initial state under Jy perturbed two-body dynamics

Case No. Initial state deviation dxgy (m, m/s)

2BJ2-1
2BJ2-2
2BJ2-3
2BJ2-4
2BJ2-5

0,0,0,0,0,0]"
300,0,0,3,0,0]"
[600,0,0,6,0,0]"

[0, —300,0,0,—3,0]"

[0, —600, 0,0, —6,0]"

1.0

0.8

0.6

0.4

Miss distance (km)

0.2

0.0

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Final time deviation (orbital period)

(a) Zoomed in

Miss distance (km)

10

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
Final time deviation (orbital period)

(b) Zoomed out

Figure 10: Miss distance of the STP-T corresponding to the initial state devia-
tions in Table [4| under Jy perturbed two-body dynamics

First of all, Fig. seems to suggest that the initial state deviation may
cause a bias on the validity range of the STP-T with respect to final time
deviations, i.e. the validity range is no more centered at the reference final
propagation time. For example, in Fig. with a threshold of 1 km on the
miss distance, the validity range of the STP-T in Case 2BJ2-5 is about 0ty €
[-0.07T7,0.15T]. Tt is worth highlighting that in Cases 2BJ2-2 and 2BJ2-3 (or
similarly in Cases 2BJ2-4 and 2BJ2-5) the initial state deviation in the latter
case is larger and along the same direction with respect to the former (see
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Table [4]). From Fig. the larger deviation tends to exacerbate the bias of
the validity range. In addition, in Cases 2BJ2-3 and 2BJ2-5, the initial state
deviations are in different directions with equal magnitude. In this case, the
biases tend to act in different directions on the final time deviation, and the bias
in Case 2BJ2-5 is apparently larger. Furthermore, as the final time deviation
increases, the miss distance increases faster for larger initial state deviations.
For example in Fig. with a threshold of 1 km on the miss distance, the
validity range in Case 2BJ2-5 is about 0ty € [—0.07T,0.15T], which is smaller
than the validity range in Case 2BJ2-4, approximately 6ty € [—0.10T,0.157].

5.2.3 Error versus propagation time

In the followings, the accuracy of the STP-T is assessed for different reference
propagation times. With a reference propagation time of ff = 57,107, 15T
respectively, the error profiles of the 12th-order STP-Ts for different final time
deviations are shown in Fig. [T1]

1.0

0.8

0.6

0.4

Miss distance (km)

0.2

N

-

N

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
Final time deviation (orbital period)

0.0

Figure 11: Miss distance of the approximate trajectories obtained with the STP-
T corresponding to different reference propagation times under Js perturbed
two-body dynamics

It can be seen that the STP-T tends to show larger errors for longer reference
propagation times. Since there is no initial state deviation in this example, the
error of the approximate trajectories obtained with all STP-Ts is zero at the
reference final propagation time. As the final time deviation increases, the miss
distance increases faster for STP-Ts with longer reference propagation times.
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5.3 Sensitivity of Computational Cost

One possible application of the presented STP-T method is orbit propagation for
replanning space missions online. If the high-order STP-T has been computed
offline when designing the reference mission, the orbital state corresponding to
the displaced actual initial state and propagation time can be acquired online by
evaluating the Taylor polynomial, which is certainly much more efficient than
the conventional numerical integration method.

When computing the high-order STP-T in the DA framework as in Egs. ,
and , the operation on the intermediate state [x] involves all the terms
of the Taylor polynomial up to order k. For a kth order Taylor expansion with n
independent variables, the number of terms is (k + n)!/ (k! - n!), which increases
with the order and the number of independent variables exponentially. Hence
the integration of differential equations in the DA framework with a high order
may also lead to a huge increase of the computational cost. The sensitivity of
the computational cost to the order is investigated in this section.

According to the weighted-order scheme for STP-T in Section the STP-
T is actually a kth order Taylor polynomial, with order floor (k/l) on the ini-
tial state deviation and floor (k/m) on the propagation time deviation, where
l,m=1,3,5,.... Usually, the final state shows higher nonlinearity in final time
deviations than in initial state deviations. Thus, the parameter m is selected to
be m =1 in all the examples of this work, and the parameters k,[ are selected
according to the accuracy requirement and computational cost.

Figs. show the times to compute the STP-Ts in Section [5.1] under
the three typical dynamics, where k varies from 6 to 12, and [ equals 1, 3, 5
respectively. All the computations are performed on a laptop with an Intel
Core i7-6700HQ 2.60GHz CPU. As expected, the computation time increases
exponentially with the order k. When [ = 1, namely the STP-T has the same
order for all components, the computation time would more than double as
the order k increases by 1, which behaves similarly in all the three figures.
Especially when k£ > 10, the computation time would increase to thousands of
seconds, which are not computed and displayed in the figures.

If the weighted-order scheme is used, i.e. [ = 3,5, the computation time is
significantly reduced, indicating that the purpose of presenting the weighted-
order scheme is well reached. In addition, it is worth highlighting that the
growth rate of the computation time with the order k£ decreases if the weighted-
order scheme is adopted. When [ = 3,5, the computation time would less than
double as the order k increases by 1. Moreover, the computation time of [ =5
is slightly smaller than the time of [ = 3.

By comparing the computation time under the different dynamics in Figs.
[[4] it is found that the computation under the J-perturbed two-body dynam-
ics is the most expensive one: it requires about twice the time needed for the
computation under unperturbed Keplerian dynamics. On the other hand, the
computation of the STP-T under nonlinear relative dynamics turns out to be
the cheapest in terms of computation time.

Finally, the computation times of the STP-T and Picard iteration methods
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Figure 12: Computation time of the STP-T with different orders under unper-
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with different orders under the Jo-perturbed two-body dynamics are shown
in Fig. When the orders of all independent components have the same
weights, namely | = 1, the computation time of the STP-T is apparently larger
than that of the Picard iteration method. When the weighted-order scheme is
applied, namely [ = 3,5, there is no apparent difference on the computation
time of the two methods. Actually, since only several times of iteration is
needed, most computation time of Picard iteration is spent on the numerical
integration from initial time ¢y to final time ;. Then, the computation cost of
numerical integration in Picard iteration is much less than STP-T, because there
are 6 independent components (orbital state) in Picard iteration while there is
one more independent component (final time) in STP-T. If the weighted-order
scheme is applied in the numerical integration process, the total number of terms
can be significantly reduced, making the computation faster and reducing the
speed gap between the two methods.
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Figure 15: Computation time of the STP-T and Picard iteration methods with
different orders under the Js-perturbed two-body dynamics

6 Conclusions

A high-order state transition polynomial with time expansion (STP-T) method
has been developed to analytically propagate an initial orbital state to a variable
final time based on the use of the differential algebra (DA) technique. The
STP-T is a high-order Taylor expansion of the final state with respect to both
the initial state and the propagation time. Thus, the final state corresponding
to any propagation time and initial state around their reference values can
be directly computed by evaluating the STP-T, which is much more efficient
than integrating each point of interest numerically. A weighted-order scheme
is combined with STP-T, which allows higher expansion orders to be selected
on components with higher nonlinearity, such that the computational cost can
be significantly reduced without loss of accuracy. Furthermore, the error of an
STP-T is a priori estimated by a least-squares fit of the size of terms of higher
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orders, which supplies a useful tool for selecting a proper order and determining
the validity range of the STP-T according to the accuracy requirement of the
specific application.

Inherited from the features of the DA technique, the high-order derivatives
of the differential equations are handled automatically in the method, hence it
is self-adaptive to various dynamics and the order of the STP-T can be arbi-
trarily selected according to the accuracy requirement. The performance of the
STP-T method has been tested under three typical orbital dynamics: the un-
perturbed Keplerian dynamics, the Js perturbed two-body dynamics, and the
nonlinear relative dynamics. In the test cases, the presented STP-T method
has the same error as the classic Picard iteration method at the same order.
The sensitivity of the accuracy of the STP-T to deviations on initial state and
propagation time has been investigated. The results indicate that the STP-T
supplies a good approximation of the final state within the validity ranges of ini-
tial state and propagation time, the a priori estimated error is close to the exact
error, and the error increases exponentially with the deviations. The analysis
on the sensitivity of the computational cost demonstrated the effectiveness of
the weighted-order scheme for the computation of the STP-T. Nevertheless, the
Picard iteration method tends to be more efficient than the STP-T method in
terms of computational time when the weighted-order scheme is not adopted.
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Appendix A  Workflow of the Picard Iteration
Method with Differential Algebra

Considering the initial value problem in Eq. , the Picard-Lindel6f theorem
shows that the Picard iteration

¥o = Lo

¢
P (t) = woJr/ g (p;,s)ds

to

(31)

converges to the solution flow ¢ (¢) of the problem.

In the DA framework, an antiderivation operator 9, ! is provided [16], which
automatically computes the integration of a polynomial [f (x)] = 7}’“ (6x) with
respect to its ith component dz;, i.e.

6$i
o7t [f (=) = ; TF (s)dsi (32)

Thus, the workflow of Picard iteration method in the DA framework is for-

mulated as follows.
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Initialize the time deviation as an independent DA component:

[t] = to + ot (33)

Define the Picard operator II (+) as

() := 20 +0; g (- [t]) (34)

Select the initial polynomial as the constant reference state

[po ()] = 20 (35)

Iteratively compute the polynomial

[pj1 (0] =T ([¢;]) (36)

After k steps, a polynomial [, ] invariant up to order k is obtained, i.e.

[r] =k [‘Pk+1] = ([epy]) (37)

where =; means that the terms are equal up to order k.

According to the fixed-point theorem on DA [16], the Picard operator II (-) is
contracting on DA, then the fixed point of order k is exactly reached after k
iterations as in Eq. (37). That is to say, the resulting polynomial [¢,] supplies
kth-order approximation of the orbital state & with respect to time deviation
dt. Moreover, it is worth highlighting that, similarly to the STP-T method
presented in this paper, the Picard iteration method can be extended to supply
also the arbitrary order expansion of the orbital state with respect to the initial
state.
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