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The decay of a bound state weakly-coupled to a non-Hermitian tight-binding unstable continuum,
i.e. a continuum of states comprising energies with positive imaginary part, is theoretically inves-
tigated. As compared to quantum decay in an Hermitian continuum, in the non-Hermitian case a
richer scenario can be found as a result of non-unitary dynamics. Different behaviors are observed
depending on the kind of instability of the continuum. These include complete or fractional decay
in convectively-unstable continua, the absence of quantum decay for a bound state with energy
embedded in the continuum loop, and unstable (secular) growth with pseudo exponential amplifi-
cation in the absolutely-unstable regime. Analytical results are presented for a nearest-neighboring
tight-binding continuum with asymmetric hopping rates κ1 and κ2, which shows a transition from
convective to absolute instability when the sign κ1κ2 changes from positive to negative. In the
convectively unstable regime the model describes the decay of a bound state coupled to a tight-
binding lattice with an imaginary gauge field, which shows a pseudo-Hermitian dynamics. In the
absolutely-unstable regime, pseudo-Hermitian dynamics is broken and a pseudo exponential secular
growth is observed.

PACS numbers: 03.65.-w, 11.30.Er, 72.20.Ee, 42.82.Et

I. INTRODUCTION

The decay of unstable states into a continuum is com-
monplace in many areas of physics, ranging from quan-
tum physics [1–3] to statistical mechanics [4, 5], atomic
and molecular physics [6–8], optics [9, 10] and cosmol-
ogy [11]. While an exponential decay is ubiquitous in
nature, quantum mechanics dictates that the decay law
should deviate from an exponential one at short and long
time scales. Such deviations may lead to deep physical
implications. Short-time deviations of the decay process
have been observed in experiments on macroscopic quan-
tum tunneling of cold atoms [12] and have attracted a
considerable interest because of the possibility to either
decelerate (Zeno effect) or accelerate (anti-Zeno effect)
the decay by frequent observations of the system [13–19].
At long time scales the quantum mechanical decay slows
down and shows a power-law decay [20]. Slowing down
the decay process may have major implications in cos-
mological models [11], for example it may increase the
likelihood of eternal inflation. In many particle systems,
the decay dynamics can be modified by particle statis-
tics and contact interactions [21]. Recent experiments
demonstrated the role of Pauli exclusion principle [22]
and interaction-induced particle correlations [23].

In such previous studies, quantum mechanical decay
has been mostly considered in the framework of stan-
dard quantum mechanics, which sets the Hamiltonian Ĥ
of the full system to be an Hermitian operator. Recently,
an increasing interest has been devoted to investigate the
dynamics of non-Hermitian quantum and classical sys-
tems [24], especially those possessing parity-time (PT )
symmetry [25]. Such systems find important applica-
tions in several areas of physics. For example, effective
non-Hermitian Hamiltonians are often introduced in the
description of open quantum systems. In optics, non-

Hermitian and PT -symmetric dynamics can be exploited
to the design of integrated photonic devices with novel
functionalities [26]. Such studies motivate to extend the
standard quantum mechanical description of the decay
process to the non-Hermitian case, where the non-unitary
dynamics is expected to modify the decay process or to
induce an unstable growth (rather than decay) when the
energy spectrum shows energies with positive imaginary
part. Recent studies have considered the decay problem
of discrete states with complex energies coupled to an
Hermitian continuum, predicting the existence of bound
states either outside or embedded into the continuum
[27]. However, the more general case of the decay into
a non-Hermitian continuum has been so far overlooked.
Noteworthy examples of non-Hermitian continua are pro-
vided by so-called complex crystals, i.e. periodic complex
potentials, which can be experimentally implemented in
optics and in cold atom systems [28, 29]. Complex crys-
tals have recently attracted a great attention because of
their rather unique scattering properties, such as the abil-
ity to appear invisible when probed on one side [30], to
realize Talbot self-imaging [31] and to show a giant Goos-
Hänchen shift [32].

In this work we theoretically investigate the decay dy-
namics of a Hermitian bound state of (real) energy ωa

weakly coupled to a tight-binding non-Hermitian contin-
uum [Fig.1(a)]. The non-Hermitian continuum is real-
ized by a tight-binding (single-band) crystal with a com-
plex energy dispersion curve ω = ω(k), that describes
a closed loop L in the complex energy plane when the
Bloch wave number k spans the Brillouin zone. The con-
tinuum is assumed to be unstable, i.e. the loop L invades
the Im(ω) > 0 half complex energy plane [Fig.1(b,c)]. In
the limiting case of a Hermitian continuum and in the
weak coupling limit, i.e. for ω(k) real and the loop L
shrinking to a line on the real axis Im(ω) = 0, as a gen-
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FIG. 1. (Color online) (a) Schematic of a discrete state |a〉 side
coupled to a non-Hermitian tight-binding continuum (linear
chain with Wannier states |n〉, n = 0,±1,±2, ...). (b) Disper-
sione relation ω = ω(k) of the unstable tight-binding contin-
uum. Bloch modes at wave number k with positive imaginary
part of ω(k) are unstable modes. (c) Closed path L followed
by the complex energy ω(k) when the Bloch wave number k
spans the Brillouin zone.

eral rule it is well-known that the decay into the contin-
uum is complete whenever the energy ωa of the discrete
state is embedded into the tight-binding energy band,
whereas the decay is limited (fractional) when ωa falls
outside the tight-binding energy band. Such a rule can
fail in very special cases, corresponding to the existence of
bound states embedded in the continuum. What happens
when the discrete state of energy ωa is weakly coupled to
an unstable non-Hermitian tight-binding continuum? As
we will show in the present work, a richer scenario can
be found, mainly depending on the instability properties
of the continuum. For a so-called convectively-unstable

continuum [33], complete quantum decay can persist in
spite of energy states with positive imaginary part in the
continuum, however contrary to the Hermitian case in-
complete (fractional) decay can be found even when the
energy ωa is embedded into the continuum, i.e. ωa falls
inside the loop L. For an absolutely-unstable continuum
[33], a secular growth (rather than decay) is observed,
however contrary to a naive prediction the amplification
is not purely exponential, rather it is pseudo exponen-
tial. The general analysis is exemplified by considering a
nearest-neighboring tight-binding continuum with asym-
metric hopping rates, which is described by the disper-
sion relation ω(k) = ∆1 cos k+ i∆2 sin k. The continuum
is convectively unstable for ∆2 < ∆1, whereas it is ab-
solutely unstable for ∆2 > ∆1. In the former case it
is shown that the quantum decay dynamics is pseudo-
Hermitian, i.e. it can be reduced to the one of an equiv-
alent Hermitian Hamiltonian via an ’imaginary’ gauge
transformation, whereas in the latter case the dynamics
is non-Hermitian in its essence and a pseudo exponential
secular growth is observed.

II. QUANTUM DECAY/AMPLIFICATION OF A
DISCRETE STATE COUPLED TO AN

UNSTABLE TIGHT-BINDING CONTINUUM:
GENERAL ANALYSIS

A. The model

Let us consider a discrete state |a〉 with real energy
ωa, which is side-coupled to a one-dimensional non-
Hermitian tight-binding lattice (a quantum wire) with
a complex energy dispersion curve ω = ω(k) [Figs.1(a)
and (b)]. In the Wannier basis representation |n〉 of the
tight-binding lattice, the state vector |ψ(t)〉 of the system
can be expanded as

|ψ(t)〉 = ca(t)|a〉 +
∞
∑

n=−∞
cn(t)|n〉, (1)

where the amplitude probabilities ca(t) and cn(t) satisfy
the coupled equations

i
dca
dt

= ωaca +

∞
∑

−∞
σncn (2)

i
dcn
dt

=
∑

m

ωn−mcm + ρnca. (3)

In Eqs.(2) and (3), ωl are the Fourier coefficients of the
band dispersion curve, i.e.

ω(k) =

∞
∑

l=−∞
ωl exp(ikl), (4)

k is the Bloch wave number that varies in the first Bril-
louin zone−π ≤ k < π, and ρn, σn describe the couplings
between the discrete state |a〉 and the Wannier state |n〉
of the lattice. In the following, we will assume Hermitian
coupling, so that

ρn = σ∗
n. (5)

Since the dispersion relation ω(k) is a periodic function of
the Bloch wave number k, as k spans the Brilluoin zone,
from k = −π to k = π, ω = ω(k) spans a closed loop L
in the complex plane. For the sake of simplicity, we will
assume that the closed path L is a single loop [Fig.1(c)],
i.e. that ω(k2) 6= ω(k1) for k2 6= k1 and (dω/dk) non
singular. We also assume that the tight-binding con-
tinuum is unstable, i.e. there are energies ω(k) in the
Im(ω) > 0 complex plane. Typically, we assume energies
in the Im(ω) < 0 complex plane as well with balanced
dissipation and amplification, i.e.

∫ π

−π

dkIm[ω(k)] = 0 (6)

which implies Im(ω0) = 0. Following the definitions of
unstable flows in hydrodynamic systems [34] (see also
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Ref.[33]), the continuum is said to be convectively un-

stable if, for any initial localized excitation of the con-
tinuum cn(0), one can find a drift velocity V 6= 0 such
that |cn−V t(t)| is unbounded as t → ∞, but cn(t) → 0
as t → ∞ at any fixed lattice site n. The continuum is
said to be absolutely unstable if |cn(t)| is unbounded as
t → ∞ at any fixed position n. As shown in the Ap-
pendix A, a continuum with Im[ω(k)] > 0 for some k
is always convectively unstable, whereas it is also abso-
lutely unstable whenever Im[ω(ks)] > 0, where ks is the
most critical saddle point in the complex k plane of the
dispersion relation ω(k), i.e.

(

dω

dk

)

ks

= 0. (7)

The above definition of convectively/absolutely unstable
continuum refers to the case where the discrete state |a〉
is not coupled to the continuum. Let us now consider
a non-vanishing discrete-continuum coupling and let us
assume that, at initial time t = 0, the system is pre-
pared in the discrete state, so that Eqs.(2) and (3) should
be integrated with the initial conditions ca(0) = 1 and
cn(0) = 0. Our aim is to provide some general results
on the time evolution of the occupation probability of
the discrete state, i.e. Pa(t) = |ca(t)|2. Since the con-
tinuum is unstable, the dynamics is not unitary and the
”survival” probability Pa(t) can be either bounded or un-
bounded as t→ ∞. To determine the general behavior of
the survival probability, it is worth introducing the Bloch
basis |k〉 = (1/

√
2π)

∑∞
n=−∞ exp(ikn)|n〉 and to expand

the state vector of the system as

|ψ(t)〉 = ca(t)|a〉+
∫ π

−π

c(k, t)|k〉. (8)

Taking into account that

c(k, t) =
1√
2π

∞
∑

n=−∞
cn(t) exp(ikn), (9)

and using Eqs.(2,3), one readily obtains the following
coupled equations for the amplitude probabilities ca(t)
and c(k, t) in the Bloch basis

i
dca(t)

dt
= ωaca(t) +

∫ π

−π

dkg1(k)c(k, t) (10)

i
dc(k, t)

dt
= ω(k)c(k, t) + g2(k)ca(t) (11)

where we have set

g1(k) =
1√
2π

∞
∑

n=−∞
σn exp(−ikn) (12)

g2(k) =
1√
2π

∞
∑

n=−∞
ρn exp(ikn). (13)

Note that, for Hermitian coupling one has g2(k) = g∗1(k).
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FIG. 2. (Color online) (a) Bromwich path B entering in the
inverse Fourier-Laplace transform [Eq.(14)]. The closed loop
L is a branch cut of the self-energy Σ(ω). (b) Deformation
of the Bromwich path when ωa falls outside the loop L. ωp

is the pole of ĉa(ω) near ωa outside the loop L, whereas ωs

are the branch points of the density of states ρ(ω) internal to
the loop L. In the figure two branch points ωs1 and ωs2 are
shown for the sake of definiteness. The solid line connecting
the two branch points is the branch cut of ĉIIa (ω). The integral
of ĉIIa (ω) along the dashed closed curve that encircles the

branch cut gives the branch cut contribution c
(cut)
a (t) to ca(t),

whereas the integral of ĉa(ω) over the solid circle around the
pole ω = ωp gives the exponential term to ca(t) [see Eq.(23)].
(c) Same as (b), but when ωa falls inside the loop L. In this
case the pole contribution arises from the integral of ĉIIa (ω)
over the dashed circle around the pole ω = ωp near ωa.

B. Quantum decay/amplification laws

Likewise the quantum mechanical decay in the Hermi-
tian case, the solution ca(t) to Eqs.(10) and (11) with the
initial condition ca(0) = 1 and c(k, 0) = 0 can be conve-
niently written as the inverse Fourier-Laplace transform
of the propagator [2, 16], namely one has

ca(t) =
1

2π

∫

B
dω ĉa(ω) exp(−iωt) (14)

where

ĉa(ω) =
1

ω − ωa − Σ(ω)
(15)

is the Fourier-Laplace transform of ca(t) and

Σ(ω) =

∫ π

−π

dk
g1(k)g2(k)

ω − ω(k)
(16)
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is the self-energy. In Eq.(14) the Bromwich path B is any
horizontal line Im(ω) = η in the complex ω plane which
lies above the loop L; see Fig.2(a). The self-energy Σ(ω)
is not defined on the line L, where it shows a discontinu-
ity. Namely, it can be readily shown that (see Appendix
B)

Σ(ω + ǫ)− Σ(ω − ǫ) = −2πig1(ω)g2(ω)ρ(ω) (17)

where ω = ω(k) is a point of the contour L, ǫ is a small
complex number such that ω + ǫ (ω − ǫ) falls outside
(inside) the loop L, and

ρ(ω) =
∂k

∂ω
(18)

is the density of states. Note that the density of states
ρ(ω), as a function of the complex variable ω, is a contin-
uous and single-valued function along the curve L, how-
ever since

∮

L ρ(ω)dω =
∮

L(dk/dω)dω = 2π, ρ(ω) is not
holomorphic inside the loop L and must show one (or
more) poles or a set of branch points. Such singulari-
ties are the extension to complex crystals of van Hove
singularities in ordinary (Hermitian) crystals, and corre-
spond to the saddle points ω(ks) defined by Eq.(7). Since
the self-energy Σ(ω) is discontinuous as ω approaches the
loop L from the inside or the outside, the curve L is a
branch cut of ĉa(ω). Indicating by ΣII(ω) and ĉIIa (ω)
the analytic continuations of Σ(ω) and ĉa(ω) from the
outside to the inside of the closed loop L, the Bromwich
path B can be deformed by crossing the loop L. In doing
so, the Fourier-Laplace transform ĉa(ω) inside the loop
L should be replaced by its analytic continuation ĉIIa (ω).
Note that, according to Eq.(17), inside the loop L one
has

ΣII(ω) = Σ(ω)− 2πig1(ω)g2(ω)ρ(ω) (19)

ĉIIa (ω) =
1

ω − ωa − Σ(ω) + 2πig1(ω)g2(ω)ρ(ω)
. (20)

Therefore ĉIIa (ω) shows a set of branch points inside the
loop L at the complex frequencies ωs = ω(ks) defined
by the saddle points (7) [35]. To properly deform the
Bromwich path B inside the loop L, suitable branch cuts
that connect the branch points should be therefore con-
sidered.
To further proceed in the analysis, let us assume the weak
coupling limit g1g2 → 0 and that ω = ωa is not a singu-
larity (i.e. a pole or branch point) of ρ(ω), and let us
distinguish two cases.
First case: ωa falls outside the loop L. In this case ĉa(ω)
shows a pole at a frequency ω = ωp close to ωa, i.e.
outside the loop L. The pole is found as a root of the
equation

ωp − ωa − Σ(ωp) = 0 (21)

which in the weak coupling limit g1g2 → 0 reads

ωp ≃ ωa +Σ(ωa). (22)

In this case the Bromwich path can be deformed as shown
in Fig.2(b), where the dashed curves refer to the contour
integrals of ĉIIa (ω) around the branch points ωs internal
to L whereas the solid circle is the contour integral of
ĉa(ω) around the simple pole ω = ωp. This yields

ca(t) =
√
Z exp(−iωpt) + c(cut)a (t) (23)

where
√
Z ≃ 1+(dΣ/dω)ωa

is the residue of ĉa(ω) at the

pole ω = ωp, whereas c
(cut)
a (t) is the contribution that

arises from the branch cut integrals.
Second case: ωa falls inside the loop L. In this case ĉa(ω)
shows a pole at a frequency ω = ωp close to ωa, i.e. inside
the loop L. The Bromwich path can be deformed as in
Fig.2(c), where the dashed curves refer to the contour
integrals of ĉIIa (ω) around the branch points ωs internal
to L whereas the dashed circle is the contour integral
of ĉIIa (ω) around the simple pole ω = ωp. Therefore,
the behavior of ca(t) is again given by Eq.(23), but with
Σ(ωa) replaced by ΣII(ωa). In particular, the pole ωp is
now given by [compare with Eq.(22)].

ωp ≃ ωa +Σ(ωa)− 2πig1(ωa)g2(ωa)ρ(ωa). (24)

Equation (23), together with Eqs.(22) and (24), are the
main result of the present section and extend to the non-
Hermitian continuum the general quantum mechanical
decay law of the corresponding Hermitian problem [16].
A rich dynamical behavior can be envisaged depending
on the values of the self-energy and density of states at
ω = ωa, and on the long-time behavior of the branch cut
contribution. As a general result (see Appendix C), it
can be shown that if the unstable continuum is convec-
tively (but not absolutely) unstable, the branch cut term

c
(cut)
a (t) is decaying at long times, whereas if the unsta-
ble continuum is absolutely unstable the branch cut term

c
(cut)
a (t) shows a secular growth, namely one has

|c(cut)a (t)| ∼ 1

t1+ν
exp[Im(ωs)t] (25)

as t → ∞, where ωs = ω(ks) is the complex energy of
the most unstable saddle point [Eq.(7)] and ν > 0 is the
power exponent of the branch point.
Some non-trivial dynamical behaviors can be predicted:

(i) Pseudo-Hermitian complete or fractional decay.

If the continuum is convectively (but not absolutely)
unstable and Σ(ωa) is real [36], according to Eqs.(22)
and (23) ca(t) shows a fractional decay when ωa falls
outside the energy loop L (the pole ωp is real). On the
other hand, if ωa is embedded in the energy loop L,
from Eqs.(23) and (24) it follows that there is complete
decay provided that the density of states ρ(ωa) is real
(the pole ωp has a non vanishing negative imaginary
part). Such results indicate that the decay dynamics
in the convectively unstable continuum is analogous
to the one in an Hermitian continuum. Such a regime
will be thus referred to as pseudo-Hermitian quantum
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decay. However, since the continuum is not Hermitian,
it might happen that ρ(ωa) is imaginary. In this case,
according to Eqs.(23) and (24) it follows that, even
though the energy ωa of the discrete state is embedded
inside the energy loop L of the continuum, the decay
is not complete because the pole ωp turns out to be
real. Such a result does not have any counterpart in
the corresponding Hermitian quantum decay prob-
lem, since the decay is always complete whenever the
discrete-continuum coupling is weak and the energy
of the discrete state is embedded in the continuous
spectrum [37]. An example of fractional decay when ωa

is embedded into the continuum loop L will be presented
in the next section.

(ii) Pseudo-exponential unstable growth. If the con-
tinuum is absolutely unstable and the pole ωp is real
(this occurs, for example, whenever Σ(ωa) is real [36]
and ωa is not embedded in the loop L), ca(t) shows
a secular growth which arises from the branch cut
contribution solely [Eq.(23)]. According to Eq.(24),
the unstable growth is not a pure exponential one, as
one might expect at first sight, rather the exponential
growing term is multiplied by an algebraic decaying
term.
The above mentioned dynamical effects will be dis-

cussed in details in the next section by considering an
exactly-solvable unstable tight-binding continuum.

III. QUANTUM DECAY IN A TIGHT-BINDING
CONTINUUM WITH ASYMMETRIC HOPPING

RATES

Let us specialize the general results obtained in the
previous section considering in detail an exactly-solvable
example. We consider a tight-binding lattice with asym-
metric hopping rates κ1 and κ2 in the nearest-neighbor
approximation [38, 39], and assume that the discrete
state |a〉 is coupled to the Wannier state |0〉 of the lattice
with an Hermitian hopping rate σ; see Fig.3(a). The cou-
pled equations for the site occupation amplitudes read

i
dcn
dt

= κ1cn+1 + κ2cn−1 + σ∗δn,0ca (26)

i
dca
dt

= ωaca + σc0. (27)

For the sake of definiteness, we will assume κ1 > 0,
whereas κ2 can be either positive, negative or vanishing.
The limiting case of an Hermitian continuum is obtained
for κ2 = κ1. The dispersion relation ω(k) of the tight-
binding lattice reads [Fig.3(b)]

ω(k) = ∆1 cos k + i∆2 sin k (28)

where we have set

∆1 = κ1 + κ2 , ∆2 = κ1 − κ2. (29)

Note that one has ∆1 > ∆2 for κ2 > 0, whereas ∆2 > ∆1

for κ2 < 0, with the limiting case ∆1 = ∆2 for κ2 =
0. Note also that, as k spans the Brillouin zone from
k = −π to k = π, ω(k) describes an ellipse L in the
complex energy plane, with the major axis oriented along
the horizontal (vertical) axis when ∆1 > ∆2 (∆1 < ∆2);
see Fig.3(c). In the limiting case ∆2 = ∆1 the ellipse
degenerates into a circle. The density of state ρ(ω) =
(∂k/∂ω) and the spectral coupling functions g1,2(ω) can
be readily calculated and read

g1(k) = g∗2(k) =
σ√
2π

(30)

ρ(ω) =
1√

Γ2 − ω2
(31)

where we have set

Γ2 ≡ ∆2
1 −∆2

2. (32)

Note that there are two saddle points at frequencies
ωs1 = −Γ and ωs2 = Γ, internal to the ellipse L, which
correspond to the singularities of the density of states
ρ(ω) of order ν = 1/2. For ∆1 > ∆2 (i.e. κ2 > 0),
the saddle points lie on the real energy axis and thus the
continuum is convectively unstable, whereas for ∆1 < ∆2

(i.e. κ2 < 0) one of the two saddle points has a positive
imaginary part, indicating that the continuum is abso-
lutely unstable. At ∆2 = ∆1 (i.e. κ2 = 0) the two saddle
points coalesce and ρ(ω) shows a simple pole (rather than
two branch points) at ω = 0; see Fig.3(c).
The self-energy Σ(ω) can be computed in an exact form
using Eqs.(16), (28) and (30), and reads

Σ(ω) =

{

0 ω inside the ellipse L
− i|σ|2√

Γ2−ω2
ω outside the ellipse L (33)

Note that Σ(ω) is discontinuous along the line L, and the
discontinuity is related to the spectral functions g1,2(ω)
and density of states ρ(ω) according to Eq.(17). The
analytic continuation ΣII(ω) of Σ(ω) inside the ellipse
L shows two branch points at ω = ωs1 = −Γ and
ω = ωs2 = Γ, which should be connected by a branch
cut; see Fig.3(c). The Fourier-Laplace transform of ĉa(t),
analytically continued inside the ellipse L, is then given
by [Eq.(15)]

ĉIIa (ω) =

√
Γ2 − ω2

i|σ|2 + (ω − ωa)
√
Γ2 − ω2

(34)

The pole ω = ωp of ĉIIa (ω) is found as the root of the
equation

Γ2 − ω2 = − |σ|4
(ω − ωa)2

(35)

which for σ → 0 and ωa far from ±Γ is approximately
given by Eq.(24). To determine the temporal evolution
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FIG. 3. (Color online) (a) Schematic of a discrete state |a〉 side coupled to the Wannier state |0〉 of a tight-binding linear lattice
with asymmetric hopping rates κ1 and κ2. (b) Behavior of the real and imaginary parts of the band dispersion relation ω(k)
[Eq.(28)]. (c) Different dynamical behaviors corresponding to ∆1 > ∆2 (left panels), ∆1 = ∆2 (central panels), and ∆1 < ∆2

(right panels). For ∆1 > ∆2, the continuum is convectively unstable, the density of states shows two branch points ωs1,2 on
the real axis inside the ellipse L, and ca(t) shows a complete or fractional decay, depending on whether |ωa| is smaller or larger

than Γ =
√

∆2
1 −∆2

2. For ∆2 > ∆1, the continuum is absolutely unstable, the density of states shows two branch points ωs1,2

on the imaginary axis inside the ellipse L, and ca(t) shows a secular pseudo-exponential growth that arises from the brand cut
contribution. For ∆1 = ∆2 ca(t) shows an oscillatory (Rabi-like) behavior, regardless of the value of ωa and coupling strength
|σ|. The lower panels in (c) show the numerically-computed evolution of Pa(t) in the three different regimes. Parameter values
are as follows. Left panel: ∆2/∆1 = 0.7, σ/∆1 = 0.2, ωa/∆1 = 0 (complete decay), ωa/∆1 = 0.8 (fractional decay). Central
panel: ∆2/∆1 = 1, σ/∆1 = 0.2, ωa/∆1 = 0. Right panel: ∆2/∆1 = 1.2, σ/∆1 = 0.2, ωa/∆1 = 0.

of ca(t), we should distinguish the three cases shown in
Fig.3(c).
First case: ∆1 > ∆2. In this case the continuum is

convectively unstable, the two branch points ωs1 = −Γ
and ωs2 = Γ lie on the real axis and the cut contribu-

tion c
(cut)
a (t) = (1/2π)

∫

cut dωĉ
II
a (ω) exp(−iωt) decays al-

gebraically as t→ ∞ according to Eq.(25) with ν = 1/2.
Therefore the non-decaying term of ca(t) comes from the
pole contribution at ω = ωp [the first term on the right
hand side of Eq.(23)]. Let us first consider the case where
ωa is inside the continuum loop L. From Eqs.(24), (31)
and (33) the pole ωp is given by [40]

ωp ≃ ωa − i
|σ|2

√

Γ2 − ω2
a

(36)

Note that, for |ωa| < Γ the pole has a non vanishing and
negative imaginary part, i.e. there is a complete decay,
ca(t) → 0 as t → ∞; see left panel at the bottom in

Fig.3(c). However, when ωa is still inside the ellipse L
but Γ < |ωa| < ∆1, the pole ωp is real and thus the decay
is fractional (limited), in spite the energy ωa of the dis-
crete state is embedded inside the continuum loop. Such
a result does not have any counterpart in ordinary Hermi-
tian quantum decay, where the decay is always complete
when the energy of the discrete state is embedded within
the continuum (except for special energy values corre-
sponding to so-called bound states in the continuum or
when ωa is close to the edges of the continuum). Let us
now consider the case where ωa is outside the continuum
loop L. From Eqs.(22) and (33) the pole ωp is now given
by

ωp ≃ ωa +
|σ|2

√

ω2
a − Γ2

(37)

which is real. Therefore the amplitude ca(t) does not
vanish as t → ∞ and the decay is fractional [see left
panel in Fig.3(c)].
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Second case: ∆1 = ∆2. In this case the two branch
points ωs1 and ωs2 coalesce, yielding a pole at ω = 0
for ΣII(ω). Therefore there is not any branch cut con-
tribution to ca(t), and the exact behavior of ca(t) can
be readily obtained by the inverse Laplace-Fourier trans-
form

ca(t) =
1

2π

∫

B
dω

ω

−|σ|2 + ω(ω − ωa)
exp(−iωt). (38)

The integral on the right-hand side of Eq.(38) can be
computed by closing the Bromwich path B into the
Im(ω) < 0 half complex plane and using the residue the-
orem. Since the function under the sign of integral in
Eq.(38) has two poles at ω = Ω±, with

Ω± =
ωa

2
±
√

(ωa

2

)2

+ |σ|2 (39)

from the residue theorem one readily obtains

ca(t) =
Ω+

Ω+ − Ω−
exp(−iΩ+t)−

Ω−
Ω+ − Ω−

exp(−iΩ−t).

(40)
This means that Pa(t) = |ca(t)|2 shows an oscillatory

behavior at the frequency (Ω+ − Ω−) =
√

ω2
a + 4|σ|2;

see the central panel in Fig.3(c).

Third case: ∆1 < ∆2. In this case the continuum
is absolutely unstable, the two branch points ωs1 = −Γ
and ωs2 = Γ lie on the imaginary axis and the pole
ωp is real. From Eq.(23) it follows that the pole
contribution to ca(t) [first term on the right hand side
of Eq.(23)] does not decay but it is bounded, whereas

the cut contribution c
(cut)
a (t) is unbounded and shows

a pseudo-exponential growth as t → ∞ according to
Eq.(25) with ν = 1/2 and Im(ωs) = |Γ| =

√

∆2
2 −∆2

1.

Typical examples of the temporal evolution of Pa(t) in
the three above-mentioned cases, obtained by numerical
simulations of the coupled equations (26) and (27),
are shown in the bottom row of Fig.3(c). The pseudo-
exponential amplification in the ∆2 > ∆1 case is clearly
shown in Fig.4. The figure depicts the numerically-
computed behavior of (1/t)log[Pa(t)t

α] for a few values

of α, and the asymptotic limit Im(ωs) =
√

∆2
2 −∆2

1.
Note that the asymptotic limit is at best approached
for α = 3/2 (and not for α = 0), indicating that the
amplification is not a pure exponential term.
The different behaviors of Pa(t) found in the three

above mentioned cases can be physically explained as fol-
lows. For ∆1 > ∆2 the continuum is convective unstable,
so that the initial excitation in the site |a〉 is continu-
ously transferred to the Wannier site |0〉 of the lattice
and then amplified but convected away: this explains
why full decay is still possible, despite the excitation is
getting amplified in the continuum. However, as com-
pared to the Hermitian case the effective rate at which
the excitation is convected away from the Wannier site

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

time t

lo
g

[P
 (

t)
 t

  
  
]

a
α

1 t

1
2

3
4

FIG. 4. (Color online) Numerically-computed behavior of
(1/t)log[Pa(t)t

α] for a few values of the power exponent α
and for parameter values ∆1 = 1, ∆2 = 1.2, σ = 0.2 and
ωa = 0. Curve 1: α = 3/2; curve 2: α = 1/2; curve 3:
α = 0 (exponential amplification); curve 4: α = −1/2. The
dashed horizontal curve shows the asymptotic limit Im(ωs) =
√

∆2
2 −∆2

1 ≃ 0.66.

|0〉 is diminished because of the amplification that coun-
teracts the convective motion. This is the reason why
one can find a limited (fractional) decay when |ωa| is
smaller than ∆1, i.e. even when the discrete state is em-
bedded into the energy loop L of the continuum. Such
a behavior can be at best explained by observing that
for ∆1 > ∆2 the non-Hermitian decay problem given by
Eqs.(26) and (27) can be reduced to an Hermitian prob-
lem by an ’imaginary’ gauge transformation. In fact,
after setting κ1 = (Γ/2) exp(h) and κ2 = (Γ/2) exp(−h),
with Γ2 = 4κ1κ2 = ∆2

1 − ∆2
2 and h real, Eq.(26) takes

the form

i
dcn
dt

=
Γ

2
[cn+1 exp(h) + cn−1 exp(−h)] + σδn,0ca. (41)

Note that in this form the tight-biniding continuum de-
scribes a lattice with (Hermitian) hopping rate Γ/2 be-
tween adjacent sites and with an ’imaginary’ vector po-
tential, which is accounted for by the complex Peierls’
phase ih [38]. Such an imaginary vector potential can be
eliminated by the ’imaginary’ gauge transformation

cn(t) = bn(t) exp(−hn). (42)

Substitution of Eq.(42) into Eqs.(27) and (41) yields

i
dbn
dt

=
Γ

2
(bn+1 + bn−1) + σ∗δn,0ca (43)

i
dca
dt

= ωaca + σb0. (44)

In their present form Eqs.(43) and (44) describe an Her-

mitian decay problem of the site |a〉 coupled to the Wan-
nier site |0〉 of an Hermitian tight-binding lattice (a quan-
tum wire) with hopping rate Γ/2. Therefore, the decay
dynamics in the original non-Hermitian problem when
∆1 > ∆2 is pseudo-Hermitian, i.e. it can be mapped
into the quantum decay dynamics of an effective Hermi-
tian model. Note that the width Γ of the effective tight-
binding Hermitian lattice band is precisely that quantity
that determines whether the quantum decay is complete
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(|ωa| < Γ, the discrete state |a〉 is embedded into the con-
tinuum) or fractional (|ωa| > Γ, the discrete state |a〉 is
outside the continuum). Since Γ < ∆1, fractional decay
can be observed when ωa is embedded in the ellipse L.
On the other hand, for ∆2 > ∆1 the imaginary gauge
transformation can not be applied and the decay prob-
lem is not pseudo-Hermitian. In this case basically the
initial excitation of site |a〉 is transferred into the Wannier
site |0〉, however since in this case the continuum is abso-
lutely unstable the excitation in |0〉 is not advected away
and undergoes a secular growth, which explains why |a〉
is secularly amplified.
The case ∆1 = ∆2 is at the boundary between the con-
vectively and absolutely unstable regimes, and can be
analyzed directly in the Wannier basis representation us-
ing Eqs.(26) and (27). For ∆1 = ∆2, one has κ2 = 0 and
thus Eqs.(26) and (27) read

i
dcn
dt

= κ1cn+1 + σ∗δn,0ca (45)

i
dca
dt

= ωaca + σc0. (46)

which should be integrated with the initial condition
ca(0) = 1 and cn(0) = 0. It can be readily shown that
the solution to the above equations with the given initial
condition is given by

cn(t) = 0 n ≤ −1 (47)

c0(t) = f1(t) (48)

cn(t) = −iκ1
∫ t

0

dxcn−1(x) n ≥ 1 (49)

ca(t) = f2(t) (50)

where f1,2(t) satisfy the coupled equations

i
df1
dt

= σ∗f2 (51)

i
df2
dt

= σf1 + ωaf2 (52)

with the initial conditions f1(0) = 0, f2(0) = 1. Such
a solution shows that in the ∆1 = ∆2 case the dynam-
ics of the sites |a〉 and |0〉 is decoupled from the other
sites in the lattice, and thus Rabi-like oscillations are
observed, with the excitation being periodically trans-
ferred between sites |a〉 and |0〉. The transfer in com-
plete when ωa = 0 (resonant Rabi oscillations), whereas
it is incomplete for ωa 6= 0 (detuned Rabi oscillations).
This result is in agreement with the exact solution given
by Eqs.(39,40) and previously derived using the inverse
Fourier-Laplace method.

IV. CONCLUSION

The decay dynamics of a bound state coupled to a
continuum is of major importance in different areas of
physics. While in ordinary quantum mechanics the dy-
namics of the entire system must be unitary and the

decay of the bound state is generally observed when-
ever its energy is embedded into the continuum, a richer
dynamical behavior can be found when the Hamilto-
nian of the full system is allowed to be non-Hermitian
and the dynamics described by a non-unitary operator.
In this work we have theoretically investigated the de-
cay/amplification dynamics of a bound state weakly cou-
pled to a non-Hermitian unstable continuum, i.e. a con-
tinuum containing non-normalizable (improper) eigen-
states with positive imaginary part of the energy. A
rich behavior has been disclosed, mainly depending on
the absolute or convective nature of the instability of the
continuum. In the former case the occupation amplitude
of the discrete state grows secularly, however it may show
a pseudo-exponential growth. In the latter case, full de-
cay of the occupation amplitude of the discrete state can
be observed, in spite the excitation transferred into the
continuum is secularly amplified. Interestingly, limited
(fractional) decay can be observed even when the energy
of the discrete state is embedded within the energy loop
of the continuum. The general analysis has been exempli-
fied by considering in details the decay of a discrete state
into a tight-binding lattice where instability arises from
asymmetric hopping rates. Our results disclose novel dy-
namical features of discrete-continuum couplings in the
non-Hermitian realm, and could stimulate further theo-
retical and experimental investigations. For example, it
would be interesting to consider the impact of periodic
”observations” of the system, i.e. Zeno and anti-Zeno
dynamics, in the non-Hermitian realm.

Appendix A: Convectively and absolutely unstable
tight-binding continua

In this Appendix we briefly discuss the instability prop-
erties of the single-band tight-binding continuum, de-
scribed by Eq.(3) with ρn = 0. The most general solution
to Eq.(3) is given by an arbitrary superposition of Bloch
modes, namely

cn(t) =

∫ π

−π

F (k) exp[ikn− iω(k)t] (A1)

where ω(k) is the dispersion relation, defined by Eq.(4)
given in the text, and F (k) is an arbitrary spectral func-
tion, that is determined by the initial condition cn(0) via
the relation

F (k) =
1

2π

∞
∑

n=−∞
cn(0) exp(−ikn). (A2)

We wish to calculate the asymptotic behavior of cn(t)
along the path n = V t as t→ ∞, i.e. of the function

c(t) = cn=V t(t) =

∫ π

−π

dkF (k) exp[ikV t− iω(k)t] (A3)

where the index n is here assumed to be a continuous
variable. Following the definition introduced in Ref.[33],



9

the tight-binding continuum is said to be convectively

unstable if there exists a velocity V 6= 0 such that c(t) is
unbounded as t → ∞, but cn(t) → 0 as t → ∞ at any
fixed lattice site n. The tight-binding continuum is said
to be absolutely unstable if c(t) is unbounded as t→ ∞ for
V = 0. For the determination of the asymptotic behavior
of c(t) we only need to evaluate the integral on the right-
hand side of Eq. (A3) for those values of k for which
Im[ω(k)] > 0, the other modes giving no contribution
(they are surely decaying). The asymptotic behavior of
c(t) can be determined by the saddle-point (or steepest
descent) method [34, 41]. A saddle point k = ks is found
as the root of the equation

(

dω

dk

)

ks

= V. (A4)

Indicating by k = ks the most unstable saddle point, i.e.
with the highest imaginary part of the energy ω(ks), and
by n ≥ 2 its order, i.e. ω(k) = ω(ks) + V (k − ks) +
(dnω/dkn)ks

(k − ks)
n + o((k − ks)

n), for t→ ∞ one has

c(t) ∼ F (ks)

|t(dnω/dkn)ks
|1/n (n!)

1/nΓ

(

1

n

)

× exp[itV ks ± iπ/(2n)] exp[−itE(ks)]. (A5)

From Eqs.(A4) and (A5) it readily follows that the con-
tinuum is absolutely unstable whenever the energy ω(ks)
at the saddle point k = ks, satisfying Eq.(7) given in the
text, has a positive imaginary part. It can be readily
shown that, whenever the continuum is not absolutely
unstable but ω(k) has an imaginary positive part for
some wave numbers k, the continuum is convectively un-
stable. In fact, let us indicate by k = k0 the maximum
of the imaginary part of ω(k), and let us assume a drift
velocity V = Re[ω(k0)]. Then Eq.(A4) is satisfied for
ks = k0. Since Im[ω(k0)] > 0, from Eq.(A5) it then
follows that c(t) is unbounded.

Appendix B: Discontinuity of the self-energy

In this Appendix we prove Eq.(17) given in the text.
To this aim, let us indicate by ω0 = ω(k0) a point on
the contour L and by ǫ an infinitesimal complex number
such that the two points ω0 + ǫ and ω0 − ǫ fall outside
and inside the loop L, respectively, and the segment con-
necting them is orthogonal to L. Such a condition can
be satisfied by assuming

ǫ = i

(

dω

dk

)

k0

δ (B1)

with δ real and δ → 0. From the definition of the self-
energy [Eq.(16)] one readily obtains

Σ(ω0 + ǫ)− Σ(ω0 − ǫ) = −2ǫ (B2)

×
∫ π

−π

dk
g1(k)g2(k)

[ω0 + ǫ− ω(k)][ω0 − ǫ− ω(k)]
.

Im(ω)

Re(ω)

ωs

0
+-

FIG. 5. (Color online) Schematic of the branch cut departing
from a branch point ω = ωs inside the loop L. The branch
cut is depicted by the solid curve and parametrized by the
equation ω = ωb(s), where s is the arc length of the curve
starting from the branch point. The dashed line shows the
contour integral around the branch cut.

As |ǫ| → 0, the main contribution to the integral on the
right hand side of Eq.(B2) comes from the wave num-
bers k around k = k0. This is because at k = k0 the
function under the sign of integral diverges as ∼ 1/|ǫ|2.
Therefore we can set ω(k) ≃ ω0 + (dω/dk)k0

(k − k0) in
the denominator on the right hand side of Eq.(B2) and
g1(k)g2(k) ≃ g1(k0)g2(k0) in the numerator. After ex-
tending the integrals from k = −∞ to k = ∞ one obtains

Σ(ω0+ǫ)−Σ(ω0−ǫ) ≃ −2iδg1(k0)g2(k0)

(dω/dk)k0

∫ ∞

−∞

dk

δ2 + (k − k0)2

(B3)
which is exact in the δ → 0 limit. Taking into account
that

∫ ∞

−∞

dx

δ2 + x2
=
π

δ
(B4)

one finally obtains

Σ(ω0 + ǫ)− Σ(ω0 − ǫ) = −2πig1(k0)g2(k0)

(dω/dk)k0

(B5)

which is Eq.(17) given in the text once the density of
states ρ(ω) = (dk/dω) is introduced and the product
g1g2 is written as a function of frequency (rather than
wave number).

Appendix C: Branch cut contribution

In this Appendix we prove Eq.(25) given in the text.
To this aim, let us consider a branch point at frequency
ω = ωs inside the loop L, and let us compute the contri-
bution to the branch cut contour in the neighborhood
of the branch point. The branch cut departing from
ω = ωs is described by the curve ωb = ωb(s), where
s is the curvilinear abscissa with s = 0 at the branch
point, i.e. ωb(s = 0) = ωs. Without loss of generality,
in the neighborhood of ωs the branch cut may be chosen
so as the imaginary part of ωb(s) decreases as s increases
from zero, i.e. Im[ωb(s2)] > Im[ωb(s1)] for s2 > s1, with
(dωb/ds)s=0 = −iR imaginary and R > 0. As shown in
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Fig.5, this means that the branch point ωs is at the top
of the branch cut in the complex energy plane. Let us
now calculate the contribution of the branch cut contour
to ca(t), i.e. the integral

c(cut)a (t) =
1

2π

∫

cut

dωĉIIa (ω) exp(−iωt) = 1

2π
exp(−iωst)

×
∫ sf

0

ds
dωb

ds
F (s) exp{−i[ωb(s)− ωs]t} (C1)

where F (s) is the difference between cIIa (ω) evaluated
form the right(+) and from the left(-) sides of the branch
cut (see Fig.5), and sf is the arc length of the branch cut.
To evaluate the integral on the right hand side of Eq.(C1)
in the t→ ∞ limit, let us note that, since Im[ωb(s)−ωs]
is a negative decreasing function of s, vanishing at s = 0,
the main contribution to the integral arises for s close
to zero. Moreover, since ω = ωs is a branch point of
cIIa (ω) arising from a singularity ρ(ω) ∼ 1/(ω − ωs)

ν in
the density of states, from Eq.(20) it follows that in the
neighborhood of ω = ωs one has

ĉIIa (ω) ∼ A(ω − ωs)
ν (C2)

where ν > 0 is the of order of the branch point and A a
constant. The difference F (s) between cIIa (ω) evaluated

form the right (+) and from the left (-) sides of the branch
cut is dictated by the change of (ω − ωs)

ν as ω − ωs =
ǫ exp(iϕ) describes a circle around the branch cut, from
ϕ = 0 to ϕ = 2π. Hence one obtains

F (s) ∼ F0[ωb(s)− ωs]
ν (C3)

where we have set F0 = A[1 − exp(2πiν)]. In the
asymptotic limit t → ∞, we can assume in Eq.(C1)
ωb(s) − ωs ≃ d(ωb/ds)s=0s = −iRs, F (s) ∼ F0[ωb(s) −
ωs]

ν ∼ F0(−iRs)ν and we may extend the integral to ∞.
One obtains

c(cut)a (t) ≃ F0(−iR)ν+1

2π
exp(−iωst)

∫ ∞

0

dssν exp(−Rst)
(C4)

as t → ∞. Taking into account the definition of the
Gamma function Γ(z) =

∫∞
0 dx xz−1 exp(−x), after the

change of variable x = Rst in the integral on the right
hand side of Eq.(C4) one finally obtains

c(cut)a (t) ≃ F0Γ(ν + 1) exp[−iπ(ν + 1)/2]

2π

1

tν+1
exp(−iωst).

(C5)
From Eq.(C5) is follows that |ca(t)| ∼
t−(ν+1) exp[Im(ωs)t] as t → ∞, which is Eq.(25)
given in the text.
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