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1. Introduction

Discrete Tomography is concerned with the inversion of the so-called Discrete Radon
Transform to reconstruct discrete images from the collected counting data. The original
motivation came from High-Resolution Transmission Electron Microscopy (see [25, 26, 28])
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which is able to obtain two-dimensional images with atomic resolution and provides quan-
titative information on the number of atoms that lie in single atomic columns in crystals 
choosing main X-ray directions to be resolvable by the microscopy. The ultimate goal is to 
achieve 3D electron tomography with atomic resolution. Although this is not yet possible 
for all structures, significant progress has recently been achieved using different approaches 
[30]. In the applications, due to the high energies required to produce the X-rays of a crystal 
before it is damaged, only a small number of X-rays can be taken. The aim is the recon-
struction of images with few different grey levels, and, in particular, of binary images which 
resembles the original image as closely as possible.

In this paper we deal with the companion problem of uniqueness which consists in de-
ciding whether an object accessible only via its X-rays is uniquely determined by the data 
or instead there are other objects tomographically equivalent, i.e., having the same X-rays. 
In the classical mathematical formulation, an object is a lattice set, that is a finite subset
of points in the lattice Zn, and its X-rays count the number of its points computed along a
prescribed set of m lattice directions. Uniqueness issues have been intensively studied in Dis-
crete Tomography from different viewpoints (see, for instance, [4, 8, 11, 14, 16, 17, 19, 31]). 
In this setting with n = 2, the uniqueness problem can be solved in polynomial time for 
m = 2, whereas it is NP-complete for m > 2.

By increasing the dimension n, the problem can be extended in several ways. It leads for 
n = 3 to two natural generalizations which differ in the dimension of the linear spaces used 
for the X-rays: the first one considers one-dimensional X-rays according to the lines parallel 
to the three coordinate directions (see [15, 24]); the second one considers two-dimensional 
X-rays according to the planes orthogonal to the three axes (see [1, 18]). The complexity 
status of these problems is completely settled, and it turns out that they are NP-complete 
together with their generalizations to n-dimensional lattice sets and k-dimensional X-rays.

In this paper we focus on one-dimensional X-rays. In general, we note that unique-
ness is not a property of the set of X-ray directions, since for any finite set S of lattice 
directions there are two different lattice sets tomographically equivalent w.r.t. S (see [14, 
Theorem 4.3.1]). Therefore, in the literature special classes of geometric objects are con-
sidered such as convex [13], Q-convex [5] and additive [10, 31] lattice sets. For the class 
of convex sets, uniqueness can always be achieved by means of X-rays in a set S of four 
lattice directions, apart from special cases which are related to the so-called S-polygons. 
These can be roughly defined as “switching-components” (see Section 2 for all terminology) 
with the extra property of convexity (detailed descriptions of such structures can be found 
for instance in [6, 7, 27]). A different restriction, in the same spirit, consists in considering
subsets of a given rectangular grid A = [m1] × [m2] ⊂ Z2, where [mi] = {0, 1, . . . , mi − 1} 
and i = 1, 2. These sets have been introduced in [19] and are called bounded sets.

Overview of our results. We aim to extend some uniqueness results for bounded sets, ob-
tained in [3] and [4], to higher dimensions by using an algebraic approach. This approach 
has been introduced in [20] and then used in [2] to prove some preliminary results for the
successive papers. A trivial extension to Zn is obtained as follows: if H is a two-dimensional 
subspace in Zn and four directions lying in H are chosen according to [3], then the (one-



dimensional) X-rays in these directions uniquely determine all the two-dimensional sections
parallel to H of a bounded set E, and therefore distinguish E itself among all subsets of a
given grid. However, in view of the possible applications to 3D electron tomography it is of
interest to consider X-rays of bounded sets in noncoplanar sets of directions. In particular,
we address the question of which sets of directions in general positions (i.e. with no three
coplanar) are such that X-rays in these directions distinguish all the bounded sets in an
n-dimensional grid A = [m1]× [m2]×· · ·× [mn], where, for p ∈ N, [p] = {0, 1, ..., p−1}. This
issue is equivalently related to that of which sets of directions in general positions do not
admit switching-components contained in A. From the algebraic point of view, any finite
set S ⊆ Zn of lattice directions can be associated to a basic polynomial FS(x1, · · ·, xn) and
switching-components can then be interpreted as multiples of FS(x1, · · ·, xn) having only
coefficients in the set {−1, 0, 1}.

We point out that our results rely on the definition of (rectangular) grid and on the
algebraic theory of switching component. Variations of the concept of grid can change this
theory significantly as shown in [29].

In Section 2 we first show that d+1 represents the minimal number of directions we need
in order to avoid switching-components, under the requirement that such directions span a
d-dimensional subspace of Zn, where n ≥ d ≥ 3 (see Lemma 1). We then characterize all
such sets S (see Theorem 6).

In Section 3 we use the previous results to characterize those sets S which distinguish all
the subsets of A by their X-rays in the directions in S (see Theorem 12). Indeed we provide
a necessary and sufficient uniqueness condition, for any fixed dimension, showing that, with
few exceptions, as the dimension n grows, the grid A can be chosen arbitrary large in some
coordinate directions. This means that working in A is a weak restriction, and there are no
a priori limitations for the sizes of the bounded sets.

Note that as a consequence of Theorem 12, some results in [4] can be easily extended to
the n-dimensional case (see also Remark 4 after Theorem 12 and the discussion concerning
the links with [4] in the section of Concluding remarks).

2. Minimal sets of directions providing a weakly bad configuration

We denote the standard orthonormal coordinates for Zn by x1, . . . , xn. A vector u = 
(a1, . . . , an) ∈ Zn, where a1 ≥ 0, is said to be a lattice direction, if gcd(a1, ..., an) = 1. We 
refer to a finite subset E of Zn as a lattice set, and we denote its cardinality by |E|. Given a 
lattice direction u, the X-ray of a lattice set E in the direction u is the function giving the 
number of points in E on each line parallel to u. Let S be a prescribed finite set of lattice 
directions. Any two lattice sets E and F are tomographically equivalent if they have the 
same X-rays along the directions in S. Conversely, a lattice set E is said to be S-unique if 
there is no lattice set F different from but tomographically equivalent to E.



An S-weakly bad configuration is a pair of lists (Z,W ) consisting of k lattice points not
necessarily distinct (counted with multiplicity), z1, ..., zk ∈ Z and w1, ..., wk ∈ W such that
for each direction u ∈ S, and for each zr ∈ Z, the line through zr in direction u contains a
point wr ∈ W (see Figure 1(a)). If all the points in each set Z,W are distinct (multiplicity
1), then (Z,W ) is called an S-bad configuration (see Figure 1(b)). If for some k ≥ 2 an
S-(weakly) bad configuration (Z,W ) exists such that Z ⊆ E, W ⊆ Z2 \ E, we then say
that a lattice set E has an S-(weakly) bad configuration. This notion plays a crucial role in
investigating uniqueness problems, since a lattice set E is S-unique if and only if E has no
S-bad configurations [12].
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Figure 1: (a) An S-weakly bad configuration associated to S = {(1, 0), (1, 1), (1, 3), (1, 2)}, where Z consists
of the grey points and the squared white point (counted twice), while W is the set of black points. (b) An
S-bad configuration associated to the same set S = {(1, 0), (1, 1), (1, 3), (1, 2)}, with Z,W formed by grey
and black points respectively.

To each finite set S of lattice directions we can associate an S-weakly bad configuration
as follows. For each I ⊆ S, let u(I) =

∑
u∈I u, with u(∅) = 0 ∈ Zn, and we define the

multisets
AS = {u(I) : I ⊆ S, |I| even}, BS = {u(I) : I ⊆ S, |I| odd}, (2.1)

where the points u(I) are counted with the appropriate multiplicities, whenever there exist
distinct subsets I, J such that u(I) = u(J). For every v ∈ S, each point u(I) such that v ∈ I
can be paired to the point u(I)− v. This shows that the pair (AS , BS) is an S-weakly bad
configuration, and it is an S-bad configuration if all the points u(I), I ⊆ S, are distinct.

For p ∈ N, denote {0, 1, ..., p−1} by [p]. Let A = [m1]× [m2]×· · ·× [mn] be a fixed lattice
grid in Zn. We shall restrict our considerations to S-weakly bad configurations contained

The terminology is not uniform in the literature (see [22, 23] for an overview). For clarity, we adopt the 
terms “bad configuration” and “weakly bad configuration” to underlay whether all the points in each of the 
sets Z and W are distinct or not. Historically, Ryser used the name of “interchange” for “bad configuration”, 
many authors wrote “switching-component” for “bad configuration” and others adopted the same term also 
for the broader concept of weakly bad configuration in the cases where the difference is not relevant.



in A. We say that a set S is a valid set of directions for A, if for all i ∈ {1, . . . , n}, the
sum hi of the absolute values of the i-th coordinates of the directions in S satisfies the
condition hi < mi. Notice that the S-weakly bad configuration (AS , BS), associated to a set
S of directions which is valid for A, may not be contained in A. This happens when some
direction u ∈ S has a negative coordinate. However, by applying a suitable translation we
can get an S-weakly bad configuration contained in A (see Remark 1 below).

In order to study the S-weakly bad configurations contained in a finite grid A, we shall
adopt an algebraic approach introduced by Hajdu and Tijdeman in [20]. For a vector
u = (a1, . . . , an) ∈ Zn, we simply write xu in place of the monomial xa1

1 xa2
2 . . . xan

n . Consider
now any lattice vector u ∈ Zn, where u ̸= 0. Let u− ∈ Zn be the vector whose entries equal
the corresponding entries of u if negative, and are 0 otherwise. Analogously, let u+ ∈ Zn be
the vector whose entries equal the corresponding entries of u if positive, and are 0 otherwise.

For any finite set S of lattice directions in Zn, we define the rational function

RS(x1, . . . , xn) =
∏
u∈S

(xu − 1) =
∑
A⊂S

(−1)|S|−|A|xu(A), (2.2)

and denote by FS(x1, . . . , xn) the polynomial obtained from RS(x1, . . . , xn) as follows

FS(x1, . . . , xn) = RS(x1, . . . , xn)
∏
u∈S

x−u− =
∏
u∈S

x−u−
∏
u∈S

(x(u+)+(u−) − 1) =
∏
u∈S

(
xu+ − x−u−

)
.

(2.3)
For any function f : A → Z, its generating function is the polynomial defined by

Gf (x1, . . . , xn) =
∑

(a1,...,an)∈A

f(a1, . . . , an)x
a1
1 . . . xan

n .

Conversely, we say that the function f is generated by a polynomial P (x1, . . . , xn) if
P (x1, . . . , xn) = Gf (x1, . . . , xn). Notice that the function f generated by the polynomial
FS(x1, . . . , xn) vanishes outside A if and only if the set S is valid for A.

The line sum of a function f : A → Z along the line x = x0+tu, passing through the point∑
x0 ∈ Zn and with direction u, is the sum x=x +tu,x f(x). Further, we denote ||f || =
maxx∈A{|f(x)|}. We can easily check that the 

0

function
∈A
f generated by FS(x1, . . . , xn) has 

zero line sums along the lines taken in the directions belonging to S. Moreover, if g : A → Z 
has zero line sums along the lines taken in the directions of S, then FS(x1, . . . , xn) divides 
Gg(x1, . . . , xn) over Z (see Lemma 3.1 in [20] and [21]). We recall that two functions f, g : 
A ⊂ Zn → {0, 1} are tomographically equivalent with respect to a given finite set S of lattice 
directions if they have equal line sums along the lines corresponding to the directions in S. 
Note that two non-trivial functions f, g : A → {0, 1} which are tomographically equivalent 
can be interpreted as characteristic functions of two lattice sets which are tomographically 
equivalent. Further, the difference h = f − g of f and g has zero line sums. Hence there is 
a one-to-one correspondence between S-bad configurations contained in A and non-trivial
functions h : A → Z having zero line sums along the lines corresponding to the directions 
in S and ||h|| ≤ 1.
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To a monomial kxa1
1 xa2

2 . . . xan
n we associate the lattice point z = (a1, . . . , an) ∈ Zn,

together with its weight k. We say that a point (a1, . . . , an) ∈ A is a multiple positive point
for f (or Gf ) if f(a1, . . . , an) > 1. Analogously, (a1, . . . , an) ∈ A is said to be a multiple
negative point for f if f(a1, . . . , an) < −1. Such points are simply referred to as multiple
points when the signs are not relevant. For a polynomial P (x1, . . . , xn) we denote by P+

(resp. P−) the set of lattice points corresponding to the monomials of P (x1, . . . , xn) having
positive (resp. negative) sign, referred to as positive (resp. negative) lattice points.

Remark 1. If S is a given valid finite set of directions for A, then FS ⊂ A and the pair
of multisets (F+

S , F−
S ) is an S-weakly bad configuration contained in A. Moreover, it is an

S-bad configuration if and only if the polynomial FS(x1, . . . , xn) has all the coefficients
in the set {−1, 0, 1}. If each direction u ∈ S has non-negative coordinates, then u ∈
A, so that (AS , BS) = (F+

S , F−
S ). Otherwise, (F+

S , F−
S ) can be obtained by translating

(AS , BS) by the vector
∑

u∈S −u−. From the algebraic point of view this is equivalent
to multiplying the rational function RS(x1, . . . , xn) by

∏
u∈S x−u− . Therefore, when we

address problems involving just the coefficients of the polynomial FS(x1, . . . , xn), we can
replace this polynomial by the rational function RS(x1, . . . , xn).

For a finite set S = {u1, u2, ..., um} of directions in Zn, the dimension of S, denoted
by dimS, is the dimension of the vector space generated by the vectors u1, u2, ..., um. We
now show that a set of lattice directions in Zn which contains d > 2 linearly independent
directions and whose associated pair (F+

S , F−
S ) is not an S-bad configuration must contain

at least d+ 1 directions, independently of any grid A = [m1]× [m2]× · · · × [mn].

Lemma 1. Let S = {u1, u2, ..., um} a set of distinct lattice directions in Zn, where 3 ≤
dimS = d ≤ n. If FS(x1, . . . , xn) has a coefficient outside the set {−1, 0, 1}, then m ≥ d+1.

Proof. By Remark 1, if FS(x1, . . . , xn) has a coefficient outside the set {−1, 0, 1} then the
rational function RS(x1, . . . , xn) =

∏
u∈S(x

u − 1) =
∑

A⊆S(−1)m−|A|xu(A) has a coefficient
outside the set {−1, 0, 1}, as well. This means that when we expand the product which
factorizes RS(x1, . . . , xn), we get some monomials which are repeated. Therefore, there
are two distinct subsets I, J ⊂ S such that xu(I) = xu(J) and (−1)m−|I| = (−1)m−|J|, so
that u(I) = u(J) and |I| ≡ |J | (mod 2) (see also [19, Lemma 3.2]). By removing common
elements in I, J , we may assume that I, J are disjoint. The relation u(I) = u(J) gives a
linear dependence among vectors in I ∪ J ⊆ S, so that the vectors in S are not linearly
independent. This implies m ≥ d+ 1, as required.

We now exhibit a family of sets S ⊂ Zn with d + 1 lattice directions and dim S = d ≥ 3, 
whose associated polynomials FS(x1, . . . , xn) have a coefficient outside the set {−1, 0, 1}.

Proposition 2. Let B = {u1, u2, ..., ud} be a set of linearly independent directions in Zn, 
where n ≥ d ≥ 3. Let I, J be disjoint subsets of {u1, ..., ud} such that |I| ̸≡ |J| (mod 2), and w = 
u(I)−u(J) is a lattice direction with w ∈/ B. If S = {u1, ..., ud, w}, then RS(x1, . . . , xn) and 
FS(x1, . . . , xn) have a coefficient outside the set 1, 0, 1 , corresponding to the term xu(I) and 

xu(I)−
∑

u∈S u− , respectively. Moreover, if |I|
{−

+ |J| 
}
= d, there exists exactly one coefficient 

outside {−1, 0, 1}.
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Proof. Since w is a lattice direction, its first coordinate cannot be negative, so that I ̸= ∅.
Further if J = ∅, then |I| > 1, since w /∈ B. Moreover, we have w + u(J) = u(I), so that
xw+u(J) = xu(I). Since |I| ̸≡ |J |(mod2), we have |I| ≡ |{w}∪J |(mod2), hence (−1)d+1−|I| =
(−1)d+1−|{w}∪J|. Therefore, in the expansion of the product RS(x1, . . . , xn) =

∏
u∈S(x

u−1),

we have at least two occurrences of the term (−1)d+1−|I|xu(I) (see relation (2.2)).
We now show that there are no other occurrences of such terms, so that the term xu(I) in

RS(x1, . . . , xn) has just one coefficient outside the set {−1, 0, 1} (equal to ±2). Suppose that
there exists a set H ⊂ S such that u(H) = u(I), where H ̸= {w}∪J , and |H| ≡ |I| (mod2).
If w /∈ H then the relation u(H) = u(I) provides a linear dependence among the vectors
of the set I ∪H ⊆ {u1, ..., ud}, which contradicts the assumption that u1, ..., ud are linearly

independent. If w ∈ H, then we have u(H) = w + u(Ĥ), where Ĥ = H \ {w} with Ĥ ̸= J .

Thus, we get w = u(I)− u(J) = u(H)− u(Ĥ) = u(I)− u(Ĥ), which again provides a linear
dependence among the vectors u1, ..., ud. This proves that RS(x1, . . . , xn) has a coefficient
outside the set {−1, 0, 1}, corresponding to the term xu(I). By Remark 1 and (2.3) the
polynomial FS(x1, . . . , xn) has a coefficient outside the set {−1, 0, 1} corresponding to the
monomial xu(I) ·

∏
u∈S x−u− = xu(I)−

∑
u∈S u− .

Suppose now |I| + |J | = d, so that B = I ∪ J . We show that RS(x1, . . . , xn) does not
contain other terms with coefficients distinct from {−1, 0, 1}, apart from xu(I). Suppose,
on the contrary, that there exist two terms xu(H) = xu(K) ̸= xu(I), where H,K ⊂ S are
disjoint sets such that |H| ≡ |K| (mod 2). Equality u(H) = u(K) implies that the vectors
of the set H ∪K ⊆ S are linearly dependent. Since S = {w} ∪ I ∪ J , where the vectors in
B = I ∪ J are linearly independent, w ∈ H ∪K. Assume, without loss of generality, w ∈ H,
so that w /∈ K, since H,K are disjoint. Then u(H) = u(K) implies w = u(K) − u(H ′),
where H ′ = H \ {w}. Therefore, we get u(K) − u(H ′) = u(I) − u(J) which gives a linear
dependence among the vectors in I ∪ J . Again this contradicts the assumption that the
vectors in I ∪ J are linearly independent. Hence, we can conclude that FS(x1, . . . , xn) has
exactly one coefficient outside the set {−1, 0, 1}.

Remark 2. If d is even, then |I| ̸≡ |J | (mod 2) implies |I| + |J | ̸= d, so that w must be
a linear combination of vectors contained in a proper subset of {u1, ..., ud} (see Example
5 below). In particular, for d = 2, no set S consisting of three distinct lattice directions
u1, u2, w can satisfy the condition w = u(I)− u(J) with |I| ̸= |J | (mod 2), and this explains
the assumption d ≥ 3 in Proposition 2. A detailed description of the case d = n = 2 can be
found in [2] and [3].

For the sake of simplicity, in the following examples we shall take n = d.

Example 3. Consider the set S ⊂ Z3 consisting of the directions u1 = (1, 0, 0), u2 =
(0, 1, 0), u3 = (1, 2, 1), w = (2, 3, 1), where w = u1 + u2 + u3. Then



FS(x1, x2, x3) =
(x1 − 1)(x2 − 1)(x1x

2
2x3 − 1)(x2

1x
3
2x3 − 1) =

x4
1x

6
2x

2
3 − x4

1x
5
2x

2
3 − x3

1x
6
2x

2
3 + x3

1x
5
2x

2
3 − x3

1x
4
2x3+

+x3
1x

3
2x3 + x2

1x
4
2x3 − 2x2

1x
3
2x3 + x2

1x
2
2x3 + x1x

3
2x3−

−x1x
2
2x3 + x1x2 − x1 − x2 + 1.

According to (the proof of) Proposition 2 with I = {u1, u2, u3} and J = ∅, FS(x1, x2, x3)
contains a unique monomial with coefficient outside {−1, 0, 1}, given by −2xw = −2x2

1x
3
2x3.

Example 4. Consider the set S ⊂ Z3 of directions u1 = (1, 0, 0), u2 = (0, 1, 0), u3 =
(0, 0, 1), w = (1, 1,−1), where w = u1 + u2 − u3. Then

FS(x1, x2, x3) =
(x1 − 1)(x2 − 1)(x3 − 1)(x1x2 − x3) =
−x1x2x

2
3 + x2x

2
3 + x1x

2
3 − x2

3 + x2
1x

2
2x3−

−x1x
2
2x3 − x2

1x2x3 + 2x1x2x3 − x2x3 − x1x3+
+x3 − x2

1x
2
2 + x1x

2
2 + x2

1x2 − x1x2.

According to (the proof of) Proposition 2 with I = {u1, u2} and J = {u3}, FS(x1, x2, x3)
contains a unique monomial with coefficient outside {−1, 0, 1}, given by 2xu1+u2−w− =
2x1x2x3.

The following example shows that if |I|+ |J | ̸= d, then FS(x1, . . . , xn) may have more than
one coefficient outside the set {−1, 0, 1}.

Example 5. Consider the following set of linearly independent directions of Z4:

{u1 = (1, 0, 0, 0), u2 = (0, 1, 0, 0), u3 = (0, 1, 1, 0), u4 = (0, 1, 2, 1)}.

Let us choose one of the following sets

S1 = {u1, u2, u3, u4, w = u1 + u2 + u4} =
= {(1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 2, 1), (1, 2, 2, 1)}
(I = {u1, u2, u4}, J = ∅)

S2 = {u1, u2, u3, u4, w = u1 + u2 − u4} =
= {(1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 2, 1), (1, 0,−2,−1)}
(I = {u1, u2}, J = {u4}).

According to (the proof of) Proposition 2, FS1(x1, x2, x3, x4) contains the monomials 2xw =
2x1x

2
2x

2
3x4 and −2xw+u3 = −2x1x

3
2x

3
3x4 with coefficient outside {−1, 0, 1}, and FS2(x1, x2, x3, x4)

contains the monomials −2xu1+u2−w− = −2x1x2x
2
3x4 and 2xu1+u2−w−+u3 = 2x1x

2
2x

3
3x4

with coefficient outside {−1, 0, 1}.



We now provide a complete characterization of the minimal sets S of lattice directions,
containing d > 2 linearly independent directions, for which FS(x1, . . . , xn) has a coefficient
outside the set {−1, 0, 1}. The following theorem shows that all such sets must belong to
the family presented in Proposition 2.

Theorem 6. Let S ⊂ Zn be a set of distinct lattice directions such that |S| = d + 1 and
dimS = d ≥ 3. Then FS(x1, . . . , xn) has a coefficient outside the set {−1, 0, 1} if and only
if S is of the form

S = {u1, ..., ud, w = u(I)− u(J)} (2.4)

where the vectors u1, ..., ud are linearly independent, and I, J are disjoint subsets of {u1, ..., ud}
such that |I| ≡ |{w} ∪ J | (mod 2).

Proof. Let S be of the form specified in (2.4), where the vectors u1, ..., ud are linearly
independent, and I, J are disjoint subsets of {u1, ..., ud} such that |I| ≡ |{w} ∪ J | (mod 2).
Then FS(x1, . . . , xn) has a coefficient outside the set {−1, 0, 1} by Proposition 2.

Vice versa, let S ⊂ Zn be a set of d+1 distinct lattice directions such that dimS = d ≥ 3
and FS(x1, . . . , xn) has a coefficient outside the set {−1, 0, 1}. By Remark 1 the rational
function RS(x1, . . . , xn) =

∏
u∈S(x

u − 1) has a coefficient outside the set {−1, 0, 1}, as well.
This means that there exist two disjoint subsets S1, S2 ⊂ S such that u(S1) = u(S2) and
|S1| ≡ |S1| (mod 2). Let S1 = {v1, ..., vh} and S2 = {z1, . . . , zk}. Then v1 = z1 + · · · +
zk − (v2 + · · · + vh). Let us define w = v1, I = {z1, ..., zk} and J = {v2 + · · · + vh}
(notice that we may have J = ∅). Then we have S = {u1, ..., ud, w = u(I) − u(J)}, where
{u1, ..., ud} = S \ {w}. The vectors {u1, ..., ud} are linearly independent since dimS = d. �

According to Proposition 2, in Examples 3 and 4 we have just one monomial with co-
efficients different from {−1, 0, 1}, and in these cases all the vectors u1, u2, u3, which are
linearly independent, appear in the expression giving the fourth vector w. In Example 5 the
linear combination defining w does not contain the vector u3, and in this case we have an
additional monomial with coefficients outside the set {−1, 0, 1} whose exponent is obtained
by adding the vector u3 to u(I) −

∑
u∈S u−. This is true in general, as it is shown by the

following theorem.

Theorem 7. Let S = {u1, ..., ud, w = u(I) − u(J)} be a set of distinct lattice directions
in Zn, where the vectors u1, ..., ud are linearly independent, and I, J are disjoint subsets
of {u1, ..., ud} such that |I| ≡ |{w} ∪ J | (mod 2). Then the number η of monomials in
FS(x1, . . . , xn) with coefficients outside the set {−1, 0, 1} is given by

η = 2d−|I|−|J|. (2.5)

The terms in RS(x1, . . . , xn) =
∏

u∈S(x
u − 1) with coefficients outside the set {−1, 0, 1} are

given by
(−1)d+1−|I|−|H|2xu(I)+u(H), (2.6)

where H ⊆ S \ (I ∪ J ∪ {w}), and to distinct sets H correspond distinct terms.



Proof. If |I|+ |J | = d, then the result follows from Proposition 2. Suppose |I|+ |J | < d,
and denote T = I ∪ J ∪ {w}. We have

RS(x1, . . . , xn) = RT (x1, . . . , xn)
∏

u∈S\T

(xu − 1) =

= RT (x1, . . . , xn)
∑

H⊆S\T

(−1)|S\T |−|H|xu(H).

By Proposition 2, applied to the set T of directions, the expansion of RT (x1, . . . , xn) contains
a unique term with coefficient outside {−1, 0, 1}, given by (−1)|T |−|I|2xu(I). Since the vectors
u1, . . . , ud are linearly independent, all the terms obtained by multiplying (−1)|T |−|I|2xu(I)

by (−1)|S\T |−|H|xu(H), where H ⊆ S \ T , are distinct and none of them can be equal to a
term in RT (x1, . . . , xn). Therefore, the number of terms in RS(x1, . . . , xn) with coefficients
outside the set {−1, 0, 1} equals the number of subsets of S \ T (including the empty set
which corresponds to the term (−1)d+1−|I|2xu(I)), so that we have η = 2|S\T | = 2d−|I|−|J|,
as required.

The previous argument also shows that all the terms in RS(x1, . . . , xn) with coefficients
outside the set {−1, 0, 1} are given by (−1)d+1−|I|−|H|2xu(I)+u(H), for H ⊆ S \(I∪J ∪{w}).
All these terms are distinct, since S \ T consists of linearly independent vectors. �

From the geometric point of view, Theorem 7 says that the multiple points in the S-
weakly bad configuration (AS , BS) are obtained by translating the multiple point u(I) by
the vectors u ∈ S which do not belong to the vector space generated by I ∪ J ∪ {w}.
Remark 3. Note that if S contains all the n coordinate directions, then d = n = |I|+ |J |,
so that the weakly bad-configuration associated to FS has a unique multiple point.

3. Minimal sets of directions providing uniqueness in a finite grid

In this section we characterize the minimal sets of lattice directions that ensure unique-
ness inside a finite grid A = [m1] × [m2] × · · · × [mn] in Zn, where, for p ∈ N, [p] = 
{0, 1, ..., p − 1}. We refer to all the subsets of A as bounded sets. We say that a finite set
S ⊆ Zn of lattice directions is a set of uniqueness for a finite grid A if no distinct lattice sets
E, F ⊆ A exist which are tomographically equivalent. In this case we also say that each set 
E ⊂ A is uniquely determined in A. Notice that this does not imply that E is S-unique,
as there may exist F * A different from but tomographically equivalent to E. Therefore, 
looking for sets S which are sets of uniqueness for A is equivalent to add a priori knowledge 
on the class of sets to be reconstructed, namely to restrict to the class of bounded sets.

By means of Theorem 6 we can state a necessary condition on a minimal set S of lattice 
directions to be a set of uniqueness for A.

Proposition 8. Let S ⊂ Zn be a set of distinct lattice directions such that |S| = d + 1 
and dim S = d ≥ 3. Suppose that S is a valid set of uniqueness for a finite grid A =
[m1] × [m2] × · · · × [mn] ⊂ Zn. Then S is of the form

S = {u1, ..., ud, w = u(I) − u(J)}



where the vectors u1, ..., ud are linearly independent, and I, J are disjoint subsets of {u1, ..., ud}
such that |I| ≡ |{w} ∪ J | (mod 2).

Proof. Since S is a valid set of directions for A, the S-weakly bad configuration (F+
S , F−

S )
is contained in A. Moreover, since S is a set of uniqueness for A, (F+

S , F−
S ) cannot be an

S-bad configuration, otherwise the sets F+
S , and F−

S would be tomographically equivalent.
Therefore the polynomial FS(x1, . . . , xn) has a coefficient outside the set {−1, 0, 1}. The
result then follows from Theorem 6. �

To get a sufficient condition we now study all the S-weakly bad configurations contained
in A, or equivalently the functions g : A → Z which have zero line sums along the lines
corresponding to the directions in S. In [20], Hajdu and Tijdeman showed that all these
functions can be obtained as a linear combination of shifts of a basic one corresponding to the
function f (where f denotes the function generated by the basic polynomial FS(x1, . . . , xn)).
In view of this result we first consider a shift by a single vector v ∈ Zn.

For any v ∈ Zn we define the polynomials ϕ−
v (x1, . . . , xn) = xv+−x−v− , and ϕ+

v (x1, . . . , xn) =
xv+ +x−v− . Given a finite set S of lattice directions and v ∈ Zn, we define the functions fv

− :
Zn → Z, and fv

+ : Zn → Z to be the maps whose generating functions areGfv
−
(x1, . . . , xn)) =

ϕ−
v (x1, . . . , xn)FS(x1, . . . , xn) and Gfv

+
(x1, . . . , xn) = ϕ+

v (x1, . . . , xn)FS(x1, . . . , xn), respec-
tively.

Lemma 9. Let S = {u1, ..., ud, w = u(I) − u(J)} be a set of distinct lattice directions in
Zn, where the vectors u1, ..., ud are linearly independent, and I, J are disjoint subsets of
{u1, ..., ud} such that |I| ≡ |{w} ∪ J | (mod 2). Then the following holds

1. ||fv
−|| ≤ 1 if and only if v = u(X) − u(I), where X ⊆ T = I ∪ J ∪ {w} and |X| ≡

|I| (mod 2).

2. ||fv
+|| ≤ 1 if and only if v = u(X) − u(I), where X ⊆ T = I ∪ J ∪ {w} and |X| ̸≡

|I| (mod 2).

Proof. We first note that ||fv
−|| ≤ 1 (||fv

+|| ≤ 1) if and only if its generating function
Gfv

−
(x1, . . . , xn) (Gfv

+
(x1, . . . , xn), respectively) has all the coefficients in the set {−1, 0, 1}.

Moreover, the coefficients of these polynomials equal the coefficients of the rational functions
(xv ± 1)RS(x1, . . . , xn) (see Remark 1).

We shall prove the theorem for the function fv
− (case (1)), as the other case is similar.

Suppose v = u(X) − u(I), where X ⊆ I ∪ J ∪ {w} and |X| ≡ |I| (mod 2). If X = I then
v = 0 and fv

− = 0. Suppose X ̸= I, and denote T = I ∪ J ∪ {w}. We have xu(I)+v = xu(X)

and (−1)|T |−|I| = (−1)|T |−|X|. Consider

(xv − 1)RS(x1, . . . , xn) = (xv − 1)RT (x1, . . . , xn)
∏

u∈S\T

(xu − 1) .

By Proposition 2 the rational function RT (x1, . . . , xn) contains a unique term with coeffi-

cient outside {−1, 0, 1}, given by (−1)|T |−|I|2xu(I). Thus, in the expansion of the prod-
uct xvRT (x1, . . . , xn) we have the term (−1)|T |−|I|2xu(I)+v and in −RT (x1, . . . , xn) we



have the term −(−1)|T |−|X|xu(X) = −(−1)|T |−|I|xu(I)+v. Therefore, the term xu(I)+v in
(xv − 1)RT (x1, . . . , xn) has coefficient (−1)|T |−|I| ∈ {−1, 0, 1}. Since the vectors in I ∪ J
are linearly independent, all the other terms in (xv − 1)RT (x1, . . . , xn) have coefficients in
{−1, 0, 1}. Further, the linear independence of the vectors in S\T implies that distinct terms
in (xv − 1)RT (x1, . . . , xn) remain distinct when they are multiplied by

∏
u∈S\T (xu − 1).

Vice versa, suppose ||fv
−|| ≤ 1. Then the rational function (xv − 1)RS(x1, . . . , xn) has

all the coefficients in {−1, 0, 1}. By Theorem 7, the rational function RS(x1, . . . , xn) con-
tains the terms (−1)d+1−|I|−|H|2xu(I)+u(H), where H ⊂ S \ T . The absolute values of
the coefficients of these terms must decrease by multiplying with (xv − 1). Thus, for

each H ⊂ S \ T there exists a set Ĥ ⊆ S such that v + u(I) + u(H) = u(Ĥ), and

(−1)d+1−|I|−|H| = (−1)d+1−|Ĥ|. In particular, for H = ∅, we denote X = Ĥ, so that
we have v+ u(I) = u(X), where X ⊆ S and (−1)d+1−|I| = (−1)d+1−|X|. If S = I ∪ J ∪ {w}
then X ⊆ I ∪ J ∪ {w}, with |X| ≡ |I| (mod 2), as required.

Let us suppose S ≠ I∪J∪{w} andX not contained in I∪J∪{w}. Let z ∈ X\(I∪J∪{w})
and denote Y = X \{z}. We then have v+u(I) = u(X) = z+u(Y ) (notice that u({z}) = z).

We now consider the set H = {z}. Then there exists Ĥ ⊆ S such that v+ u(I)+ z = u(Ĥ).

Thus, we have z+ u(Y ) + z = u(Ĥ). Since z /∈ I ∪ J ∪ {w}, the conditions w = u(I)− u(J)

and z+u(Y )+z = u(Ĥ) provide two distinct linear dependence relations among the vectors
in S, which contradicts the assumption dimS = d. This proves that X ⊆ I ∪ J ∪ {w}, with
(−1)d+1−|I| = (−1)d+1−|X|, so that |X| ≡ |I| (mod 2), as required. �

Example 10. Consider the set S as in Example 5:

S = {u1, u2, u3, u4, w = u1 + u2 + u4}

+

= {(1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 2, 1), (1, 2, 2, 1)}

where I = {u1, u2, u4}, J = ∅.
We have T = {u1, u2, u4, w = u1 + u2 + u4}, and u(I) = w = u1 + u2 + u4. According to 
Lemma 9, ϕv

−(x1, . . . , xn)FS ((x1, . . . , x4) has all the coefficients in {−1, 0, 1} if

v ∈ {0, ±(u1 + u2), ±(u1 + u4), ±(u2 + u4)},

as we can easily verify.
Analogously, ϕv (x1, . . . , xn)FS ((x1, . . . , x4) has all the coefficients in {−1, 0, 1} if

v ∈ {±u1, ±u2, ±u4, ±w}.

We now consider an arbitrary function g : A ⊂ Zn → Z, which has zero line sums 
along the lines corresponding to a finite set of directions S, which is valid for A. The 
following result represents a higher-dimensional generalization of Theorem 3 in [2] (see also 
[3, Theorem 2]), and the proof is similar. However, for the convenience of the reader, we 
prefer to give the proof explicitly. For any pair of vectors a = (a1, . . . , an), b = (b1, . . . , bn) 
we denote min(a, b) = (min(a1, b1), . . . , min(an, bn)).



Theorem 11. Let S = {u1, ..., ud, w = u(I) − u(J)} be a valid set of distinct lattice di-
rections for a given grid A = [m1] × [m2] × · · · × [mn] ⊂ Zn, where the vectors u1, ..., ud

are linearly independent, and I, J are disjoint subsets of {u1, ..., ud} such that |I| ≡ |{w} ∪
J | (mod 2). Let g : A → Z be a non-trivial function which has zero line sums along the lines
corresponding to the directions in S. If ||g|| ≤ 1 then there exists r ∈ N such that

Gg(x1, . . . , xn) =

r∑
t=1

δ(t)xv(t)FS(x1, . . . , xn), (3.1)

where δ(t) = ±1, and for each t ∈ {1, ..., r}, there exists t′ ∈ {1, ..., r} such that the vector
u(t) = v(t)− v(t′) satisfies the following conditions

1. u(t) = u(X)−u(I), where X ⊆ T = I ∪ J ∪{w} and |X| ≡ |I| (mod 2), if δ(t) ̸= δ(t′).
2. u(t) = u(X)−u(I), where X ⊆ T = I ∪ J ∪{w} and |X| ̸≡ |I| (mod 2), if δ(t) = δ(t′).

Proof. By the higher dimensional version of [20, Theorem 1] (see also [21]), we have
Gg(x1, . . . , xn) = P (x1, . . . , xn)FS(x1, . . . , xn) for some polynomial P (x1, . . . , xn) ∈ Z[x1, . . . , xn].
Each monomial of P (x1, . . . , xn) can be split into a sum of monomials with coefficients ±1,
so that

P (x1, . . . , xn) =

r∑
t=1

δ(t)xs(t),

for suitable vectors s(t) ∈ Zn. Therefore we get

Gg(x1, . . . , xn) =
r∑

t=1

δ(t)xs(t)FS(x1, . . . , xn),

where δ(t) = ±1. Let f be the function generated by FS(x1, . . . , xn). By Theorem 7 there
exists q ∈ Zn such that |f(q)| = 2. By multiplying FS(x1, . . . , xn) by xs(t), the value
f(q) = ±2 is attached to the translated point q + s(t). Since ||g|| ≤ 1, such value must be
reduced in g. This occurs by adding to the corresponding monomial a monomial with the
same degree and a coefficient with opposite sign. Thus, for each t ∈ {1, ..., r}, some point
zt ∈ Zn must exist, and some monomial δ(t′)xs(t′) ̸= δ(t)xs(t) of P (x1, . . . , xn), such that
f(zt) ̸= 0, and zt + s(t′) = q + s(t). It follows that the function(

δ(t)xs(t) + δ(t′)xs(t′)
)
FS(x1, . . . , xn)

has no multiple points. Let us define u(t) = s(t)− s(t′) = zt − q. Then we have(
δ(t)xs(t) + δ(t′)xs(t′)

)
FS(x1, . . . , xn) =

xmin(s(t),s(t′))
(
δ(t)xu(t)+ + δ(t′)x−u(t)−

)
FS(x1, . . . , xn).

By Lemma 9 applied to the vector u(t) and to the function(
δ(t)xu(t)+ + δ(t′)x−u(t)−

)
FS(x1, . . . , xn),



we get either 1. or 2., depending on the signs of δ(t) and δ(t′), which provide a necessary
condition for ||g|| ≤ 1.

By Proposition 8, if a set S ⊂ Zn of distinct lattice directions with |S| = d + 1 and
dimS = d ≥ 3 is a valid set of uniqueness for a rectangular grid A ⊂ Zn, then it must
be of the form S = {u1, ..., ud, w = u(I) − u(J)}, where the vectors u1, ..., ud are linearly
independent, and I, J are disjoint subsets of {u1, ..., ud} such that |I| ≡ |{w} ∪ J | (mod 2).
Among the sets S having this form we can now specify which are sets of uniqueness for A,
thanks to Theorem 11. For a given set S = {u1, ..., ud, w = u(I) − u(J)}, where I, J are
disjoint subsets of {u1, ..., ud} we define D = {±v : v = u(X)− u(I) ̸= 0, X ⊆ I ∪ J ∪ {w}}.

Theorem 12. Let S = {ur = (ar1, . . . , arn) : r = 1, . . . , d+ 1}, where u1, ..., ud are linearly
independent, ud+1 = u(I) − u(J), and I, J are disjoint subsets of {u1, ..., ud} such that
|I| ≡ |{w}∪J | (mod2). Suppose S is valid for the grid A = [m1]× [m2]×· · ·× [mn]. Denote
d+1∑
r=1

|ari| = hi, for each i ∈ {1, . . . , n}. Suppose that g : A → Z has zero line sums along the

lines in the directions in S, and ||g|| ≤ 1. Then g is identically zero if and only if for each
v = (v1, . . . , vn) ∈ D, there exists s ∈ {1, . . . , n} such that |vs| ≥ ms − hs.

Proof. We first show that if there exists a vector v = (v1, . . . , vn) ∈ D such that |vi| <
mi − hi for all i ∈ {1, . . . , n}, then we can find a non-trivial function g : A → Z such that
||g|| ≤ 1.
Since v ∈ D, by Lemma 9, either ||f−

v || ≤ 1 or ||f+
v || ≤ 1. Moreover, we have

degxi
Gf−

v
(x1, . . . , xn) = degxi

Gf+
v
(x1, . . . , xn) = |vi|+ hi < mi,

for all i ∈ {1, . . . , n}. Therefore, we can choose g = f−
v , or g = f+

v , depending on which one
satisfies the condition ||g|| ≤ 1.

Vice versa, let us suppose that for each v = (v1, . . . , vn) ∈ D there exists s ∈ {1, . . . , n}
such that |vs| ≥ ms − hs. Consider a non-trivial function g : A → Z such that ||g|| ≤ 1.
By Theorem 11, its generating function Gg(x1, . . . , xn) is a polynomial of the form (3.1),
where δ(t) = ±1, and for each t ∈ {1, ..., r}, there exists t′ ∈ {1, ..., r} such that the vector
u(t) = v(t)− v(t′) ∈ D.

We must prove that no such polynomial Gg(x1, . . . , xn) exists, with degree less than
mi in xi, for all i ∈ {1, ..., n}. Suppose the converse. Then Gg(x1, . . . , xn) contains the
expression (

δ(t′)xv(t′) + δ(t)xv(t)
)
FS(x1, . . . , xn)

which, up to a sign, can be written in one of the following forms

xmin{v(t),v(t′)}ϕ+
u(t)(x1, . . . , xn) · FS(x1, . . . , xn) =

= xmin{v(t),v(t′)} ·Gf+
u(t)

(x1, . . . , xn),

if δ(t) = δ(t′), or



xmin{v(t),v(t′)}ϕ−
u(t)(x1, . . . , xn) · FS(x1, . . . , xn) =

= xmin{v(t),v(t′)} ·Gf−
u(t)

(x1, . . . , xn),

if δ(t) ̸= δ(t′), where u(t) ∈ D.
Therefore, we have

degxi
Gg(x1, . . . , xn) ≥ degxi

Gf+
u(t)

(x1, . . . , xn) =

= degxi
Gf−

u(t)
(x1, . . . , xn).

Assume u(t) = (u1(t), . . . , un(t)), so that we have

degxi
Gf−

u(t)
(x1, . . . , xn) = degxi

Gf+
u(t)

(x1, . . . , xn) = |ui(t)|+ hi, (3.2)

for all i ∈ {1, . . . , n}. Since u(t) ∈ D, there exists s ∈ {1, . . . , n}, so that |us(t)| ≥ ms − hs.
Therefore the degree in xs of the polynomial Gg(x1, . . . , xn) is at least equal to ms, so
contradicting our assumption. Therefore, being ||g|| ≤ 1, we get that g is identically zero.
�

Remark 4. Let us also recall that a lattice set E is additive if and only if E has no weakly-
bad configurations (see [10]). In [4] we get an algorithm which constructs all the non-additive
lattice sets which can be uniquely reconstructed inside a given rectangular two-dimensional
grid by their X-rays taken in a prescribed set of four lattice directions. Such an algorithm
is based on a uniqueness result [4, Theorem 1] which enables us to select such suitable 4-
tuples of uniqueness. Now, Theorem 12 extends this result to any dimension n ≥ 2, and
consequently the algorithm in [4] can be adapted and employed even in higher dimensions.

Furthermore, the same argument as in [4] can be applied to show that Theorem 2 in [4]
(which is free-dimensional) recognizes all the non-additive sets of uniqueness. Also, in the
case when S contains all the n coordinate directions, by Remark 3, we have that Theorems
4 and 5 in [4] can be easily extended to the n-dimensional case. This allows to count the
number of bounded additive and bounded non-additive sets of uniqueness.

From the geometrical point of view, Theorem 12 can then be rephrased as follows: If
S and A are chosen according to Theorem 12, and D is such that its members satisfy the
conditions in Theorem 12, then every subset of A is uniquely determined in A by its X-rays
in the directions in S.

Example 13. Consider the set S ⊂ Z4 defined by

S = {u1, u2, u3, w = u1 + u2 + u3}
= {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 2, 1), (3, 2, 2, 1)}

where I = {u1, u2, u3}, J = ∅.



We have h1 = 6, h2 = 4, h3 = 4, h4 = 2, so that S is a valid set of directions for every grid
A = [m1]× [m2]× [m3]× [m4], such that m1 ≥ 7, m2 ≥ 5, m3 ≥ 5 and m4 ≥ 3. Since

D = {±u1, ±u2, ±u3, ±w, ±(u1 + u2), ±(u1 + u3), ±(u2 + u3)},

the conditions of Theorem 12 cause the restriction m1 = 7. Therefore, the set S is a valid
set of uniqueness for every grid A = [7]× [m2]× [m3]× [m4], such that m2 ≥ 5, m3 ≥ 5 and
m4 ≥ 3.
We also note that by adding a further direction to the set S we can enlarge the size of the
grid A. For example, let Ŝ ⊂ Z4 be defined by

Ŝ = {u1, u2, u3, u4, w = u1 + u2 + u3}
= {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 2, 1), (k, 0, 1, 0), (3, 2, 2, 1)}

where I = {u1, u2, u3}, J = ∅, and k ≠ 0. Then Ŝ is a valid set of uniqueness for every grid
A = [7 + |k|]× [m2]× [m3]× [m4], such that m2 ≥ 5, m3 ≥ 6 and m4 ≥ 3.

4. Concluding remarks

In this paper we focused on the uniqueness of reconstruction of bounded sets in Discrete 
Tomography. Following the algebraic approach introduced in [20] and [21] we considered
sets S of lattice directions in Zn which contain d > 2 linearly independent directions, and we 
proved that d + 1 represents the minimal number of directions we need to avoid switching-
components (Lemma 1). We then characterized all the sets consisting of d + 1 lattice direc-
tions in Zn spanning a d-dimensional subspace of Zn, for which the associated polynomial 
FS (x1, . . . , xn) has a coefficient outside the set {−1, 0, 1} (see Theorem 6). These results 
were then applied to bounded sets contained in a rectangular grid A = [m1] × ... × [mn] in 
order to characterize those sets S of directions which are sets of uniqueness for A. Thanks to 
Proposition 8 we know the structure of such sets, while Theorem 12 specifies the size of the 
corresponding grid A. Since n ≥ d ≥ 3, a set of uniqueness could be constructed just with 
4 directions (obtained by selecting the minimum value d = 3). However, for reconstructing 
purposes, it could happen that A is too much “narrow” in some coordinate direction. In this 
case a selection of d > 3 could then be useful in order to try to increase the value of some 
ms. This allows to enlarge the grid of uniqueness in the corresponding coordinate direction. 
See also Example 13 for more details.

Finally, we wish to discuss the choice we made of the grid A. We note that the recon-
struction task consists in recovering a lattice set consistent with the data, if one exists. The 
given data identify a finite grid G (i.e. the set of lattice points which are intersections of lines 
corresponding to nonzero X-rays), called the tomographic grid of the unknown object. Fea-
sible solutions of the reconstruction problem are subsets of G with same X-rays taken along 
lines in the given directions. Our results show that the reconstruction must be unique when 
G ⊆ A. This happens, for instance, when the set S of directions contains the coordinate



directions. Note that in this case some results (Theorems 4 and 5) of [4] immediately extend
to n-dimension. Uniqueness might be lost whenever G * A, and in this case uniqueness
may be achieved by a priori knowledge that the unknown lattice set is contained in a given
n-dimensional grid A. Moreover, in the framework of verification, where directions can be
chosen depending on the object, for instance, in order to check a given shape (as we perceive
by [9]), the coordinate directions can be used to find the minimal grid A(≡ G) containing
all feasible solutions. In this view, our a priori requirement is weaker than the concept of
verification, and in general, stronger than that of determination. Therefore our problem can
be placed in between so providing a hierarchy of uniqueness issues which depends on the
choice of the set of directions.
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