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Abstract

Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show
that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna–
forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a
change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree
dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in
presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions
between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.
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Introduction

The tree cover distribution of moist savannas and tropical

forests has been recently investigated extensively over Africa,

Australia and South America [1,2]. [1] have shown that these

biomes co-exist over a very large range of annual rainfall (650–

2500 mm/yr) and that at intermediate rainfall (1000–2500 mm/

yr) tree cover is bimodal, exhibiting one peak for low woody cover

(savanna - characterized by high fire frequency) and one peak for

high woody cover (forest - characterized by absence of fire).

The bimodality of tree cover distribution has been used as a

proof that savanna and forest are alternative stable states [1–3]. In

literature, many simple models (also denominated minimal) exhibit

savanna–forest bistability [4–6]. The main advantage of minimal

models consists in the possibility of identifying interactions and

causal nexi between drivers and state variables [7,8]. These models

can be treated analytically and investigated through the bifurca-

tion analysis. The savanna–forest models of [4–6] are systems of

non-linear differential equations, forced by fire and other

environmental factors such as rainfall (without exploring its

variability though) and herbivores. What is widely accepted is

that fire is responsible for bistability: in savanna and forest the tree

cover cannot be adequately explained without explicitly consid-

ering the dynamics of fire [9–12], and feedbacks fire–trees have

been used in literature to argue for bistability (see [13] and

references therein).

The literature contains many studies about the existence of

alternative stable states (see the reviews by [13,14]) and models

exhibiting bistability [15–17]. However, alternative stable states

have been more frequently found in laboratory experiments than

in field studies, even after correcting for different number of

studies [13]. Bistability has deep ecological consequences on the

ecosystem behavior: the existence of critical transitions, which

makes the ecosystem fragile around certain thresholds, subject to

catastrophic shifts, and thus difficult to manage.

We believe that the bistability of savanna and forest is not the

only possible explanation for the bimodality of tree cover

distribution. Here we use a minimal model (the same model

typology used in literature to prove savanna–forest bistability [4–

6]) to provide an alternative explanation to tree cover bimodality.

We focus on the representation of fire, which is the key element

explaining the bimodality of frequency distribution. In the above

mentioned non-linear differential equation models, fire is repre-

sented as an a-priori determined parameter. Here we consider the

vegetation subject to two possible dynamics: one in presence and

the other in absence of fire. The switching between these two

dynamics is stochastic, and dependent on the quantity of trees in

the ecosystem.

Section Methods gives the methodology. In particular, firstly it

illustrates the matrix model of tree dynamics in moist savannas

and tropical forests, then it shows how the model can be reduced

to a Markov chain, and reports the calculation of the stationary

probability distribution of the tree cover. Section Results provides

three examples of how tree cover bimodality can be found,

including a sensitivity analysis of parameters. Section Discussion

comments the results and provides some considerations to support

the alternative explanation of tree cover bimodality in savanna–

forest dynamics.

Methods

Let us assume the yearly dynamics of trees in moist savannas

and tropical forests described by a time-discrete matrix model.

This choice is motived by two facts: 1) matrix models are

dominant in plant demography description, have an important

role in studies of broad ecological and evolutionary questions [18],
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and the parameters determination is relatively easy [19,20], as well

as the comparison of results obtained using different size or age

classes discretization [18]. 2) Matrix models have already been

considered to describe the tree dynamics in savannas by [21–23].

In these studies, fire occurrence is assumed independent of the

state of the system. In particular [22], use a deterministic fire

return period [21], assume a constant probability of fire

occurrence [23], considers both these approaches. However,

feedbacks between fire and vegetation have been observed [9,10].

In order to account this element within the vegetation dynamics,

we consider fire as a stochastic process with a probability of

occurrence dependent on the state of the system.

Let t[N be the temporal coordinate, T~(T1,T2, . . . ,TN )’[IN

the N|1 vector representing the fraction of tree cover divided in

size classes: T1 represents the seedlings, and TN represents adult

trees. The superscript 0 stands for transposition, and I~½0,1�. Each

component of T is dimensionless, with 0ƒ

PN
i~1 Tiƒ1.

The yearly dynamics of T are described by the following matrix

equation:

Tt~AI t T(t{1)zp ð1Þ

where I[S~f0,1g is a Bernoulli variable describing fire occur-

rence. I~1 is associated to the tree dynamics in presence of fire,

and I~0 to the tree dynamics without fire. For each year t, I t

takes value 1 with probability of fire PF (t), and 0 with probability

1{PF (t). PF (t) depends on the status of the ecosystem, i.e., by

the amount of grass fuel load, which is negatively correlated to the

density of trees [24–26]. In particular, if there are fewer trees,

there is more grass in moist savannas, and thus a greater quantity

of fuel load enhancing fire probability [27,28]. Thus we assume a

negative relation between tree density and fire probability,

considering only implicitly the negative correlation between grass

density and tree density. This implies a positive feedback, which

means that the more the ecosystem burns, the more it is likely to

burn in future [9,10]. The temporal sequence fI t,t~1,2,:::,ng is a

two-state Markov chain with a 2|2 transition matrix ~½lij �i,j[S ,

where l00~P½I t~0DI t{1~0�~1{PF (t), l01~P½I t~1DI t{1~
0�~PF (t), and similarly l10~l00 and l11~l01. The N|1 vector

p represents the recruitment. Assuming that new seedlings are

recruited in the smallest size class, p has the first element p1=0
(0vp1v1), and 0 elsewhere. AI t[A~fA0,A1g is a N|N matrix.

In particular A0~(A�0{C), A1~(A�1{C), and C is a N|N

matrix containing in the first row all elements equal to p1, and 0
elsewhere. A�0 and A�1 are Lefkovitch matrices. According to

Eq.(1), in each temporal step, the trees are firstly updated

according to absence/presence of fire, and then new tree seedling

are recruited in the population. Thus the fire can affect the new

recruits the following years.

The generic element a�0ij
(0ƒa�0ij

v1) of A�0 represents the

proportion of trees of class j moving into class i in the year t if the

fire does not occur, while the generic element a�1ij
(0ƒa�1ij

v1) of

A�1 represents the proportion of trees of class j moving into class i

in the year t if the fire occurs.

According to Eq.(1), the annual variability of trees comes out by

the composition of two linear dynamics, one in presence, and the

other in absence of fire. Eq.(1) is also known in literature as Hybrid

Linear System, or Markov Jump Linear System, see [29]. The switching

between the two dynamics is stochastic, and ruled by the fire

probability PF (t), which is dependent on the amount of trees in

the ecosystem, PF (t)~PF (T(t)). Let N1 indicate the number of

visits the system makes in the I~1 dynamics, i.e., the number of

years when the fire occurred, while N0 the number of visits in the

I~0 dynamics, i.e., the number of years without fire. The average

E½:� number of visits in the I~0 dynamics over a period of n years

is calculated as E½N0�~
Pn

t~1 (1{PF (t)), and similarly for the

I~1 dynamics E½N1�~
Pn

t~1 PF (t). Thus the permanence ratios

E½N0�=(E½N0�zE½N1�) and E½N1�=(E½N0�zE½N1�) indicate respec-

tively the percentage of time the system spends in no-fire and fire

dynamics.

For Eq.(1), two possible steady states T� can be found. They are

summarized in the following equation:

T�~(I{AI t )
{1p ð2Þ

where I is the identity matrix. By putting AI t~A0, the steady state

T�~T�U is found. This corresponds to the undisturbed steady state,

and it is obtained if the matrix A0 is always applied, i.e., the system

is always in no-fire dynamics. Analogously, putting AI t~A1, the

steady state T�~T�D is found, and corresponds to the disturbed

steady state, which is obtained if the matrix A1 is always applied,

i.e., the system is always in the fire dynamics. Note that each of two

steady states is reached if the system stays in one dynamic only (or,

let’s say, for a certain amount of time). However, the global

dynamic of T generally oscillates between these two steady states,

resulting in non-equilibrium dynamics.

The system of Eq.(1) is asymptotic stable, i.e., it does not go to

infinity, if the product of all possible sequences of matrices

fAI t
,t~1,2,:::,ng leads to an asymptotically stable solution, i.e.,

tends to zero, see [30,31]. A sufficient stability condition for this is

that VAi[A, f (Ai)v1, where f (:) is any matrix norm function [30].

As matrix norm it is possible to consider the maximum element norm

[32]. Here, the conditions ({1va0ij
v1) and ({1va1ij

v1)

ensure the asymptotic stability of Eq.(1).

Eq.(1) is a time-discrete Markovian process, which for simplicity

of analysis, we represent through a finite-state Markov chain, i.e.,

with discrete and finite states, discretizing the domain of the

variable. Let the domain of each component of T be divided into

L intervals of width 1=L. Thus the domain of T (IN ) is discretized

into NL hypercubes, where the jth element is identified through its

center of coordinates Xj~(x1j
,x2j

, . . . ,xNj
). Of the NL hyper-

cubes, some of these have no points satisfying the conditionPN
i~1 Tiƒ1, thus these elements are not physically acceptable. Let

be l the number of physically acceptable hypercubes. Let PF (Xj)

be the fire probability of the hypercube Xj , evaluated in its center.

Each hypercube can be considered as the state of a Markov chain.

Let P be the l|l transition matrix associated to the Markov chain,

where the generic element pXjXi
contains the probability that the

system passes from the state Xj to the state Xi. Let Q be the l|l

transition matrix containing in each element qXj Xi
the proportion

of points of the hypercube Xj mapping into the hypercube Xi

when the dynamics of T are ruled by the no-fire dynamics, and S
be the l|l transition matrix containing in each element sXjXi

the

proportion of points of the hypercube Xj mapping into the

hypercube Xi when the dynamics of T are ruled by the fire

dynamics. For the theorem of total probability,

pXjXi
~qXj Xi

(1{PF (Xj))zsXj Xi
PF (Xj). Let p be the 1|l vector

representing the stationary distribution of the states of the chain,

whose elements are non-negative and sum to 1. The stationary

distribution satisfies the equation p~pP, or equivalently

p(I{P)~0. If the Markov chain is irreducible and aperiodic,

then the stationary distribution is unique. In this case the

limk?z? Pk~1p converges to a rank-one matrix in which each

row is the stationary distribution. The distribution p will have a

bimodal or unimodal shape depending by the mixing of the two
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dynamics, fire and no-fire. In particular, if the system persists in a

single dynamic p will be unimodal, otherwise it will have a

bimodal, or unimodal shape, depending on the value of the

permanence ratios.

Results

Here we give three examples of tree cover bimodality emerging

from the switching between fire and no-fire dynamics.

As first example, we consider the simplest case N~1, i.e.,

T~T1~T , the dynamics of tree cover is described only by one

size class. The matrices A0 and A1 and the vectors T and p are

scalar and therefore for this case are not shown in bold. We

consider this case to limit the number of parameters to five,

nevertheless the conclusions we draw apply also to Nw1,

reasoning in terms of total tree cover.

The fire probability, PF , is assumed a decreasing linear

function of the tree cover T . In particular PF (T)~1 for

TvTLT , PF (T)~0 for TwTUT , and PF (T)~1{(T{TLT )=
(TUT{TLT ) for TLTƒTƒTUT , where TLT and TUT are two

thresholds (Fig. 1a). The choice of the shape of PF (T) results from

two arguments: 1) the fire probability may be assumed to be a

linear increasing function of dead grass biomass as in [11,12,33]

and according to field data showed in [34]. 2) Grass production

increases as the tree cover decreases [24–26].

PF (T�D) is the probability the ecosystem stays in the state T�D,

whereas 1{PF (T�D) represents the risk of the ecosystem to leave

T�D. Similarly, 1{PF (T�U ) represents the probability of staying in

T�U and PF (T�U ) is the risk of leaving T�U . If, for instance, T~T�U
and PF (T�U ) is very close, but different from zero, the ecosystem

tends to stay in the undisturbed state. However, because the

probability of fire is not zero, a fire event may happen. If this

occurs, the ecosystem reduces its tree cover, and at same time it

increases the probability of fire. In other terms, the more the

ecosystem burns and more likely it is likely to burn in the future

[10]. Analogously, if T~T�D and PF (T�D) is very close, but

different from unit, the ecosystem tends to stay in the disturbed

state, because fire is likely to occur every year. However, because

the fire probability is not one, in a certain year, the fire event could

not occur. In this case, in the following year the ecosystem will

increase its tree cover, and at same time reduce the probability of

fire. Thus, if the ecosystem does not burn in a year, it is unlikely to

burn the following year [9,10]. The above reported function

PF (T) includes the feedback between fire and tree cover.

Let us assume for the five parameters the following values:

A�0~0:88, A�1~0:57, p~0:15, TLT~0:159, and TUT~0:565.

These values are calculated with transition matrices of Acacia

nilotica [21] using the collapsing algorithm proposed by [19]. TLT

corresponds to a grass fuel load of 1000 kg/ha, value under which

PF~0; TUT to a grass fuel load of ,11000 kg/ha, values above

which have PF~1, see [33,35]. The stable states of the two

dynamics are T�U~0:556, and T�D~0:259 with fire probabilities

respectively PF (T�U )~0:025 and PF (T�D)~0:754. We have made

a 5000 yr simulation of the model starting from the initial

condition T~0:4. It is important to make simulations on long

time horizons (millennia) in order to avoid partial representations

of the ecosystem behaviour [36,37]. The permanence ratios in the

two dynamics are respectively 29:6% in the no-fire dynamic, and

70:4% in the fire dynamic. The histograms of tree cover evaluated

with bins of 0.1 width are reported in Fig. 1: the histogram of the

no-fire dynamics has a mode around the state T�U (Fig. 1b) and the

histogram of the fire dynamics has a mode around the state T�

(Fig. 1c). Then, we have discretized the variable T using bins of

0.01 width, calculated the Markov transition matrix P, and

consequently the stationary probability distribution p, given in

panel d) of Fig. 1. From this, it is evident that the stationary

distribution of tree cover is bimodal.

Clearly, this is only an example, and the results are dependent

on the specific parametric configuration. A sensitivity analysis of

parameters can clarify the circumstances under which a bimodal

distribution of tree cover can emerge. In order to quantify the

bimodality of the tree cover distribution, we introduce here a

bimodality index B~Dm{mM D, where m is the mean of the

distribution p, while mM is the mean of T associated to the more

frequent dynamic. To estimate mM , we built a histogram of the

values associated to the more frequent dynamic with the same bins

of the p distribution. Then mM~

PL

i~1
mixiPL

i~1
mi

, where xi is the center

Figure 1. Example of tree cover distribution. Panel a) reports the fire probability, PF (T), with the indication of the steady states of tree cover:
T�D and T�U . Panel b) shows the histogram of tree cover when fire is not present. Panel c) shows the histogram of tree cover when fire is present. Panel
d) gives the stationary state distribution p of tree cover. In panels b–d, bins of 0.1 width are used.
doi:10.1371/journal.pone.0091195.g001
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Figure 2. Sensitivity analysis of the shape of the probability distribution p of tree cover using the bimodality index B. In panel a) the
demographic parameters A�0 and A�1 are varied. In panel b) the parameters of fire probability PF (T�D) and PF (T�U ) are varied. The black lines
represent m-isolines.
doi:10.1371/journal.pone.0091195.g002

Figure 3. Frequency distribution of tree cover obtained sampling from 1000 simulations, each one 5000 yr long, at the time
t = 300 yrs. In panel a) the 1000 simulations are obtained uniformly sampling the parameters from the following intervals: 0:95ƒA�0ƒ0:999,
0:01ƒA�1ƒ0:75, 0:01ƒpƒ0:3, 0:7ƒPF (T�D)ƒ1, and 0ƒPF (T�U )ƒ0:025. In panel b) from the following intervals: 0:7ƒA�0ƒ0:999\0:7ƒA�1ƒ0:999,
or 0:01ƒA�0ƒ0:3\0:01ƒA�1ƒ0:3, 0:01ƒpƒ0:3, 0:7ƒPF (T�D)ƒ1, and 0ƒPF (T�U )ƒ0:025. Bins of 0.1 width are used.
doi:10.1371/journal.pone.0091195.g003
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of the ith bin, mi the absolute frequency of the ith bin. If B?0 then

the distribution is unimodal. If Bww0 then the distribution is

bimodal. We found that 0.1 can be used as threshold to discriminate

between unimodal and bimodal shape. We have then considered

the index B to analyze the shape of p firstly varying the

demographic parameters, A�0, and A�1, and keeping the other

parameters constant as in the example previously reported, and

secondly varying the parameters of the fire dynamics PF (T�D) and

PF (T�U ), i.e., adjusting the thresholds TLT , and TUT , and keeping

the other parameters constant as in the example. In panels a) and

b) of Fig. 2 we report the results of the sensitivity analysis. Because

the demographic parameters must satisfy the constraint A�1ƒA�0,

and similarly for the parameters of the fire dynamics

PF (T�D)ƒPF (T�U ), then the graphs in Fig. 2 are triangular. In

the panels of Fig. 2 we also report the isolines of m, so that in the

case of unimodal distribution we have information about the

location of the histogram peak.

If 0:8 A�0ƒ1 and 0ƒA�1 0:8, then the distribution is

bimodal, otherwise it is unimodal (Fig. 2a). If A�0?A�1, i.e., at the

top and right vertices of the triangle, then the two dynamics tend

to collapse into one, and the distribution p is unimodal. In

particular, if A�0,A�1?1, p is located in the right part of its

variability range (i.e., high values of the tree cover), while if

A�0,A�1?0, p is located in the left part of its variability range (i.e.,

small values of the tree cover).

For 0:7 PF (T�D)ƒ0:8 and 0ƒPF (T�U ) 0:1, the distribution

is bimodal, otherwise it is unimodal (Fig. 2b). For small values of

PF (T�D), and consequently PF (T�U ), the ecosystem is seldom

disturbed by fire, and is characterized by high values of the tree

cover. The distribution p is unimodal and located in the right part

of its variability range. Conversely, for high values of PF (T�D), and

PF (T�U ), the ecosystem is frequently disturbed by fire and is

characterized by low values of tree cover. The distribution p is

unimodal, and located in the left part of its variability range.

As second example, we mimic a spatial sampling of tree cover.

In literature [1,2] the tree cover distribution is empirically

obtained collecting data at different points in space, and at a

certain time instant, rather than sampling the data at a given

location over time, i.e., using the spatial information in place of the

temporal one. In order to mimic the spatial sampling of tree cover

from distinct and independent sites at a given instant time, we

have made 1000 simulations, each 5000 yr long with N~1 using

for each simulation parameter values extracted uniformly from the

following intervals: 0:95ƒA�0ƒ0:999, 0:01ƒA�1ƒ0:75,

0:01ƒpƒ0:3, 0:7ƒPF (T�D)ƒ1, and 0ƒPF (T�U )ƒ0:025. We

have adopted narrow ranges for the parameters associated to the

no-fire dynamic, i.e., A�0 and PF (T�U ), and wider variability ranges

for the parameters associated to the fire dynamic, i.e., A�1, and

PF (T�D), as well as the recruitment parameter p, in this way, we

include different fire vulnerability of different tree species [23].

Depending on the evolutive strategies of trees, there are trees very

resistant to fire with a thick bark or resprouting mechanisms

(savanna trees), and there are trees very vulnerable to fire (forest

trees). Conversely, the mortality of trees without fire is far less

variable. Note that the intervals chosen for A�0 and A�1 correspond

to bimodal distributions of tree cover (Fig. 2a). Sampling the tree

cover from the 1000 simulations, in any time instant (except for the

first 100 yrs possibly influenced by the initial state), we have found

a bimodal distribution, with values of the bimodality index B in

the range 0.1–0.23. Panel a) of Fig. 3 reports the empirical

distribution of tree cover sampled at t~300 yrs.

We have also sampled tree cover using parameters extracted

uniformly from the following intervals: f0:7ƒA�0ƒ0:999

\0:7ƒA�1ƒ0:999g, or f0:01ƒA�0ƒ0:3\0:01ƒA�1ƒ0:3g,
0:01ƒpƒ0:3, 0:7ƒPF (T�D)ƒ1, and 0ƒPF (T�U )ƒ0:025. Note

that the intervals chosen for A�0 and A�1 correspond to unimodal

distributions of tree cover (Fig. 2a). In particular, the configura-

tions belonging to f0:7ƒA�0ƒ0:999\0:7ƒA�1ƒ0:999g are

characterized by high values of tree cover, while configurations

belonging to the range f0:01ƒA�0ƒ0:3\0:01ƒA�1ƒ0:3g by

small values of tree cover. The frequency distribution of tree cover

obtained from the spatial sampling is however bimodal in any time

instant (except for the first 100 yrs possibly influenced by the initial

state), with values of the bimodality index B in the range 0.18–0.2.

Panel b) of Fig. 3 gives the frequency distribution of tree cover

sampled at t~300 yrs.

As third example, we consider N~3, i.e., a tree population

classified in three size classes. In particular, class 1 includes small

trees (i.e., heightƒ1 m), class 2 medium trees (i.e., 1v height ƒ2
m), and class 3 large trees (i.e., height w2 m). The matrices A�0, A�1
and the recruitment vector p are respectively equal to

A�0~
0:375 0:14 0

0:6 0:56 0

0 0:29 0:97

2
4

3
5, A�1~

0:488 0:455 0

0 0 0

0 0:12 0:4

2
4

3
5,

p~½0:5 0 0�’. These values are derived from [33] passing from

the seasonal matrices to the annual ones. The parameters TLT and

Figure 4. Tree cover dynamics (panel a), fire occurrence (panel b), and probability distribution of tree cover (panel c) of a tree
population classified in three height classes. In panel c), bins of 0.1 width are used.
doi:10.1371/journal.pone.0091195.g004
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TUT of the fire probability refer to the tree cover calculated over

the last two classes, i.e., T~T2zT3, assuming that the first height

class does not contribute significantly to the vegetation cover. As in

[33], we use PF (T�U )~0:001 and PF (T�D)~0:728, and as initial

condition T~½0 0 0�’. Figure 4 shows in the top panel a 5000 yr

simulation of the tree cover, in the intermediate panel the

occurrences of fire, and in the bottom panel the stationary

probability distribution of the tree cover.

Discussion

The three examples show how the model in Eq.(1) can exhibit

the tree cover bimodality under different ways. For certain

parameter combinations, a double peak could be shown in the

frequency histogram of the states visited along a trajectory over

time (first and third example), or equivalently, in the stationary

state probability distribution of the Markov chain associated to the

system (first example). Bimodality of tree cover has also been

obtained in the frequency histogram of the states visited by many

simulations (each one representing a different site) at a certain time

instant (second example). In all these cases, bimodality simulated

through the model is not in contradiction with bimodality

observed in data [1,2] and it does not involve the concept of

bistability.

The first example, showing tree cover bimodality in a single

non-equilibrium trajectory along time, is in agreement with some

statements of [13,38] according to which data may not necessarily

represent steady states, but may be snapshots of the system which

is not at the steady state.

The sensitivity analysis explains in which parametric configu-

rations bimodality can be obtained in the trajectory. In the first

two examples, the demographic parameter A�0 is representative of

how fast the woody cover grows in absence of fire. The higher this

parameter is, the more the tree dynamics without fire tend towards

the undisturbed state T�U . The parameter A�1 is representative of

the resistance of the tree vegetation to fire disturbance. The lower

this parameter is, the more attractive are the tree dynamics with

fire towards the state T�D. If trees are fast growing and highly

resistant to fire (i.e, the top corner of Fig. 2a), the woody cover

tends to be unimodal with a high average value (mw0:7). If trees

are slow growing with a low fire resistance (i.e., the bottom right

corner of Fig. 2a), the woody cover tends to be unimodal with a

low average value (mv0:3). Bimodality occurs when the system is

fast growing and very vulnerable to fire, in other words, when both

dynamics (with and without fire) are strongly attractive to their

steady states. Assuming that all the couples (A�0,A�1) in Fig. 2a are

equiprobable, in 21:8% of the parametric configurations the tree

cover distribution is bimodal, and in 78:2% unimodal.

If the fire probability in the disturbed steady state is high

( *> 0:8), the ecosystem tends to be frequently burned, T�D has a

low risk to be left, the dynamics with fire are more frequent, and

the woody cover is in average low (mv0:3). If the fire probability is

low in both steady states (the bottom corner of Fig. 2b), the

dynamic without fire is more frequent, T�U has a low risk to be left

and the woody cover is in average high (mw0:7). Bimodality

occurs when the fire probability is very low in T�U (PF (T�U ) 0:1)

and relatively high in T�D, 0:7 PF (T�D) 0:8, so that the

dynamics with fire tend to be maintained when the ecosystem is

in T�D, and the dynamics without fire tend to be maintained when

the ecosystem is in T�U . Assuming that all the couples

(PF (T�D),PF (T�U )) in panel b) of Fig. 2 are equiprobable, in

17:1% of the parametric configurations the tree cover distribution

is bimodal and in 82:9% unimodal. In general, the tree cover tends

to be bimodal when both steady states have a low risk to be left.

The second example shows that the operation of spatial

sampling of tree cover can lead to a bimodal frequency

distribution. Data are considered as collected from different sites.

A bimodal frequency distribution is obtained if data are collected

from sites having (Fig. 3a) all bimodal probability distributions, or

alternatively, if one samples from sites (Fig. 3b) having unimodal

probability distribution but with both high and low values of the

tree cover, i.e., sampling from parameter configurations corre-

sponding to both the top and the bottom right corner of Fig. 2a.

The third example illustrates the presence of rapid transitions

between moist savanna and tropical forest, as in [17]. The analysis

of the trajectory in Fig. 4 leads to some considerations. It is

possible to see how 1) for 29% of time the ecosystem is

characterized by a total tree cover T*0:95, assimilable to a

forest state, and for 63% of time by Tƒ0:3, assimilable to an open

savanna state. The forest and savanna states are observable for

long periods, see respectively the intervals ½3200{3700� and

½4000{5000� in Fig. 4a. 2) The feedbacks between fire and woody

cover are evident through the clustering of fire events (see Fig. 4b).

3) Fire-tree feedbacks allow sharp (but not catastrophic) transitions

forestRsavanna and savannaRforest (Fig. 4a). 4) The stationary

probability distribution of the total tree cover is bimodal (Fig. 4c).

Why should this alternative explanation to tree cover bimodality

be plausible?

Our explanation of tree cover bimodality stems from a

characteristic element of the moist savannas and tropical forest

dynamics: the fire occurrence is not constant, but is a variable,

dependent on the ecosystem status, with a feedback between fire

and trees [9,10]. If this phenomenological issue is quite evident,

the simple models available in literature, i.e., space-implicit

ordinary differential equation models, see e.g. [4–6] ignore this

element. In particular, these models are non-linear, and assume

the fire frequency as a constant parameter. As a consequence,

these models lead to bistability between moist savanna and forest.

Here, differently, we include the variability of fire occurrence in a

matrix model of tree dynamics, where the impact of fire is of on-off

type and depends on the tree cover, driving the ecosystem to

oscillate stochastically between two dynamics, each one charac-

terized by one steady state. In this way, the relative strength of the

two dynamics can determine whether the tree cover is unimodal or

bimodal.

Conclusions

Alternative stable states, tipping points, catastrophic transitions,

and early warnings are recurrent issues in many ecological

dynamics, and the tree cover variability of moist savannas and

tropical forests is not an exception [1,2]. However, evidences of

catastrophic transitions and early warnings of tipping points in

natural ecosystems are still elusive [13,39]. Here we have started

our analysis from the observed bimodal frequency distribution of

tree cover in moist savannas and tropical forests, which is

considered a proof of savanna/forest bistability [1,2]. We have

presented an alternative explanation to the bimodal frequency

distribution of tree, which does not require alternative stable states

and corresponding catastrophic transitions. Because in these

ecosystems fire is one of the main determinants of the vegetation

dynamics, dependent on the ecosystem state, and with different

impact depending on the tree height, we have used a matrix model

to represent the yearly dynamics of trees, considering a matrix

when fire occurs, and another matrix when fire does not occur,

with feedbacks between fire and trees. We have found that 1) the

switching between the two tree dynamics, one with and one

without fire, with fire-tree feedbacks, may bring out a bimodal
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stationary probability distribution of tree cover. The matrix model

can be assimilated to a Markov chain allowing to determine the

stationary probability distribution of tree cover, which can be

interpreted as the distribution of the relative frequency of the visits

in each state along a simulation. 2) The spatial sampling can

facilitate the observation in frequency of tree cover bimodality. 3)

The feedbacks between fire and woody cover are included in the

dynamics without necessarily having alternative stable states,

contrary to what reported in literature [13]. 4) Sharp transitions

between savanna and forest are possible, but these are not

necessary catastrophic in the system dynamics sense. This change

of perspective about the tree cover bimodality could have

profound implications in the management of wet savanna and

tropical forest ecosystems. In addition, switching mechanisms

between different dynamics could be useful to explain the

existence of other emerging behaviors, like the formation of

vegetation patterns, as depicted by [40] and [41], or to clarify the

vegetation transitions in other ecosystems, for example under-

standing the findings of [42] in drylands.
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