
Nonadiabatic robust excitation transfer assisted by an imaginary gauge field

Stefano Longhi1

1Dipartimento di Fisica, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie

del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano, Italy

(ΩDated: August 27, 2018)

A nonadiabatic and robust method of excitation transfer in a non-Hermitian tight-binding linear
chain, assisted by an imaginary gauge field, is theoretically proposed. The gauge field undergoes
a linear gradient in time, from a negative to a positive value, which results in an effective transfer
of excitation between the two edge sites of the chain. An imaginary (gain/loss) gradient of site
energy potentials is introduced to exactly cancel nonadiabatic effects, thus providing an effective
shortcut to adiabaticity and pseudo-Hermitian dynamics. Numerical simulations indicate that the
non-Hermitian excitation transfer method is very robust against disorder in hopping rates and site
energy of the chain.

I. INTRODUCTION

Coherent transfer of excitations in classical or quan-
tum systems described by effective tight-binding net-
works is of major interest in different areas of science
with a plethora of applications including manipulation
of populations in atomic and molecular systems [1–3],
control of chemical reactions [4, 5], coherent quantum
state transfer and quantum information processing [6–
12], efficient transport in organic molecules [13], waveg-
uide optics [14, 15] and atomtronics [16] to mention a
few. Different excitation transfer schemes have been pro-
posed and experimentally demonstrated over the past
two decades [1–3, 6–12], including probabilistic state
transfer in a chain with uniform parameters [6], perfect
state transfer in time-independent chains with properly
tailored hopping amplitudes [7–9, 15], state transfer us-
ing externally applied time-dependent control fields [12],
topologically-protected state transfer protocols [17, 18],
and state transfer assisted by gauge fields [19]. Adiabatic
protocols, such as those based on the stimulated Raman
adiabatic passage (STIRAP) methods [1, 3, 11] or topo-
logical pumping [18], are attractive being rather robust
against structural imperfections of the system, however
they usually take a long time requiring a slow evolution
of the system in one of its adiabatic eigenstate. To realize
excitation transfer in a shorter time with a high fidelity,
methods of shortcuts to adiabaticity have been proposed
and investigated in several studies [20, 21]. However,
these schemes are generally more sensitive to perturba-
tions or disorder in the system than the corresponding
adiabatic methods.

Excitation transfer methods in open systems, de-
scribed by effective non-Hermitian Hamiltonians, have
been investigated in a few recent works as well [21–23],
revealing how dissipation, gain and dephasing effects can
be fruitfully exploited to improve the excitation transfer
process and to realize possible routes of shortcut to adia-
baticity. In particular, a PT -symmetric extension of the
perfect state transfer protocol has been recently proposed
in Ref.[22], whereas non-Hermitian versions of STIRAP
have been suggested in Refs. [21, 23]. Non-Hermitian ex-

tensions of other Hamiltonian models generally studied in
quantum state transfer problems and showing quantum
phase transitions, such as the isotropic and anisotropic
quantum spin models [24], the Bose-Hubbard models
[25], the Rice-Mele model [26], the Kiatev model [27],
and the Lipkin-Meshkov-Glick model [28] have been sug-
gested as well.
One of the simplest example of a non-Hermitian tight-
binding lattice is provided by the Hatano-Nelson model,
which describes the hopping dynamics of a quantum par-
ticle on a tight-binding lattice threaded by an imaginary
magnetic flux [29]. In their pioneering work, Hatano and
Nelson showed that, contrary to an ordinary real mag-
netic flux leading to a Peierls phase substitution of the
hopping rates, an imaginary magnetic field in a disor-
dered one-dimensional lattice can induce a delocalization
transition, i.e. it can prevent Anderson localization [29].
Such a phenomenon, referred to as non-Hermitian de-
localization transition, has received great attention in
the past two decades [30–33]. In particular, unidirec-
tional and bidirectional non-Hermitian transport in the
Hatano-Nelson model, which is insensitive to disorder
and structural imperfections of the lattice, has been in-
vestigated in a few recent works [31, 32]. While the re-
alization of a synthetic imaginary magnetic field in the
solid-state context is challenging, a rather simple opti-
cal implementation of the Hatano-Nelson model, based
on photonic transport in coupled optical microrings with
tailored gain and loss regions, has been suggested in
Refs.[30, 31]. Such a photonic system has renewed the
interest in the Hatano-Nelson model and is expected to
provide a viable route toward an experimental observa-
tion of the non-Hermitian delocalization transition.
In this article we theoretically propose a nonadiabatic
method of robust excitation transfer in a non-Hermitian
Hatano-Nelson tight-binding linear chain, which is as-
sisted by an imaginary gauge field. When the gauge field
is linearly ramped in time, from a negative to a positive
value, any eigenstate of the system evolves localizing the
excitation from one edge of the chain, at initial time, to
the other edge of the chain at final time. A gain/loss
gradient at the chain sites exactly cancels nonadiabatic
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effects, thus providing an effective shortcut to adiabatic-
ity and fast state transfer. The non-Hermitian trans-
fer method assisted by the time-varying imaginary gauge
field is shown to properly work even when the system is
not initially prepared in one of its eigenstate and turns
out to be robust against disorder in hopping rates and
site energy of the chain.

II. NONADIABATIC EXCITATION TRANSFER

ASSISTED BY AN IMAGINARY GAUGE FIELD:

THEORETICAL ANALYSIS

Let us consider a linear chain of Wannier states |n〉
with homogeneous hopping rate κ between adjacent sites
and threaded by a time-dependent imaginary gauge field
h = h(t), as schematically shown in Fig.1(a). For the
sake of definiteness, we assume an odd number (2N + 1)
of sites, however the analysis holds for an even number
of sites as well. Indicating by γn the imaginary energy
potential at site |n〉, in the tight-binding approximation
and for open boundary conditions the Hamiltonian of the
system reads

Ĥ(t) = κ

N−1
∑

n=−N

{exp(−h)|n〉〈n+ 1|+ exp(h)|n+ 1〉〈n|}

− i

N
∑

n=−N

γn|n〉〈n|. (1)

A possible physical realization of a time-dependent imag-
inary gauge field h(t), which is based on fast modulation
of the complex energy site potentials of a lattice, is dis-
cussed in the Appendix A. Note that the Hamiltonian
(1) reduces to the standard Hermitian form of a tight-
binding chain with uniform hopping rate

ĤHerm = κ

N−1
∑

n=−N

(|n〉〈n+ 1|+ |n+ 1〉〈n|)

when h = γn = 0. Such a simple Hamiltonian is known
to realize probabilistic excitation transfer between the
two edge sites of the chain at optimal interaction time
[6]. For the chain with uniform hopping amplitudes, the
excitation transfer is however not perfect since the energy
spectrum of ĤHerm, given by the set of energies El

El = 2κ cos

[

πl

2(N + 1)

]

(2)

(l = 1, 2, ..., 2N + 1), is not equally spaced. In fact, to
realize perfect excitation transfer from site n = −N to
site n = N in a time 2T , the Hamiltonian should be
mirror symmetric and the energy eigenvalues El should
satisfy the constraint exp(−2iElT ) = (−1)l exp(iα) for
some arbitrary phase α [7]. The latter constraint can be
clearly satisfied for an equally-spaced energy spectrum,
which however requires non-uniform hopping rates [7, 9].
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FIG. 1. (a) Schematic of a linear tight-binding chain, compris-
ing an odd number (2N+1) of sites, with open boundary con-
ditions and with an applied imaginary gauge field h = h(t).
(b) The gauge field h(t) is raised from a negative (−hmax) to
a positive (hmax) value over the interaction time 2T with a
slope α = hmax/T .

While the Hamiltonian (1) with h = γn = 0 is mirror
symmetric, its energies do not satisfy the constraint given
above for any time 2T , indicating that perfect excitation
transfer can not realized.
On the other hand, for h(t) = h constant and γn =

0, the Hamiltonian (1) reduces to the non-Hermitian
Hatano-Nelson model without disorder [29]. In this case,

for open boundary conditions Ĥ is pseudo-Hermitian, the
imaginary gauge field does not modify the the energy
spectrum of Ĥ , however it provides exponential localiza-
tion of the eigenstates. For a nonvanishing imaginary
gauge field h, the eigenstates |El〉 of Ĥ with γn = 0 read
explicitly

|El〉 =
1√
N + 1

N
∑

n=−N

exp(hn) sin

[

πl(n+N + 1)

2(N + 1)

]

|n〉

(3)
where l = 1, 2, ..., 2N + 1 is the mode index. According
to Eq.(3), for h < 0 the excitation is mainly localized at
the left edge n = −N of the chain, whereas for h > 0 the
excitation is mostly localized at the right edge n = N .
Hence, if the system is initially prepared in one of the
eigenstates of Ĥ with h < 0 and the imaginary gauge
field h is adiabatically increased to a positive value, an
effective transfer of the excitation from the left to the
right edges of the chain is obtained.
In order to clarify the transfer method and to re-

move the adiabaticity constraint, let us assume that the
gauge field h(t) is linearly ramped from the negative value
−hmax at initial time ti = −T to the positive value hmax

at final time tf = T , i.e.

h(t) = αt (4)

with α = hmax/T [Fig.1(b)]. The change of the imag-
inary gauge field is adiabatic provided that α ≪ κ,
whereas non adiabatic effects are expected to arise when
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FIG. 2. Excitation transfer dynamics in a chain composed
by (2N + 1) = 11 sites assisted by a time varying imaginary
gauge field for parameter values κT = 3 and hmax = 3. At
initial time ti = −T the system is prepared in its zero-energy
instantaneous eigenstate [Eq.(11) with l = N +1]. Imaginary
site potentials γn = −αn are introduced to exactly cancel
non-adiabatic terms. (a) Temporal evolution on a pseudo-
color map of the normalized excitation distribution pn(t). (b)
Detailed evolution of the normalized excitations p

−5(t) and
p5(t) at the two edge sites of the chain. (c) Temporal behav-

ior of the norm P (t) =
∑N

n=−N
|cn(t)|
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FIG. 3. Same as Fig.2, but without cancellation of the non-
adiabatic terms (γn = 0).

the gradient α gets comparable or larger than the hop-
ping rate κ. However, as we will show below, non adia-
batic terms can be exactly cancelled by properly tailoring
the imaginary potential site energies γn in the chain. Af-
ter expanding the state vector of the system |ψ(t)〉 on

the Wannier basis |n〉 as |ψ(t)〉 =
∑N

n=−N cn(t)|n〉, the
evolution equations of the amplitudes cn read explicitly

i
dcn
dt

= κ {exp(−h)cn+1 + exp(h)cn−1} − iγncn (5)

with c
−(N+1) = cN+1 = 0 for open boundary conditions.

Note that, since the Hamiltonian Ĥ(t) is not Hermitian,
the norm (total probability) defined by the standard in-
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FIG. 4. Behavior of the transfer probability p5 (solid curve),
assisted by the imaginary gauge field, for increasing values
of T and for the initial excitation cn(ti) = δn,−5. Parameter
values are (2N + 1) = 11, hmax = 4, and γn = −αn. The

dashed curve is the transfer probability p
(Herm)
5 in the Hermi-

tian limit, i.e. in the absence of the gauge field (h = γn = 0).
The behavior of the norm P versus κT is almost overlapped
with the dashed curve.
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FIG. 5. Impact of a gradient mismatch on the transfer prob-
ability. Behavior of the transfer probability p5, assisted by
the imaginary gauge field, in the same chain of Fig.2, com-
prising (2N + 1) = 11 sites, for κT = 3, hmax = 3 and
γn = −(1+ δ)αn. Perfect cancellation of non adiabatic terms
occurs for δ = 0.

ner Dirac product

P (t) = |〈ψ(t)|ψ(t)〉|2 =
N
∑

n=−N

|cn(t)|2 (6)

is not conserved in the dynamics. This feature is common
to other non-Hermitian extensions of excitation trans-
fer methods, such as the PT -symmetric extension of
the perfect state transfer model previously introduced in
Ref.[22]. To quantify the goodness of the transfer method
for a non-conserving norm, we consider the normalized
distribution pn(t) of the excitation at site |n〉, defined as

pn(t) =
|cn(t)|2
P (t)

=
|cn(t)|2

∑N

n=−N |cn(t)|2
. (7)

Let us now introduce the imaginary gauge transformation

cn(t) = an(t) exp[h(t)n] (8)

so that the evolution equations of the amplitudes an(t)
read

i
dan
dt

= κ(an+1 + an−1)− iγnan − inαan (9)



4

where the last term of the right hand side of Eq.(9) ac-
counts for nonadiabatic effects in the dynamics, i.e. a
non-negligible gradient α of the gauge field. Interest-
ingly, provided that the imaginary site potential energies
γn are tailored to satisfy the condition

γn = −nα (10)

the nonadiabatic terms in Eq.(9) are exactly cancelled,
and the system evolves remaining in its instantaneous
eigenstate. Precisely, if at initial time ti = −T the system
is prepared in one of its instantaneous eigenstate

cn(ti) = exp [−hmax(n+N)] sin

[

πl(n+N + 1)

2(N + 1)

]

(11)

for some index l = 1, 2, ..., 2N + 1, corresponding to lo-
calization of the excitation at the left edge n = −N of
the chain, the final state of the system at time tf = T is
exactly given by

cn(tf ) = exp [hmax(n−N)] sin

[

πl(n+N + 1)

2(N + 1)

]

× exp(−2iElT ), (12)

corresponding to localization of the excitation at the right
edge n = N of the chain (see Appendix B for techni-
cal details). More generally, provided that the nona-
diabatic terms are exactly cancelled, Eq.(9) indicates

that the time-dependent Hamiltonian Ĥ(t) defined by
Eq.(1) is pseudo-Hermitian, i.e. its evolution can be ob-
tained from the time-independent Hermitian chain (9)
after the imaginary gauge transformation (8). As an ex-
ample, Fig.2 shows a typical temporal evolution of the
normalized distribution pn(t) of the excitation at site |n〉
in a linear chain comprising (2N + 1) = 11 sites with
the system initially prepared in the zero-energy eigen-
state l = N + 1, i.e. cn(ti) = ± exp[−hmax(n + N)] for
n = −N,−N+2,−N+4, ..., N−2, N and cn(ti) = 0 oth-
erwise. Note that for three sites 2N + 1 = 3 the transfer
method can be regarded as a non-Hermitian extension of
the STIRAP technique in the Hermitian case, where the
system adiabatically evolves remaining in its dark state
(the middle site is never populated). As compared to
STIRAP, where the hopping rates are changed in time, in
our method shortcut to adiabaticity is much simpler since
it just requires to introduce an imaginary linear gradient
of site potential energies [Eq.(10)]. In Fig.2 complex site
energy potentials γn = −nα are introduced to exactly
cancel non-adiabatic terms in the dynamics. Note that
an effective transfer of excitation form the left to the right
edge sites of the chain is obtained, with the norm which
is conserved at the end of the interaction in spite of non-
Hermitian dynamics. The behavior of the norm, shown
in Fig.2(c), can be physically explained as follows. Let
us first consider a slow (adiabatic) change of the gauge
field. In the first time interval (ti = −T, 0), the imaginary
gauge field h(t) = αt is negative (h < 0) and a forward-
propagating wave experiences a power attenuation owing

to the dispersion relation of the Hatano-Nelson lattice
[31, 32]: therefore, in the first stage of the transfer the
norm decreases as a result of dissipation of a forward-
propagating wave. Conversely, in the second stage of the
transfer, i.e. in the time interval (0, tf = T ), the gauge
field is positive (h > 0) and a forward-propagating wave
is now amplified (rather than attenuated) in the lattice
because of flipping of the imaginary part of the lattice
energy band [31, 32]. Wave amplification in the second
stage of excitation transfer exactly compensates for wave
attenuation in the first stage of transfer, thus resulting
in the conservation of the norm at the final time tf = T .
For a rapid (non-adiabatic) change of the gauge field a
gradient of site potential energies, i.e. loss/gain terms
γn = −nα, are also responsible for non-unitary dynam-
ics: in the first stage the wave is also damped because
dissipation occurs in the lossy sites n < 0 of the chain
while the excitation is being transferred from the left
edge site n = −N toward the center of the chain. Con-
versely, in the second time interval (0, tf = T ) the norm
increases because the excitation is now amplified in the
gain sites n > 0 of the chain, till reaching the right edge
site with conserved norm. Figure 3 shows, for compar-
ison, the evolution of pn(t) when γn = 0, i.e. without
the nonadiabatic correction terms. Note that in this case
degradation of the state transfer is clearly observed.
The previous analysis requires, strictly speaking, that

the initial excitation of the system at time t = ti is one of
the (2N+1) eigenstates of Ĥ(ti), which shows strong (ex-
ponential) localization on the left edge site of the chain
with a degree of localization that increases as the imagi-
nary gauge field hmax is increased [see Eq.(11)]. However,
it is of major importance to check whether the transfer
method holds even when the initial excitation deviates
from one of the eigenstates, for example in the most
common case where at initial time the chain is excited
in the left edge site solely, i.e. for the initial condition
cn(ti) = δn,−N . In this case, provided that the non-
adiabatic terms in the dynamics are exactly cancelled
[Eq.(10)], it can be readily shown that at final time tf
the excitation amplitudes of the various sites in the chain
are given by (see Appendix B)

cn(tf ) = exp[hmax(n−N)]θn (13)

where

θn ≡ 1

N + 1

2N+1
∑

l=1

sin

[

πl(n+N + 1)

2(N + 1)

]

× sin

[

πl

2(N + 1)

]

exp(−2iTEl). (14)

is the distribution of excitation in the chain at final time
tf = T that one would obtain in the Hermitian limit

h = γn = 0. Note that p
(Herm)
N = |θN |2 is the trans-

fer probability that one would observe in the Hermitian
chain. Provided that θN is sufficiently far from zero,
Eq.(13) shows that at the final time tf the excitation is
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again mostly localized at the right edge site n = N of
the chain with a transfer probability given by pN , i.e.
the transfer method works properly also when the initial
state at time ti is not exactly one eigenstate of Ĥ(ti).
However, the norm of the final state, P (tf ), is dimin-
ished as compared to the initial value P (ti) = 1, indicat-
ing that the excitation transfer is a dissipative process.
In particular, for hmax larger than ∼ 1, an estimate of the

final norm is given by P (tf ) ≃ |θN |2 = p
(Herm)
N , as shown

in Appendix B. Hence, to minimize the loss of the norm
P (tf ), the interaction time 2T should be properly chosen

to optimize p
(Herm)
N . Figure 4 shows, as an example, the

behavior of the transfer probability pN = |cN (tf )|2/P (tf )
for increasing values of the normalized interaction time
κT and forN = 5. In the figure the behavior of the trans-

fer probability in the uniform Hermitian chain, p
(Herm)
N ,

is also shown for comparison. Note that for almost any

interaction time T one has pN ≃ 1 even though p
(Herm)
N is

considerably smaller than one, indicating that the gauge
field greatly improves the fidelity of transfer as compared
to the static Hermitian chain. Only at some discrete val-

ues of κT , where p
(Herm)
N vanishes, the transfer proba-

bility pN may deviate form one and the gauge-assisted
transfer method fails.
Finally, it is worth mentioning that cancellation of the
non adiabatic terms, which ensures efficient excitation
transfer between the edge sites in the chain, requires
that relations (4) and (10) be simultaneously satisfied.
i.e. that the gradient of the imaginary (loss/gain) site
potential energies, γn = −αn, be equal to the rate of
increase of the imaginary gauge field, h(t) = αt. In
practice, however, some deviations of the gradients are
expected to arise. To check the sensitivity of the exci-
tation transfer method versus a gradient mismatch, we
considered the case of imperfect cancellation of non adi-
abatic terms by replacing Eq.(10) with the more gen-
eral relation γn = −(1 + δ)αn, where the dimensionless
parameter δ measures the mismatch from the ideal case
δ = 0. Figure 5 shows, as an example, the behavior of the
normalized transfer probability p5 versus the mismatch
parameter δ in the same linear chain of Fig.2, comprising
(2N + 1) = 11 sites, for parameter values κT = 3 and
hmax = 3. Note that a high transfer efficiency, larger
than ∼ 90%, is observed for |δ| < 0.2, i.e. for quite large
(up to ∼ 20%) gradient mismatch from the ideal condi-
tion.

III. EXCITATION TRANSFER IN A LINEAR

CHAIN WITH DISORDER

An interesting feature of the excitation transfer
method assisted by an imaginary gauge field is its ro-
bustness against lattice imperfections and disorder. Let
us consider a linear chain comprising (2N +1) sites with
disorder in either or both site energy and hopping rates

described by the Hermitian Hamiltonian

ĤHerm =

N−1
∑

n=−N

κ(1 + δn) (|n〉〈n+ 1|+ |n+ 1〉〈n|)

+

N
∑

n=−N

En|n〉〈n| (15)

where δn and En are random variables that account for
disorder in the hopping rate and site energies. Owing
to disorder, the eigenstates of ĤHerm become localized
and probabilistic excitation transfer in a long chain is
degraded, as shown as an example in Figs.6 and 7 for a
chain comprising (2N + 1) = 11 sites and (2N + 1) = 21
sites, respectively. The dashed curves in the figures
show the numerically-computed transfer probability ver-
sus normalized interaction time as in Fig.4, but in the
presence of disorder. In the figures, the distributions of δn
and En, shown in the insets, are two realizations of disor-
der as obtained by assuming δn and En random variables
with uniform distributions in the range (−1, 1). The ap-
plication of the imaginary gauge field h modifies the lo-
calization properties of eigenstates and can thus prevent
Anderson localization and restore transport along the
chain [29–31]. Therefore, we expect that the non adi-
abatic transfer method introduced in the previous sec-
tion, based on a linearly-ramped imaginary gauge field,
is robust against disorder or structural imperfections of
the linear chain. The Hamiltonian of the system, with
the imaginary gauge field and imaginary site potential
gradient aimed at canceling nonadiabatic terms, read

Ĥ =

N−1
∑

n=−N

κ(1 + δn) {exp(−h)|n〉〈n+ 1|+

+ exp(h)|n+ 1〉〈n|}

+

N
∑

n=−N

(En − iγn)|n〉〈n| (16)

where h(t) = αt, γn = −nα, α = hmax/T , and 2T is
the interaction time. Let us expand the state vector of
the system |ψ(t)〉 on the Wannier basis by letting |n〉,
|ψ(t)〉 =

∑N

n=−N cn(t)|n〉. The evolution equations of
the amplitudes cn(t) read

i
dcn
dt

= κ(1 + δn) exp(−h)cn+1 + κ(1 + δn−1) exp(h)cn−1

+ (En − iγn)cn (17)

which differs from Eq.(5) because of the disorder δn and
En in hopping rates and site energies. Let us assume
that at initial time t = ti = −T the chain is excited
in its left edge site, i.e. cn(ti) = δn,−N . At final time
tf = T , after introduction of the gauge transformation
(8) it can be readily shown that the amplitudes cn(tf )
are given by Eq.(13), where θn is the solution that one
would obtain for h = γn = 0, i.e. for the disordered
Hermitian chain with Hamiltonian (15). The exponen-
tial term on the right hand side of Eq.(13) can overcome
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FIG. 6. Same as Fig.4, but for a chain with disorder in hopping rates δn and site energies En. The dashed curve shows the

transfer probability p
(Herm)
5 versus interaction time T in the Hermitian chain (h = γn = 0), whereas the solid curve depicts

the transfer probability p5 versus T with the imaginary gauge field. The distribution of disorder δn (squares) and En (dots) is
shown in the inset. Other parameter values are as in Fig.4.
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FIG. 7. Same as Fig.6, but for a chain with (2N + 1) = 21 sites.

Anderson localization, thus resulting in an efficient local-
ization of the excitation at the right edge site n = N and
a high transfer probability pN , as shown in Figs.6 and 7
(solid curves). Interestingly, while the disorder degrades

the transfer probability p
(Herm)
N = |θN |2 in the Hermi-

tian case owing to Anderson localization, it prevents the
amplitude θN to vanish at almost any interaction time
T , thus avoiding the dips in the transfer probability pN
in the disordered chain when the gauge field is switched
on (compare the solid curve of Fig.4 with those of Figs.6
and 7). In other words, while disorder greatly degrades
the transfer probability in the Hermitian chain, it im-
proves the transfer in the non-Hermitian case preventing
the failure of the transfer method at certain discrete val-
ues of interaction time T .
The benefit of the imaginary gauge field in realizing a reli-
able and disorder-insensitive excitation transfer between
the two edge sites of the chain is clearly demonstrated
when considering the distribution of the transfer prob-
ability for a given interaction time T and for different
realizations of disorder. As an example, Fig.8 shows the

numerically-computed distribution of the transfer prob-
abilities in a chain comprising (2N + 1) = 11 sites for
10000 realizations of disorder in hopping rates and for
a fixed interaction time T = 3.33/κ, which maximizes
the transfer probability in the Hermitian chain with-

out disorder (p
(Herm)
N = |θN |2 ≃ 0.78). The distribu-

tion p
(Herm)
N = |θN |2 refers to the transfer probability in

the Hermitian chain, whereas the distribution pN refers
to the non-Hermitian chain with an applied gauge field
hmax = 2. Two different statistics of disorder, namely
uniform and normal distributions, have been assumed.
Note that, while in the Hermitian chain the transfer prob-

ability p
(Herm)
N is rather sensitive to the realization of dis-

order and is typically lowered as compared to the ordered
chain, in the non-Hermitian chain with the imaginary
gauge field the transfer probability pN is insensitive to
disorder and close to 100% for both uniform and normal
distributions. In the latter case the distribution of trans-
fer probability is slightly broadened because of the larger
standard deviation σ of disorder for the normal distribu-
tion (σ = 0.5) as compared to the uniform distribution
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(σ = 1/
√
12).

IV. CONCLUSION AND DISCUSSION

Non-Hermitian extensions of Hamiltonian models of
major relevance in problems of quantum control, quan-
tum state transfer, quantum or classical transport, and
quantum annealing have received a great deal of attention
in the past few years [21–24, 26–28, 34]. Interestingly,
dissipation, gain and dephasing effects can be fruitfully
exploited to improve the state transfer process [23], to
realize possible routes of shortcut to adiabaticity [21], to
optimize quantum annealing methods [34], and to am-
plify the entanglement and spin squeezing near quantum
phase transitions [28]. In this work a fast nonadiabatic
method of excitation transfer in a non-Hermitian net-
work, which is robust against structural imperfections
and disorder, has been theoretically proposed. The non-
Hermitian model under investigation is an extension of
the Hatano-Nelson Hamiltonian [29], which is known to
show a non-Hermitian delocalization transition. Robust
transfer is assisted by an imaginary gauge field, which is
linearly increased in time from a negative to a positive
value, resulting in an effective and disorder-insensitive
transfer of excitation between the two edge sites of the
network. Nonadiabatic effects are exactly cancelled by
the introduction of an imaginary gradient of site energy
potentials, providing an effective shortcut to adiabaticity
and pseudo-Hermitian dynamics. A possible physical im-
plementation of the non-Hermitian model could be pro-
vided by light transport in a chain of coupled resonator
optical waveguides, where a synthetic imaginary gauge
field can be realized in principle by means of auxiliary
out-of-resonance cavities with optical gain and loss [31],
or using the modulation scheme discussed in Appendix
A. Our results disclose interesting aspects of classical or
quantum transport in non-Hermitian Hamiltonian mod-
els and reveal an entirely new platform upon which ro-
bust state transfer can be understood and realized. They
also may suggest several new directions of research. For
example, the application of a space-dependent imaginary
gauge field (the imaginary gauge phase h entering in
Eq.(1) depends on lattice site), together with appropri-
ate nonadiabatic correction terms, could be used to steer
an initial delocalized state into a desired final state in an
arbitrarily short time. The interplay of imaginary and or-
dinary gauge fields in assisting wave transport could be
investigated as well, especially in two-dimensional net-
works where topological protection could come into play.
There are also some open questions, for example how to
implement imaginary gauge fields in solid-state or matter
wave systems and the extension of non-Hermitian trans-
fer models in second quantization framework or for the
description of mixed state dynamics [35].

Appendix A: Physical realization of a

time-dependent imaginary gauge field

In this Appendix we briefly discuss a possible physi-
cal realization of a time-dependent imaginary gauge field
which could be implemented in coupled-resonator opti-
cal waveguide (CROW) structures [36], such as photonic-
crystal defect cavities, microspheres, microdisks, and mi-
croring resonators. The present scheme, however, is a
general one and could be potentially applied to quite
arbitrary non-Hermitian lattice systems with modulated
complex on-site potential energies.
Let us consider a CROW structure comprising (2N + 1)
cavities, each supporting a single mode with amplitude bn
and resonance frequency ω0. We assume that a linear and
time-dependent gradient of the complex frequencies of the
cavities is superimposed to the chain, so that coupled-
mode equations describing photon hopping in the chain
read (see, for instance, [37])

i
dbn
dt

= ρ(bn+1 + bn−1) + ω0bn + nδω0(t)bn (A1)

(−N ≤ n ≤ N), where ρ is the coupling constant between
adjacent cavities. The real part of δω0(t) describes the
offset rate of the resonance frequency of the dynamically-
tuned cavity from the central frequency ω0, whereas the
imaginary part of δω0(t) describes a gain/loss term gra-
dient, namely a loss term for nIm(δω0(t)) < 0 and a
gain term for nIm(δω0(t)) > 0. Ultrafast dynamic mod-
ulation of the refraction index, leading to a modulation
of the resonance frequency, can be achieved by carrier
injection [38], whereas modulation of the gain/loss re-
quires active resonators with modulation of the electrical
and/or optical pumping. In writing Eq.(A1) we assumed
that a single mode of each cavity in the chain is excited,
as it is usual in coupled-mode theory of CROW struc-
tures [36, 37]. In case of CROW realized by defects in
a photonic crystal, the single mode assumption is jus-
tified because of the defect sustains a single resonance,
whereas in other CROW structures, such as those based
on coupled microring resonators, single mode operation
is generally ensured by the excitation of the chain at one
edge with an external coherent field using a bus waveg-
uide [36], which excites a single traveling-wave wishper-
ing gallery mode of the ring.
To realize the effective Hamiltonian given by Eq.(1) in
the text, let us assume

δω0(t) = iα+ Γcos(Ωt+ iφ) (A2)

= iα+ Γcoshφ cos(Ωt)− iΓ sinhφ sin(Ωt)

where α, Γ, Ω and φ are real numbers. Note that the
dc term of δω0(t) describes a linear gradient of gain/loss
in the resonators, whereas the ac term corresponds to a
mixed and quarter-phase-shifted sinusoidal modulations
at frequency Ω of the real and imaginary parts of the
refractive mode index. The phase φ is allowed to vary on
a slow time scale as compared to the period 2π/Ω of the
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FIG. 8. Numerically-computed transfer probability in a chain comprising (2N +1) = 11 sites for 10000 realizations of disorder
in the hopping rates and for a fixed interaction time T = 3.33/κ. In (a) δn is assumed to be a random variable with uniform
distribution in the interval (−0.5, 0.5), whereas in (b) δn is assumed to be a random variable with a normal distribution with
standard deviation 0.5. The right panels show the statistics of the transfer probability with and without the imaginary gauge
field (hmax = 2).

carrier. After setting

bn(t) = exp[−iω0t− iΦ(t)n]cn(t) (A3)

with

Φ(t) = Γ

∫ t

0

dξ cos(Ωξ + iφ)

=
Γ

Ω
[sin(Ωt+ iφ)− i sinhφ] (A4)

substitution of Ansatz (A3) into Eq.(A1) yields the fol-
lowing coupled-mode equations for the amplitudes cn

i
dcn
dt

= ρ [exp(−iΦ)cn+1 + exp(iΦ)cn−1)]+inαcn. (A5)

For an oscillation frequency Ω much larger than the cou-
pling constant ρ, in the rotating-wave approximation we
can average the rapidly-oscillating terms on the right-
hand side of Eq.(A5). Taking into account that

〈exp[∓iΦ(t)]〉 = J0

(

Γ

Ω

)

exp(∓h) (A6)

where

h ≡ Γ

Ω
sinhφ, (A7)

J0 is the Bessel function of first kind and zero order, and
〈...〉 denotes the time average over the oscillation period
2π/Ω, Eq.(A5) finally reads

i
dcn
dt

= κ [exp(−h)cn+1 + exp(h)cn−1] + inαcn (A8)

where we have set

κ = ρJ0(Γ/Ω). (A9)

In their present form, Eq.(A8) is thus equivalent to Eq.(5)
given in the text with γn = −αn, and thus the CROW
structure with a modulated index gradient effectively de-
scribes the non-Hermitian Hamiltonian (1) with an imag-
inary gauge field h defined by Eq.(A7). To realize a syn-
thetic time-varying imaginary gauge field h(t) = αt in
the CROW, one should modulate the phase φ(t) accord-
ing φ(t) = asinh(Ωαt/Γ) while keeping the amplitude Γ
independent of time.

Appendix B: Temporal evolution of excitation

amplitudes: some analytical results

In this Appendix we provide some analytical results
regarding the temporal evolution of the excitation ampli-
tudes cn(t) along the chain for the non-Hermitian Hamil-
tonian (1) with a linearly-varying imaginary gauge field
h(t) = αt and with the non-adiabatic correction terms
γn = −αn. Owing to Eq.(8), the excitation amplitudes
cn(tf ) at final time tf = T are related to the amplitudes
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cn(ti) at initial time ti = −T by the relation

cn(tf ) = an(tf ) exp[h(tf )n] =
N
∑

l=−N

Un,lal(ti) exp[h(tf )n]

=
N
∑

l=−N

Un,l exp[h(tf )n− h(ti)l]cl(ti) (B1)

=

N
∑

l=−N

Un,l exp[hmax(n+ l)]cl(ti)

where hmax = αT and U is the propagator of Eq.(9) from
t = ti to t = tf , i.e.

an(tf ) =

N
∑

l=−N

Un,lal(ti). (B2)

Note that, provided that the non-adiabatic terms are can-
celled by assuming γn = −nα, U is the propagator of
a linear Hermitian chain with uniform hopping ampli-
tude κ comprising (2N + 1) sites, which is described by
a unitary matrix. Its expression is readily constructed
from the eigenvectors |El〉 [Eq.(3) with h = 0] and cor-

responding eigenvalues El [Eq.(2)] of ĤHerm, and reads
explicitly

Un,l =

2N+1
∑

σ=1

〈Eσ|l〉〈n|Eσ〉 exp(−2iTEσ) (B3)

=
1

N + 1

2N+1
∑

σ=1

sin

[

πσ(l +N + 1)

2(N + 1)

]

sin

[

πσ(n+N + 1)

2(N + 1)

]

× exp(−2iTEσ).

Note that, using Eq.(B1), the norm of the final state,

P (tf ) =
∑N

n=−N |cn(tf )|2, reads

P (tf ) =
N
∑

l,σ=−N

Wl,σcl(ti)c
∗

σ(ti) (B4)

with P (ti) =
∑N

n=−N |cn(ti)|2 = 1 and where we have
set

Wl,σ ≡
N
∑

n=−N

Un,lU∗

n,σ exp[hmax(2n+ l+ σ)]. (B5)

In the ordinary Hermitian problem, i.e. without the
imaginary gauge field hmax = 0, Wl,σ = δl,σ is the iden-
tity matrix since U is a unitary matrix, so that the norm
is conserved P (tf ) = P (ti) = 1. However, in the non-
Hermitian case hmax 6= 0, Wl,σ deviates from the iden-
tity matrix and thus the final norm is generally different
than the initial one as a signature of non-Hermitian dy-
namics.
As a first example, let us assume that at initial time
ti cn(ti) is the instantaneous eigenstate of Ĥ(ti) with
energy El; see Eq.(11) in the main text. Then, since
an(tf ) = an(ti) exp(−2iTEl), one readily obtains

cn(tf ) = an(tt) exp[h(tf )n] = an(ti) exp[h(tf )n− 2iTEl]

= cn(ti) exp[h(tf )n− h(ti)n− 2iTEl]. (B6)

Taking into account that h(tf ) − h(ti) = 2αT = 2hmax,
one obtains cn(tf ) = cn(ti) exp(2hmaxn− 2iTEl), which
using Eq.(11) finally yields Eq.(12) given in the main
text. In this case, since the system evolves in one of its
eigenstates, one can readily shown that P (tf ) = P (ti) =
1, i.e. the norm is conserved after the transfer of excita-
tion.
As a second example, let us assume that the chain is ini-
tially excited in the left hand edge site, i.e. cl(ti) = δl,−N .
From Eq.(B1) one obtains

cn(tf ) = θn exp[hmax(n−N)] (B7)

where we have set θn ≡ Un,−N . Taking into account
the form of Un,−N given by Eq.(B3), one finally obtains
Eqs.(13) and (14) given in the text. In this case the
norm of the final state, as obtained from Eqs.(B4) and
(B5) with cn(ti) = δn,−N , reads

P (tf ) =W−N,−N =
N
∑

n=−N

|θn|2 exp[2hmax(n−N)]

(B8)

where θn = Un,−N . Note that, since
∑N

n=−N |θn|2 = 1
and exp[2hmax(n−N)] < 1 for n < N , one has P (tf ) <
∑N

n=−N |θn|2 = 1, i.e. the final norm in this case is
always smaller than the initial one, indicating that ex-
citation transfer is dissipative. For a sufficiently large
value of the gauge field hmax, provided that θN does not
vanish from Eq.(B8) it follows that the dominant term in
the sum is the one with index n = N , so that an estimate
of the final norm is given by P (tf ) ∼ |θN |2.
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