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INTRODUCTION

The mitral valve (MV) is located in the left atrioventric-
ular groove and prevents the systolic backflow from the 
left ventricle (LV) to the left atrium (LA). The mitral 
annulus (MA) is one of its anatomic components, a fi-
broelastic ring with a three-dimensional (3-D) saddle 
shape to which the anterior and posterior mitral leaflets 
(ML) attach (Muresian 2009). The quantification of MA 
and ML morphology is valuable for the diagnosis, treat-
ment and follow-up of patients with MV disease (Vergnat 
et al. 2011; Grewal et al. 2009; Maffessanti et al. 2011). 
Transthoracic echocardiography is the standard imaging 
modality used to evaluate patients with MV disease. 
Recently, the advent of real-time 3-D transesophageal 
echocardiography (RT3-D TEE) has
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enabled a more accurate morphologic and quantitative 
assessment of the MV apparatus, compared with conven-
tional two-dimensional (2-D) or transthoracic 3-D ultra-
sound techniques, thus becoming the clinical standard for 
the pre-operative assessment of the MV (Grewal et al. 
2009; Maffessanti et al. 2011). Despite its extended use, 
quantification of morphologic MA and ML parameters 
from RT3-D TEE data sets remains a challenge, and 
commonly it is performed using strategies that rely on 
manual and time-consuming segmentation procedures 
(Vergnat et al. 2011; Watanabe et al. 2006; Song et al. 
2006).

Several semi-automatic approaches have been pro-
posed to obtain more reproducible results and less 
cumbersome analyses. Schneider et al. (2010) proposed a 
semi-automatic method for the segmentation of the MA 
during systole, with the hypothesis that the annulus lies in 
the region where the thin-tissue of the leaflets is attached 
to the thicker-tissue of the ventricular walls. However, 
such an assumption is not valid in the anterior



annular portion, which prevents the correct application of 
a thin-tissue detector and an evolving contour to segment 
the MA. In Schneider et al. (2012), the previous approach 
is extended to the dynamic segmentation of the MA 
(from diastole to systole), using a modified optical flow 
approach; however, the method relies on the same as-
sumptions of the morphology of the MA near the anterior 
annular portion. Pouch et al. (2012) combine an active 
contour guided segmentation followed by a deformable 
model approach to segment both the MA and ML, but an 
adequate orientation of the MV within the pyramidal 
volume data set is required to achieve accurate segmenta-
tions, thus limiting the applicability of this approach. 
Burlina et al. (2010), Schneider et al. (2011) and Mansi et 
al. (2012) made use of model-based methods that incor-
porate geometric, morphologic or mechanical constraints 
that were dependent on the training sets and therefore 
could not be fully verified in the presence of MV pathol-
ogies. Ionasec et al. (2010) made use of machine learning 
techniques to delineate the 4-D MA; the method is accu-
rate and has been thoroughly tested (1516 RT3-D TEE 
data sets), but it requires an extensive training database of 
manually delineated features, which makes it both 
dependent on the training sets and inaccessible to most. 
In addition, none of the proposed methods fully computes 
and exploits the local morphology of ML thickness and 
tenting, thus limiting the clinical applicability of those 
approaches.

In this article, we thoroughly describe and validate a 
novel semi-automated approach that requires minimal 
user interaction for segmenting the MA, the ML and the 
CL from RT3-D TEE data sets in the closed MV config-
uration (systolic phase), which allows the computation of 
novel quantitative parameters, such as regional leaflet 
thickness and regional tenting height. The accuracy and 
reproducibility of the MA and ML segmentation and of 
the computed parameters were tested on a heterogeneous 
data set of 33 patients; additionally, the potential clinical 
applicability of this approach in the presence of MV pa-
thologies was also tested. Preliminary results of the pro-
posed approach on a smaller group of patients were 
presented in Sotaquira et al. (2013).
METHODS: MITRAL VALVE SEGMENTATION

The proposed method operates on the RT3-D TEE 
image by first deriving the MA from a set of user-defined 
points, and then constructing the ML 3-D surface in a 
fully automated fashion. For MA detection, we pro-pose 
a modified block-matching algorithm inspired by the 
work of Nevo et al. (2007), able to track in 3-D space the 
position of the annular points starting from the set of 
annular locations defined by the user. This modified algo-
rithm involves the use of image cross-correlation and the
selected from a cut-plane orthogonal to that containing 
the A and P points and passing through the origin of the 
coordinate system (Fig. 2b);

� 4 points on the anterior portion of the MA on four cut-
planes in the stack, symmetrically positioned (at 6 15� 

and 6 30�) around A (Fig. 2c).

enhancement of annular locations using morphologic op-
erations. Next, using a graph-based approach, the ML is 
automatically delineated from the set of detected annular 
points. Finally, the 3-D polygonal mesh representations 
of both MA and ML are computed, including a semi-
automatic procedure for the coaptation line detection, 
and the set of morphologic parameters is then quantified.

Figure 1 depicts the flow chart for the proposed 
algo-rithm. Such steps are described in detail in the 
following sections.

Manual initialization
After selecting a frame at closed valve (end-systole), 

the user navigates the 3-D volume and selects three 
points: one at the anterior (A) and posterior (P) annular 
locations and one in the left atrium (LA) (Fig. 2a). The 
mid-point between A and P defines the origin of the coor-
dinate system. The axis in the longitudinal direction, 
perpendicular to the axis connecting A and P and 
pointing in the atrial direction, is then used to obtain a 
stack of 36 rotational cut-planes (inter-plane angular 
spacing of 5�). The LA point ensures that each plane in 
the stack is correctly oriented in 2-D space (i.e., with the 
LA lying on top of the valvular plane and the LV on the 
bottom), regardless of the orientation of the MV within 
the acquired 3-D volume.

Finally, the user subsequently defined an additional 
set of 6 annular points:

� Antero-lateral (Al) and Postero-medial (Pm) points,
Mitral annulus segmentation
Given the stack of 36 rotational cut-planes and the 

eight previously initialized annular points, the task is to 
locate in 3-D space the remaining 64 annular points Pi (i 
5 1.64) on the non-initialized semi-planes (each of 
them consisting of one half of the original cut-planes, and 
thus containing one annular point). For each of these 
semi-planes, a region-of-interest (ROI) is automatically 
selected and centered on the initialized point in the semi-
plane closer to Pi (Fig. 3a). A region-of-search (ROS) is 
automatically defined on the semi-plane con-taining Pi 
(centered on the ROI position) (Fig. 3b) and a weighted 
normalized cross-correlation (WNCC)(Bohs and Trahey 
1991) between ROI (the template) and ROS images is 
then computed (Fig. 3c), where the weight corresponds to 
a Gaussian function. The ROI size was defined 
heuristically and set to 24 3 28 mm2,



Fig. 1. Flow chart for the MV segmentation and quantification algorithm.
thus being large enough to identify a unique region, but 
small enough not to suffer too much from deformation 
of the block content over the multiple 2-D semi-planes. 
The ROS size was set to 30 3 50 mm2 based on the 
maximum expected spatial displacement (in vertical 
and horizontal directions) of the annular points.

1 Junction-enhanced (JE) image. This procedure en-
hances the regions in ROS (Fig. 3b) that satisfy the thin-
thick criterion, (i.e., regions were the thin tissue of the 
leaflets is attached to the thicker tissue of the ventricular 
wall as visible on the 2-D cut-plane). The first step in the 
computation is to estimate the average leaflet thickness 
from initialized planes. To do so, for each user-defined 
point an inner region of the ROI containing a portion of the 
leaflet is automatically extracted from the correspond-ing 
semi-plane and used to compute two feature images:

� Leaflet medial axis: Obtained by first using the gray-
level intensities of the selected portion as costs in a

2-D graph and then applying a dynamic programming 
algorithm (Amini et al. 1990; van Stralen et al. 2008; 
Nevo et al. 2007) that automatically computes the 
leaflet medial axis.
� Leaflet binary mask: Obtained using an unsupervised 

spatial fuzzy segmentation algorithm (Chuang et al. 
2006; Abdel-Dayem and El-Sakka 2007) that 
computes a probability image (with values ranging 
between zero and one) representing the probability 
that a pixel belongs to a specific cluster, taking into 
account the existing correlation between neighboring
Fig. 2. Location of initialization points for the MA segmentatio
(b) Al and Pm points; (c) atrial view of the MV with a projection

of the anterior region. A
pixels. As in this application the cluster of pixels
belonging to the ML was the object of interest, the
corresponding binary mask was obtained by
thresholding the probability image, with a threshold
equal to 0.4 defined empirically from the analysis of
the 33 patients. Once the leaflet binary mask was
obtained, the Euclidean distance (from mask’s inner
points to its boundary) was computed. From these
images, the leaflet thickness was obtained by
averaging the Euclidean distances along the medial
axis of each of the leaflet sections.

The second step in the computation of the JE image 
is to apply a morphology-based approach to enhance the 
annular locations, based on the assumption that they 
correspond to regions where objects with a thickness 
similar to that of the leaflets attach to thicker objects. To 
this aim, a binary mask MROS (Fig. 3d), is obtained from 
ROS (using the same fuzzy segmentation algorithm 
mentioned previously), from which two additional binary 
images are computed:

MTHICK 5MROS + L (1)

MTHIN 5XORðMROS;MTHICKÞ (2)

MTHICK (Fig. 3e) contains only the thick tissue, and 
is the result of applying a morphologic opening

(symbol + in eqn [1]) operation on MROS using a circular 
structuring element, L, with its diameter equal to the
average leaflet thickness. MTHIN, contains only the thin
n algorithm (see text for details). (a) A, P and LA points;
of all the initialized points. Note the denser initialization
o: Aortic valve.



Fig. 3. Computation of cost-image on a non-initialized semi-plane (see text for details). Semi-planes containing ROI and
ROS images (a, b); (c) computed WNCC image; (d) MROS: Binary mask of ROS image; (e) MTHICK: thick-tissue mask; (f)
MTHIN: thin-tissue mask; (g) resulting candidate annular locations (A, B, and C); (h) JE image; (i) computed cost image.
tissue and is the result of an XOR logical operation 
between MTHICK and MROS (Fig. 3f).

Finally, for each binary object in MTHIN, the centroid 
of the set of points closer to MTHICK (in the Euclidean 
sense) is automatically computed. The centroids A, B 
and C in Figure 3g are an example of this computation, 
where it is worth noting that, despite being artifacts owing 
to the local tissue morphology, B and C also satisfy the 
thin-thick tissue junction criterion. To remove these false 
annular locations, the orientation of each of the corre-
sponding binary objects in MTHIN is computed as the 
mean angle with the horizontal axis of points belonging 
to the object, and only the structure with the most hori-
zontal orientation is kept (i.e., only A in Figure 3g re-
mains). This criterion can be applied since the 
initialized LA point ensures that in the cut-planes the 
ML exhibits an almost-horizontal orientation. The re-
maining point is then convolved with a 2-D Gaussian 
kernel that emulates the uncertainty in the position of 
the detected junction, thus resulting in the JE image 
(Fig. 3h), normalized between zero and one, where pixel
values closer to one denote higher probability of 
belonging to the annulus.

2 Cost image computation and MA detection. The 
MA detection algorithm makes extensive use of the Dijk-
stra (Dijkstra 1959) optimal path search algorithm. 
Generically, a graph G 5,V,E. is a structure consisting 
of a set of nodes Vand a set of edges E between 
connected pairs of nodes, with the latter usually having a 
cost (i.e., being numerically weighted). Dijktra’s 
algorithm solves the problem of finding the minimum-
cost path to connect-ing a pair of ‘‘source’’ and ‘‘target’’ 
nodes in G. To do so, the algorithm starts at the ‘‘source’’ 
node and iterates through its neighbors; on each iteration, 
it computes and stores both the cumulative cost and the id 
of the node with the minimum cost. Once the ‘‘target’’ 
node is reached, the algorithm backtracks through the 
minimum cost path until it reaches the ‘‘source’’ node, 
thus con-structing the desired connected path.

With the estimation of the WNCC and the JE 
images, we compute a set of cost images and apply
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Dijkstra’s algorithm to compute the remaining annular 
locations. First, the WNCC and JE images are averaged 
together, thus resulting in the cost image C (Fig. 3i). This 
procedure, along with the use of the eight user-defined 
annular points, adds robustness to the detection of points 
even in the anterior annular portion. After repeating this 
step on each of the semi-planes, a set of 64 cost images is 
obtained. This set is further divided into eight different 
subsets sm (of M rows, N columns and O slices each), 
each of them delimited by a pair of initialized points. 
Both sm and the corresponding position of the initialized 
pair of points are then used to construct a directed 
weighted graph on which the Dijkstra shortest path 
algorithm is applied, thus automatically computing the 
remaining annular locations.

In the proposed approach, each graph (Fig. 4) will 
have a set of O layers (corresponding to each of the O sli-
ces in sm) delimited by a pair of start and end nodes 
(defined by the 2-D locations of the initialized points). 
The voxels, vijk, in  sm act as the nijk nodes in the directed 
graph, whereas their corresponding intensity-transformed 
values, 1-vijk, define the corresponding edge costs, thus 
ensuring that annular locations will be associated with 
non-negative edge values closer to zero.

The directional edges in the graph are defined by 
using a radial connectivity constraint applied both to start 
and end nodes, as well as to internal nodes:

� Assuming that the 2-D locations, in cost-image coordi-
nates, of the pair of initialized points are (xs,ys) and
(xe,ye), the start and end nodes will be connected to no-
des in the first and O-th layers within a circular neigh-
borhood1 of radius r and centered on the locations
(xs,ys) and (xe,ye) of the corresponding first and O-th
slices in sm.

� In the same fashion, internal edges between consecu-
tive layers in the graph are defined by connecting
each node nijk (k 5 1.O-1) on the k-th layer with
the corresponding set of nodes in the k 11-th layer
that lie within a neighborhood of radius r of the corre-
sponding slices in sm.

Once applied to the Dijkstra algorithm on the corre-
sponding graphs, the set of 64 unknown annular locations
is then obtained and transformed from 2-D cost image co-
ordinates into the corresponding 3-D coordinates, which,
along with the eight initialized points, represent the
segmented MA. The use of this graph-based algorithm
to construct the annulus, instead of the simple use of
 
 
 

1 In the implementation of the algorithm, this radial connectivity
was determined heuristically and set to 5 mm, and corresponds to the
maximum expected displacement (horizontal and vertical) of the
annular point between consecutive slices.
global maximum of individual cost-images, ensures
spatial smoothness and continuity between the detected
points.

The annular contour is now represented by the fina
set of 72 annular points. However, given the noise presen
on each of the cut-planes, an additional step constituted by
fourth order Fourier approximation was introduced to
both reduce the potential misplacement of some points
and to ensure better correspondence with the morpho-
logic 3-D saddle shape of the MA.

ML segmentation
This fully-automated step takes as input the set of 3-

D fitted annular locations (72 points) previously
computed, along with the corresponding stack of 36 radia
cut-planes. It exploits the fact that, on each plane, the
gray-level intensity distribution along the leaflet cross-
section exhibits higher values near the center of the leaflet

ML segmentation starts by first computing the nega-
tive image of each cut-plane, thus ensuring that pixels
near the center of the leaflet will have lower intensity
values (Fig. 5, left); then, a 2-D directed weighted graph is
constructed using the corresponding intensity values as
edge weights. Finally, the minimum cost path between the
corresponding set of annular points is computed using the
Dijkstra algorithm, resulting in the leaflets medial-axis
(Fig. 5, left, continuous line). The set of computed medial-
axes (one for each radial cut-plane) is the output of the
algorithm and corresponds to a 3-D point cloud tha
closely follows the 3-D medial surface of the mitra
leaflets.

Semi-automatic detection of CL
The CL semi-automatic delineation is based on the

fact that this line corresponds to the regions on the ML
mesh that exhibit high local tenting values. A constrained
conforming Delaunay triangulation (Shewchuk 2000) is
then applied to both the 3-D MA fit points and the ML
points cloud to obtain their corresponding 3-D mesh rep-
resentations. Then, the local tenting height, defined as the
vertex-to-vertex distance between the MA and ML
meshes (both having the same number of vertices, sharing
the same x, y coordinates and differing only in the z coor-
dinate), is computed and visualized as color overlay on a
3-D rendering of both the original RT3-D TEE volume
and the ML mesh (Fig. 6a).

On this 3-D image, the user initializes some points
(between 4 and 6) on the ML mesh along the CL, where
the local tenting height color information simplifies the
selection (Fig. 6b). A weighted graph is then constructed
by using the 1-ring connectivity of each vertex on the
mesh and with the edge weights defined by the corre-
sponding vertex tenting height. Finally a minimum cost



Fig. 4. A 3-D graph used for computing annular points using Dijkstra algorithm (Dijkstra, 1959). A simple structure of O 
layers and 5 3 5 nodes/layer and a radial connectivity constraint of 1 pixel are assumed in this example. The directed 
edges for the ‘‘start’’ and ‘‘end’’ nodes, as well as for a node in the k-th layer, are depicted as continuous black lines 

with arrows.
path calculation, using Dijkstra’s algorithm, is performed 
between consecutive pairs of initialized points, thus ob-
taining a complete detection of the CL. The A and 
P ML representations are then obtained by cutting the 
ML mesh through the computed CL (Fig. 6c).

Quantification of morphologic parameters
Several conventional morphologic parameters 

(Caiani et al. 2011) were then computed from the 3-D 
MA contour and its mesh representation (obtained by 
computing the union of the triangles connecting the 
MA with its centroid) as well as from the ML mesh: (i) 
MA perimeter; (ii) A-P diameter (the axis starting from 
the saddle horn—the highest point in the MA measured 
in the orthogonal direction to the MV plane—and passing 
through MA centroid); (iii) Al-Pm diameter (perpendic-
ular to the A-P axis and passing through MA centroid);
(iv) MA height (the height of the MA bounding box);
(v) MA 3-D surface; (vi) MA 2-D projected area; (vii)
ML 3-D surface. In addition, a set of novel morphologic
parameters, derived from the quantification of ML local
thickness and ML tenting, was also computed from the
mesh representations: (viii) MLmean thickness, obtained
Fig. 5. The computed leaflet medial axis between a pair of an
from the corresponding dista
as the average of the ML local thickness computed for 
each vertex of the ML mesh as twice the value of the dis-
tance transformed through the leaflets medial-axis on 
each cut-plane (Fig. 5, right); (ix) ML tenting volume 
(defined as the volume enclosed by MA and ML meshes);
(x and xi) maximum and mean tenting height, both ob-
tained from the ML local tenting height pattern computed 
for each vertex in the ML mesh (as explained in the pre-
vious section).

Population, validation protocol and statistical analysis
Data from patients enrolled at the University of Chi-

cago Hospitals (Chicago, IL), or at Centro Cardiologico 
Monzino (Milan, Italy) undergoing clinically indicated 
RT3-D TEE imaging were considered. The protocol 
was approved by the local Institutional Review Board, 
and informed consent was obtained from all participants.

RT3-D TEE studies were performed using the iE33 
system (Philips Medical Systems, Andover, MA, USA) 
equipped with fully sampled matrix-array transesopha-
geal echocardiography (TEE) transducer (X7-2t): The 
probe was positioned at the midesophageal level with a 
120� tilt and images acquired using the wide-angled
nular points (left) and the estimation of leaflet thickness
nce transform (right).



Fig. 6. Semiautomatic detection of the coaptation line, and anterior and posterior mitral leaflets. (a) A cut-plane of the orig-
inal volume together with the ML mesh, where color overlay represents the local tenting height (from black—lower
values—to yellow—higher values). The red point, selected by the user, matches the local maximum (yellow region) of
the local tenting height. (b) The complete set of points selected by the user and passing through the CL using the original
volume and the tenting regional distribution as reference. (c) The CL is automatically constructed from the set of selected
points (white curve) and the A and PML are automatically extracted from the initialMLmesh (dark and light gray surfaces).
acquisition mode, in which ECG-triggered wedge-shaped
sub-volumes were obtained over four or seven consecu-
tive cardiac cycles (volume rate 15–20 Hz). The scan vol-
ume in the wide-angled acquisition mode was optimized
to include the mitral apparatus, the aortic valve and prox-
imal ascending aorta, while excluding the mid and apical
ventricular segments to maximize frame rate. Gains and
compression were optimized in each patient, and kept
constant during the acquisition. The acquired 3-D data
set’s dimension in the reformatted Cartesian range was
roughly 2003 2003 200 voxels with a voxel resolution
ranging from 0.2 to 1.0 mm.

A group of 33 patients (50 6 10 y) was considered
for validation purposes. Specifically, it was composed
of: (i) 9 patients with normal left-ventricular volume
and mitral apparatus (NL); (ii) 12 patients with dilated
cardiomyopathy (DCM), presenting global left ventricu-
lar dysfunction and dilation; (iii) 12 patients (MVR)
with degenerative MV disease and severe mitral regurgi-
tation that underwent MV repair with conventional surgi-
cal techniques on the ML and with implantation of partial
annular rings on the posterior leaflet. Voxel resolution of
each RT3-D TEE data set ranged from 0.2 to 1.0 mm.

The accuracy of the proposed algorithm was tested
as follows:

1. MA and ML automated segmentations were
compared point-to-point on the same stack of rota-
tional cut-planes with manual tracings performed
by an expert cardiologist, assumed as the ‘‘gold stan-
dard,’’ by computing Euclidean distances expressed
in pixels in 2-D space; in the case of ML, the manual
tracing corresponds to the center line of the leaflets,
as seen by the expert. For ML comparison, a spline
interpolation was applied on the set of automatically
computed tracings, to ensure that each ML medial
axis contained the same number of points as in the
manual tracings. Moreover, to test for reproducibility
of the ‘‘gold standard’’ measurements, the same
expert, blinded to previous results, repeated the trac-
ings after 6 mo. Intra-observer variability for the
computed parameters was evaluated using the coeffi-
cient of variability (CV) (defined as the ratio of the
SD of the pair of manual measures as a percent of
their mean), Bland-Altman analysis (with corre-
sponding limits of agreement) and Pearson correla-
tion coefficient (r).

2. To validate the accuracy in the computation of the
regional thickness and regional tenting height of the
ML, the same set of radial cut-planes and correspond-
ing automatic and manual tracings was used. For each
pair of corresponding radial cut-planes and tracings,
the local 2-D thickness and tenting of leaflets was
computed, then corresponding errors were obtained
in pixels.

3. A parametric map of local error distributions was ob-
tained for each data set, and then combined to compute
a parametric map of median errors in the N group
through a remapping operation onto the unit disk.

4. CL semiautomated segmentations were compared
with manual tracings performed by an expert. To do
so, a set of parallel cut-planes going from Al to Pm
annular points was obtained, with the distance be-
tween two consecutive planes equal to 1.5 mm. For
each of these planes: (i) the expert selected the coap-
tation point (gold standard), and (ii) the intersection
between the plane and the CL computed semiautomat-
ically was obtained, (iii) the point-to-point Euclidean
distance between the points obtained in (i) and (ii) was
computed, representing the accuracy of the semiauto-
mated procedure.

5. Moreover, to test for the reproducibility of the ‘‘gold
standard’’ CL measurements, the same expert, blinded



Parameter Mean 6 SD

Intra-observer variability

CV (%) BA r

MA perimeter (mm) 112.8 6 12.3 3.7 6 2.1 0.6 6 5.2 0.95
MA A-P

diameter (mm)
32.0 6 4.6 4.2 6 1.9 0.8 6 3.2 0.96

MA Al-Pm
diameter (mm)

37.6 6 5.2 4.3 6 3.2 0.5 6 3.8 0.95

MA height (mm) 4.8 6 2.0 15.2 6 3.9 0.2 6 2.2 0.81
MA 3-D surface (cm2) 9.5 6 2.2 8.1 6 3.1 0.3 6 2.3 0.92
MA 2-D surface (cm2) 8.8 6 2.4 6.6 6 3.7 0.2 6 1.9 0.95
ML 3-D surface (cm2) 16.2 6 3.5 11.3 6 4.0 0.6 6 2.2 0.86
ML mean

thickness (mm)
2.6 6 1.1 3.4 6 2.4 20.1 6 0.3 0.99

ML tenting
volume (mL)

1.1 6 0.6 13.3 6 6.9 0.1 6 0.5 0.73

ML max. tenting
height (mm)

5.0 6 1.4 10.7 6 8.3 0.2 6 0.9 0.74

ML mean tenting
height (mm)

1.3 6 0.8 14.1 6 5.5 20.1 6 0.7 0.84
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Table 1. Results of the reproducibility analysis in the normal 
subgroup (n 5 9) for the measured MV morphologic 

parameters obtained using manual
tracings. Mean value of the two tracing sessions

performed by the expert cardiologist, together with the 
coefficient of variation (CV), bias 6 2 SD from Bland-Altman 

analysis (BA) and Pearson correlation
coefficient (r)
to previous results, repeated the selection of the coap-
tation points. For each set of points, the coaptation line
length (defined as the cumulative sum of the distances
between consecutive points defining the CL) was
computed, and intra-observer variability was assessed
using the coefficient of variability, Bland-Altman
analysis (with corresponding limits of agreement)
and Pearson correlation coefficient (r).

To test the reproducibility of the morphologic
parameters obtained from both the MA and ML 3-D
representations, in terms of their inter-observer vari-
ability, two operators, blinded to each other, analyzed
separately all the normal patients in the data set with
the proposed method. To test for intra-observer
variability, the first operator repeated the analysis twice.
Variability for both inter- and intra-observer was evalu-
ated using the coefficient of variability (CV) (defined as
the absolute difference between the pair of measures in
percent of their mean), Bland-Altman analysis (with
corresponding limits of agreement) and Pearson correla-
tion coefficient (r).

To show the applicability of our approach in the clin-
ical setting, an additional set of nine patients (526 12 y)
with a variety of MV morphologies was included: One
patient with normal (NL) valve dimensions, one with
DCM and annular dilation, one with MVR after annulo-
plasty, one with rheumatic MV stenosis (MVS) with
mild annular calcification and increased leaflet thickness,
three patients with ML perforation resulting from
bacterial endocarditis, and two patients with ML
malcoaptation.

Implementation of the algorithm
Software for manual navigation of the 3-D data and

initialization was implemented using C11 and the Visu-
alization Toolkit–VTK (Kitware Inc., New York, NY,
USA). The initialization procedure (i.e., user delineation
of nine points) required less than one min on average,
including data retrieval and choice of correct planes.
The core algorithm for MA and ML segmentation and
quantification was implemented in Matlab (The Math-
works Inc., Natick, MA, USA) and computation time
was about 50 s on a 2 GB RAM, 2.26 GHz Intel Core
Duo Laptop. Complete characterization of MA and ML
global and regional morphology thus took approximately
2 min on average for each data set.

RESULTS

Validation
All acquired 3-D images were suitable for anal-

ysis, as they did not present any stitching or dropout
artifacts. The generation of the ‘‘gold standard’’
involved a total of 1188 2-D tracings (36 leaflet trac-
ings and 72 MA points for each of the 33 patients) to b
used for comparison, and took about 10 min/data set
Table 1 shows the computed intra-observer vari-ability o
the ‘‘gold standard’’ both for MA and ML parameters in
the NL group, and Figure 7 shows a representativ
example of the corresponding Bland-Altman analysis
Most of the computed parameters exhibited a high
reproducibility (CV less than 10%and coefficients o
correlation above 0.9), except fo
the MA height, the ML tenting volume and the ML 
mean tenting height (with CV values close to 15%and
correlation coefficients equal or less than 0.8).

Figure 8 shows the regional distribution of th
median error (Euclidean distances) in mm between th
manual and automated results relevant to the annular con
tour points location, counter-clockwise along the annula
profile (from Al to Al), computed for the 33 patients. It i
possible to notice the globally reduced median error of 0.7
mm (25% and 75%: 0.7 and 1.4 mm, respectively) along
the MA contour, showing the good performance of th
automated detection algorithm. In particular, slightly
higher distances (between 0.7 and 1.2 mm) were observed
near the A point, compared with regions between Al and
Pm points (between 0 and 1.0 mm).

The errors in ML segmentation (Fig. 9, first row) ar
comparable among populations, and range from 0 to 1.6
mm, with a median error of 0.6 mm (with 25% and 75%
percentiles of 0.2 and 1.0 mm, respectively) for the entir
data set. In MVR, slightly higher errors around



Fig. 7. Representative Bland-Altman plots for the reproducibility of the morphologic parameters for: (a) Intra-observer
variability; (b) Inter-observer variability. The parameters depicted exhibit the lowest (MA perimeter) variability and high-

est (MA height) variability.
the posterior annular region were observed, given the 
presence of suture points as a result of the annuloplasty 
procedure. In NL, slightly higher errors around the ante-
rior annular portion were also visible.

The median of signed errors for thickness and tent-
ing computation (Fig. 9, second and third rows) show 
values of 20.1 mm (21.2; 1.0 mm), and of 0.2 (21.3; 
1.2 mm), respectively for these two regional parameters. 
Again, in NL a slightly higher tenting height overestima-
tion, located toward the left half of the map and reflecting 
the positioning error shown in the ML segmentation 
around the anterior region, was visible. Also in MVR
Fig. 8. Box and whisker plots (represented as median, first and
MA segmentation algorithm versus manual tracings. The corres

right.
this behavior was present, but with higher errors in thick-
ness and tenting around the posterior annular portion, as a 
result of the presence of suture points mentioned 
previously.

Table  2  shows the computed inter- and intra-
observer variability, both for MA and ML parameters in 
the NL group. The proposed algorithm showed a good 
level of reproducibility for most of these parameters. In 
particular, intra-observer reproducibility was high (CV 
values close to 10% and correlation coefficients higher 
than 0.95) for annulus perimeter, A-P and Al-Pm 
diameters as well as for surfaces and mean thickness. 

Conversely, height,

third quartiles) for the regional error distribution in the
ponding anatomic locations on theMA are depicted on the



Fig. 9. Parametric maps of regional error distribution for theML segmentation and quantification algorithms. From left to
right: NL, DCM and MVR groups. From top to bottom: ML segmentation error, thickness error and tenting error. The

same color scale has been used for each variable to allow comparisons between groups.
tenting volumes and maximum and average tenting 
heights were found as the least reproducible (CV around 
20% and correlation coefficients below 0.9).

Figure 10 shows the accuracy (Euclidean distances) 
of the CL segmentation algorithm in the NL group, with 
values ranging from 0.8 to 1.9 mm and a mean error of 
1.1 6 0.5 mm for the entire data set. In addition, 
Table 3 shows the computed intra-observer variability 
of the CL length measurement, both for the gold standard
Table 2. Reproducibility analysis for the MV semi-automatic seg
value of the two observers is reported, together with the coefficient

(BA) and Pearson correla

Parameter Mean 6 SD

Intra-obser

CV (%)

MA perimeter (mm) 111.1 6 14.3 3.0 6 1.3 2
MA A-P diameter (mm) 29.4 6 4.0 4.0 6 2.4
MA Al-Pm diameter (mm) 37.8 6 5.5 3.9 6 2.7
MA height (mm) 5.0 6 1.2 12.1 6 5.4 2
MA 3-D surface (cm2) 9.1 6 2.5 7.4 6 4.6
MA 2-D surface (cm2) 8.6 6 2.5 6.1 6 4.7
ML 3-D surface (cm2) 13.5 6 3.0 8.1 6 3.8 2
ML mean thickness (mm) 2.6 6 0.9 3.5 6 2.6
ML tenting volume (mL) 1.3 6 0.2 11.5 6 6.3
ML max. tenting height (mm) 5.0 6 0.9 9.4 6 13.5 2
ML mean tenting height (mm) 1.6 6 0.5 11.1 6 8.9
and for the semiautomatic CL segmentation algorithm;
reproducibility of this measurement resulted high and
similar in both cases (CV and r close to 11% and 0.95,
respectively).

Clinical applicability
The potential applicability of the proposed approach

in clinical practice was preliminarily explored by
analyzing patients with different MV pathologies.
mentation algorithm in the normal subgroup (n 5 9). Mean
of variation (CV), bias6 2 SD from Bland-Altman analysis
tion coefficient (r)

ver variability Inter-observer variability

BA r CV (%) BA r

1.1 6 6.7 0.97 6.0 6 4.8 26.6 6 7.7 0.93
0.6 6 2.4 0.97 8.8 6 6.6 22.4 6 4.5 0.83
0.2 6 3.4 0.96 9.1 6 7.6 23.2 6 6.7 0.84
0.2 6 1.6 0.84 19.1 6 7.0 0.7 6 1.7 0.73
0.4 6 1.9 0.91 12.8 6 9.8 21.3 6 2.4 0.96
0.2 6 1.5 0.95 11.8 6 7.2 1.1 6 2.0 0.97
0.2 6 2.8 0.88 13.5 6 9.3 21.9 6 2.8 0.90
0.1 6 0.2 1.00 6.4 6 5.8 20.2 6 0.5 0.99
0.1 6 0.3 0.75 17.3 6 7.3 20.2 6 0.3 0.89
0.1 6 1.5 0.74 18.0 6 9.9 0.3 6 2.2 0.81
0.1 6 0.5 0.88 16.8 6 7.6 0.2 6 0.7 0.82



Fig. 10. Coaptation line segmentation error in the normal group 
(n 5 9).

Table 4. Global and regional parameters for the
morphologic characterization of mitral annulus and
leaflets in a normal valve, a patient with dilated

cardiomyopathy (DCM), a patient after mitral valve
repair with annuloplasty (MVR) and a patient with mitral

valve stenosis (MVS)

Patient parameter Normal DCM MVR MVS

MA perimeter (mm) 113.0 122.6 104.1 105.6
MA A-P diameter (mm) 31.3 34.7 26.4 25.9
MA Al-Pm diameter (mm) 36.9 38.3 34.3 35.7
MA height (mm) 5.6 5.0 4.3 4.6
MA 3-D surface (cm2) 9.7 10.6 7.7 8.1
MA 2-D surface (cm2) 9.3 10.3 7.6 7.9
ML 3-D surface (cm2) 10.2 13.5 8.4 8.9
ML mean thickness (mm) 2.1 2.8 3.2 3.3
ML tenting volume (mL) 1.4 3.0 1.6 2.1
ML max. tenting height 4.8 5.7 5.6 5.1
ML mean tenting height 1.8 2.3 2.5 2.1
Table 4 summarizes the resulting morphologic 
parameters in the NL, DCM, MVR (a patient with P2 
prolapse with chord rupture, undergoing posterior leaflet 
resection and Cosgrove ring implant; Edwards Lifescien-
ces LLC., Irvine, CA, USA) and MVS patients. In addi-
tion, Figure 11 depicts the atrial view of the 3-D models 
with the corresponding tenting height and leaflet 
thickness parametric color maps using the same scale and 
voxel resolution.

As seen in Table 4, the DCM patient exhibits a 
larger, dilated MA compared with the subject with 
normal MV. Conversely, as a result of the annuloplasty 
procedure, the MA dimensions in the MVR patient were 
reduced, together with higher tenting near the CL (Fig. 
11c). Compared to the normal MV (mean thickness 2.1 
mm), increased thickness is visible both in the DCM (2.8 
mm) and in the rheumatic (3.3 mm) patient, with areas of 
higher values (up to 6 mm) localized onto the CL (Fig. 
11f and 11h). Also, an increase in thickness is visible in 
the MVR patient (3.2 mm) in correspondence to the 
posterior leaflet, but not on the anterior
Table 3. Results of the reproducibility analysis in the
normal group (n 5 9) for the CL length obtained using manual 
tracings (gold standard) and the semiautomatic algorithm. On 
each case, mean values of the two observations are reported, 
together with the coefficient of variation (CV), bias 6 2 SD 

from Bland-Altman analysis
(BA) and Pearson correlation coefficient (r)

Parameter Mean 6 SD

Intra-observer variability

CV (%) BA r

CL length from gold
standard (mm)

47.1 6 5.2 11.3 6 2.9 2.5 6 1.6 0.94

CL length from
semiautomatic
algorithm (mm)

48.0 6 3.4 10.5 6 2.1 2.1 6 1.6 0.96
(Fig. 11g), as a possible effect of the surgical procedure 
(in this case it is also possible to note the presence of su-
ture points near the P border of the implanted ring).

Figure 12 shows the 3-D volume rendering (top) of 
the RT3-D TEE data and the corresponding 3-D mesh 
(bottom) with leaflets thickness overimposed as a para-
metric color map, for the three patients with leaflet perfo-
ration (Fig. 12a-c) and the two patients with leaflets 
malcoaptation (Fig. 12d-e). It is possible to notice the 
direct match between the location of the perforation/mal-
coaptation, highlighted in the rendered volumes, and the 
corresponding zero-thickness regions (gray spots in Fig. 
12, bottom) in the parametric images.
DISCUSSION

The recent introduction of RT3-D TEE has allowed 
improved description of the morphologic abnormalities 
of a variety of MV pathologies compared to the informa-
tion provided by 2-D techniques. According to recent 
guidelines (Bonow et al, 2008), this technology should be 
currently regarded as a valuable adjunct to the standard 
2-D examinations in decisions regarding MV repair (Pepi 
et al. 2006; Sugeng et al. 2008). Currently, quantitative 
analysis of the MV apparatus can be performed using 
custom-based or commercially available dedicated soft-
ware (Chandra et al. 2011; Grewal et al. 2010; Suri et al. 
2009; Veronesi et al. 2012; Khabbaz et al. 2012). The 
proposed approach minimizes user interaction for MA 
segmentation, and provides a complete automated 
segmentation of the ML, thus allowing the quantification 
of MA and ML morphologic parameters. The use of 
commercial software (Philips QLAB MVQ module) 
could require on average 7 to 10 min (Tsang et al. 2011; 
Maffessanti et al. 2011) to manually achieve MA and ML 
quantification (only global parameters one to seven, as 
listed in Section 2.5), it is



Fig. 11. MV 3-D representations (atrial views) with regional tenting (top) and thickness (bottom) patterns superimposed
as color maps for a normal MV, and DCM, MVR and MVS patients. The white continuous line on each representation

corresponds to the location of the coaptation line.
cumbersome, user-dependent and involves several initial-
ization steps including the selection of A-P and Al-Pm 
annular points, of a couple of annular points on a set of 
six additional cut-planes (i.e., 16 points to define the MV 
contour), and the manual tracing of the leaflet profile and 
coaptation points on multiple (between 12 and 18) 
parallel cut-planes from the Al to the Pm region 
(Maffessanti et al. 2011). In addition, no estimation of 
ML local thickness and tenting is provided, and no export 
of the quantified MV surface mesh is allowed.

On the contrary, our approach reliably quantifies 
both global and regional MA and ML morphology, with a 
much simpler initialization procedure (nine points) and 
reduced computation time (two min). Moreover, both 
annular contour and leaflet meshes are made avail-able 
for their potential additional utilization in patient-specific 
MV finite element modeling.

The dense angular sampling of the 3-D volume used 
for constructing the set of radial 2-D cut-planes (5� apart) 
ensures a high degree of spatial correlation between adja-
cent slices, thus adding robustness to the MA segmenta-
tion. Also, the introduction of a denser initialization of 
the MA anterior region (in total five user-defined points) 
improves the detection in correspondence to the aorto-
mitral septum. As the MA and the anterior leaflet exhibit 
similar thickness on the fibrous tissue coupling the mitral 
and the aortic valves, the manual selection of one annular 
point only in this region could hamper the correct 3-D 
MA reconstruction.

Even with the use of WNCC (Fig. 3c), a metric 
insensitive to noise in the image (Nevo et al. 2007), the 
fundamental drawback of the forward tracking method 
is still present: the computed path tends to drift away 
from the optimal path once an error occurs. To overcome 
this limitation we introduced the junction-enhanced im-
age which, along with the graph–search-based procedure, 
ensures that the annular regions will be correctly 
enhanced and detected once combined with the WNCC 
image (Fig. 3i).

Compared with previous semi-automated approaches 
(Schneider et al. 2010; Pouch et al. 2012; Burlina et al. 
2010; Ionasec et al. 2010; Schneider et al. 2011; Mansi



Fig. 12. MV 3-D volume renderings (top) and 3-D representations (bottom) for patients with leaflets perforations (a-c)
and malcoaptation (d, e). The dashed and continuous contours in the rendered volumes represent the approximate loca-
tions of the MVand abnormalities, whereas the color scale on the left is the same for all representations. Black continuous

lines in the 3-D representations correspond to the location of the CL.
et al. 2012), our method overcomes some of the existing 
limitations. In particular, we compute the leaflet thickness 
from the set of initialized cut-planes, which allows the 
computation of the JE image without any predefined 
thickness value; when combined with the WNCC and the 
9 user-defined points, the Dijkstra algorithm allows the 
correct segmentation of the MA even in the anterior 
annular region. Conversely, in a previous approach 
(Schneider et al. 2010), a thin-tissue detector (TTD) based 
on a fixed leaflet thickness value was used to enhance the 
leaflets and locate the MV within the volume. Since the 
thickness distribution appears not to be uniform, and related 
to certain pathologic conditions, this constraint limits the 
clinical applicability of such analysis. In addition, the 
same TTD image is used to guide an evolving contour 
that segments the MA, corresponding to regions where the 
thin-tissue is attached to the thicker-tissue; the problem of 
this approach is that in the anterior annular region, in 
correspondence with the inter-valvular septum, it is difficult 
to differentiate the annulus from the leaflets, and thus the 
use of the TTD along with the active contour method may 
not always lead to accurate segmentations of the anterior 
annular portion. In spite of still relying on the thin-thick 
tissue junction hypo-thesis, our method overcomes the 

absence of such junctions
in the anterior annular portion by specifically including 5 
initialization points in this region.

Another advantage of our method regards the orien-
tation of the MV within the volume: the definition of one 
point in the LA cavity during the initialization allowed us 
to analyze valves in virtually any orientation within the 
pyramidal RT3-D TEE volumetric data set. In previous 
studies (Pouch et al. 2012), proper orientation of the MV 
apparatus inside the acquired data set (i.e., parallel to one 
of the volume’s main axes) was a pre-requisite for the 
segmentation to be applicable.

The use of nine initialization points, requiring 
approximately one min of interaction, may seem cumber-
some. However, the complexity added to the algorithm 
initialization translates in more accurate segmentation 
of both the MA and the ML, which in turn ensures a cor-
rect estimation of the related morphologic parameters 
(both global and regional). Other existing methods 
(Schneider et al. 2010; Burlina et al. 2010; Ionasec 
et al. 2010 and Mansi et al. 2012) require less or no initial-
ization points at all; however reported errors (ranging be-
tween 1.2 and 5.0 mm) still prevent the use of such 
approaches as tools for reliably in quantifying the 
morphology of the MA and the ML.



Finally, in our formulation the only constraints in 
the MA segmentation are the ROS and ROI sizes 
(which in spite of imposing a curvature constraint in the 
curva-ture of the segmented MA, still allow reduced 
segmen-tation errors, below 1.6 mm, as mentioned in 
Sec. 3.1) and the connectivity in the detection of 3-D 
annular points, whereas ML segmentation relies on 2-D 
graph connectivity: This resulted in adequate patient-
specific segmentations both in normal and pathologic 
patients. In contrast, previous approaches (Burlina et al. 
2010; Ionasec et al. 2010; Schneider et al. 2011; Mansi 
et al. 2012) were model-based, with the advantage of 
computing the MV configuration during the complete 
cardiac cycle (from diastole to systole), but with the 
drawback of using geometric, morphologic or mechani-
cal priors that make the model not flexible enough on 
pathologic cases. Besides, the reproducibility of such 
approaches is limited, given the dependency on the 
particular data set available when the model was 
constructed.

Validation
Reproducibility analysis for the gold standard and 

for the semi-automated method showed comparable 
levels of variability. In particular, as seen in Tables 1, 2 
and 3, the variability of the results obtained with the 
method (both CVs and coefficients of correlation) is 
lower than the gold standard inter-observer variability for 
all the computed parameters.

The comparison with manual tracings performed on 
the 33 patients showed a good performance in terms of 
accuracy for both MA and ML detection. In particular, 
the normalized regional error between corresponding MA 
point locations was minimal, and below 1.6 mm around 
the MA. These results are of the same magnitude as those 
previously reported by Schneider et al. (2010), where 
root mean square errors and mean normalized dis-tances, 
computed globally and not regionally, were of the order 
of 1.87 mm and 1.1 mm, respectively, for voxel sizes in 
the range 0.5–0.75 mm. Also the comparison of the 
corresponding ML point locations between the manual 
and automated segmentation resulted in a median error of 
the order of 0.6 mm, thus confirming the robust-ness of 
the unsupervised spatial fuzzy segmentation algo-rithm 
in the computation of the ML medial axis.

The use of the parametric maps of median errors 
applied to the validation of regional thickness and tenting 
height parameters evidenced minimal signed errors, with 
local positive errors (between 0.8 and 1.6 mm) in tenting 
height toward the anterior region in the NL group, prob-
ably as a result of the fact that local errors in both segmen-
tations of MA and ML affect cumulatively the tenting 
height computation. In both cases (thickness and tenting) 
an almost uniform distribution of signed errors around the
positive and negative values was found, thus implying 
that there is not systematic bias toward under or over-
estimation of the computed parameters.

With regard to the repeatability of the analysis, our 
results showed a good inter- and intra-operator reproduc-
ibility, except for the annular height and the maximum 
and mean tenting heights. This finding is in agreement 
with Maffessanti et al. (2011), where repeatability of the 
manual measurements was investigated and the MA 
height was found to be the most variable parameter 
(inter: 17.2%; intra: 11.5%). The level of intrinsic 
variability in this parameter is probably related to the 
spatial resolution of the acquired image, which in case of 
1 mm resolution represents up to 20% of the mean 
annular height value (Tables 1 and 2).
Clinical applicability

Clinical value of the computed parameters. Previous 
studies (Caiani et al. 2011; Chandra et al. 2011; 
Maffessanti et al. 2011) have stressed the importance of 
the quantification of global annular dimensions and 
leaflet area (parameters one to seven in Sec. 2.5) for 
the ac-curate classification of the causes of MV disease 
and for the determination of the course of treatment in 
such cases. In addition, we hypothesized that ML local 
thick-ness and local tenting quantification, and the 
correspond-ing derived parameters (eight to 11 in Sec. 
2.5) extracted from the 3-D echo data sets, could become 
an additional tool to improve the patients’ diagnosis and 
to allow a deeper understanding of the etiology of the 
MV disease. In literature, some studies where the clinical 
rele-vance of similar parameters was studied are present: 
By using the 4-chamber view in conventional 2-D 
echocar-diographic imaging, with thickness being 
estimated in a single mid-point of each leaflet (both 
anterior and poste-rior), Chaput et al. (2008) 
demonstrated an increase in leaflets’ size (area, length 
and thickness) in a group of pa-tients with DCM, in 
agreement with the result obtained in an ovine model 
(Dal-Bianco et al. (2009)). They also concluded that, in 
DCM, the ML undergoes a long-term adaptation 
following LV and MA dilation, thus underlin-ing the 
need to better understand the mechanisms behind this 
process as part of future therapeutic approaches. Rausch 
et al. (2012) found similar results after inducing chronic 
LV dilation in a sheep model and measuring leaf-lets area 
and strains, stressing the importance of quanti-fying 
thickness changes, to be correlated with the degree of 
MV regurgitation. Using RT3-D echocardiog-raphy, 
Anwar et al. (2010) proposed and validated a new score 
that includes ML thickness quantification for the 
assessment of patients with mitral stenosis. However, a 
limitation of such an approach was that thickness is 

quantified for a particular ML location from 2-D
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cut-planes, thus making the results dependent on the cho-
sen location.

In regard to tenting volume, several studies
(Watanabe et al. 2005; Ryan et al. 2007) have shown that
changes in the MA configuration lead to modifications in
the 3-D ML tenting distribution, obtained by manual anal-
ysis of the RT3-D data sets, thus suggesting that this addi-
tional information could improve both the diagnosis and
treatment of patients with MV disease. Also, the inaccu-
racy of single plane-based assessment, obtained by
conventional 2-D echocardiographic techniques, for the
effective and reproducible quantification of the degree of
ML tethering, was proved.

Assessment of patients with different pathologies
The computed morphologic parameters for the

normal MV group (Table 2) are consistent with those ob-
tained in previous studies (Vergnat et al. 2011;
Maffessanti et al. 2011; Grewal et al. 2010) describing the
morphology of the MV in normal patients. Also, the
measured ML thickness values are in agreement with
those computed on 2-D apical 4-chamber view in 24
normal patients, as reported by Chaput et al. (2008)
Different from previous work (Pouch et al. 2012; Burlina
et al. 2010; Ionasec et al. 2010; Schneider et al. 2011), in
which MA segmentation was applied using healthy and
pre-operatory populations only, the proposed algorithm
was able to correctly segment valves with different
morphologies, including patients in post-operative stages
with global or local leaflet thickness changes, or partial
malcoaptation.

In the DCM patient, as expected, the MV was
deformed as a result of LV dilation, thus increasing MA
and ML dimensions compared with normal valves (Table
4, third column). The reported tenting distribution as well
as the increased leaflet thickness (Fig. 11) are consistent
with previous studies (Chaput et al. 2008; Watanabe et al
2005; Ryan et al. 2007), thus suggesting active adaptation
process at cellular matrix level resulting in thicker
anterior and posterior leaflets.

In the MVR patient, the MA segmentation correctly
delineated the annulus, even in presence of the implanted
ring (Fig. 11). The performed annuloplasty procedure
induced several morphologic changes in the MV, in
particular the undersizing of the MA that leads to an in-
crease in tenting height as a result of the combined resiz-
ing of the leaflets, and the increased thickness in the
posterior leaflet.

The analysis of the patient with rheumatic MV ste-
nosis evidenced the expected thickening of ML (Table 4
fifth column), associated to this pathology, thus opening
the possibility of using this regional infor-mation for
improved score computation to define the proper surgical
intervention. In fact, such patients are
nowadays addressed to MV replacement or percutaneous 
balloon dilation (i.e., commissurotomy) based on Wilkins 
score (Wilkins et al. 1988) which includes thickness in-
formation computed from a single 2-D view.

The computed thickness patterns in patients with 
leaflet perforation and malcoaptation, along with the 
detection of the CL, allowed a correct identification of 
the local defects position, consistent with those depicted 
on the rendered volumes. The potential use of this infor-
mation as a clinical tool would be the detection and quan-
tification of the extent of damage in case of leaflet 
perforation, or the estimation of the surface of the regur-
gitant orifice in valves with malcoaptation.
Current limitations
The size of the population included in the study was 

limited. However, we aimed to test the accuracy and 
repeatability of the proposed measures, and to verify the 
applicability of this approach to several clinical cases 
characterized by different annular and leaflet morphol-
ogies. Future application to wider and selected patient 
groups would allow a better definition of potential 
changes in the computed parameters relevant to specific 
pathologies. In addition, the current implementation is 
not fully sensitive to prolapsed valves, and parameters 
such as CL length and tenting may not be directly corre-
lated; in these pathologies semi-automated tracing would 
be necessary to allow ML segmentation. Moreover, algo-
rithm’s testing in presence of sub-optimal image quality 
was not assessed.

For validation, we did not use an independent 
ground truth but the manual tracings performed by an 
expert cardiologist on the 3-D echo data. This fact might 
not guarantee that the actual segmentations were correct.

We presented a semi-automatic procedure for the 
segmentation of the coaptation line, and included a pre-
liminary validation of its accuracy and reproducibility. 
However, we did not analyze the clinical value of the 
CL length, and additional studies on different populations 
would be required to establish its clinical relevance.

Finally, our study was focused on static configura-
tion of the MV (that is, considering only end-systolic 
frames), thus ignoring the dynamic changes in the MV 
apparatus that have been recently reported (Caiani et al. 
2011; Grewal et al. 2010; Veronesi et al. 2012; Khabbaz 
et al. 2012; Veronesi et al. 2009).
CONCLUSIONS

We proposed a semi-automated algorithm for MA 
and ML segmentation from RT3-D TEE data, capable 
of characterizing the morphology of the MV with only 
9-points user interaction, also including the computation 
of novel parameters, such as regional tenting height and



leaflet thickness. Validation compared to manual tracings 
showed small errors in segmentation, comparable with 
voxel resolution, and good reproducibility in the 
computed parameters.

Application to patients with different MV pathol-
ogies in pre- and post-operative stage, with global or 
local leaflet thickness changes or partial malcoaptation, 
showed the potential clinical utility of the proposed 
method, as well as its versatility in presence of 
completely different MV morphologies. The reported 
performance of the proposed fast, model-free, semi-auto-
mated MA and ML quantification makes it promising for 
future applications in clinical settings, where obtaining 
results rapidly is important such as in the operating room.
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