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1. Introduction

Shape is one of the most prominent features of cells, plants,
organs, and of living beings in general. Specific shapes may play a
crucial role in enabling the achievement of specialized biological
goals, which might allow for an organism's survival and thriving
in its environment. Morphogenesis has been linked to mechanical
origins in a natural way because mechanics offers innumerable
examples of systems whose equilibrium configurations depend on
external parameters, with bifurcations among equilibria which
may imply very different shapes and structures for a body. Perhaps
the most studied and exploited example of such morphogenetic
bifurcation phenomena is given by Euler's elastica. In more recent
times we mention the studies by Biot [5] who understood how
three-dimensional rubbers under compression may develop
surface instabilities, as have also later been found in soft, strain-
hardening materials [7,16].

A mechanical approach in the creation of form for bodies
undergoing growth was envisaged already at the beginning of last
century by Thompson [39]. Interesting studies along these lines
were later performed, such as for instance [9], where shell theory
was used to estimate the surface stresses that can be induced in a
growing surface, showing how they may related to splitting and
cracking in vegetables. These methods give very fertile ground for

the mechanical investigation of bio-morphogenesis, greatly expanding
the scope of continuum mechanics well into the boundaries of
biophysics and biology in general. A growing body indeed evolves in
a natural way under the effect of a number of external parameters
which vary with time inducing morphogenetic effects with lesser
need for genetic encoding of information. This offers attractive ave-
nues for the explanation of form [31], within a background of natural
hypotheses of genetic parsimony.

Understanding in terms of mechanical instabilities has since
been proposed for numerous observed shapes of growing bodies,
using a wide variety of approaches, and sometimes exhibiting
remarkable agreement with experimental observations. To name
but a few examples, buckling under external stress has been
related to morphogenesis for instance in growing spheroidal shells
[41], or in the growth of other constrained systems [12,17]. More
complex shapes, observed in plant organs such as long leaves [26],
or in blooming flowers [11,27], have also been modeled by
adapting the theory of elastic shells to a growing surface [13].
See [24] for a review of the mechanics of buckling-related
morphogenesis. Further recent studies have further analyzed the
growth of vegetable matter, as in growing pumpkins [22] or in the
ripening of kiwi fruit [19], see also the review [29]. In the bio-
medical sciences, the investigation of mechanical instabilities has
helped investigate the role of external stress in tumor growth
[2,3], and mechanics has since provided fruitful soil for cancer
modeling [30]. Recent work has also related mechanical instabil-
ities to morphogenetic development during the growth of animal
organs [34,37], and in brain formation [8,21,38].

In most cases, the basic trigger for morphogenetic instabilities
derives from the presence of differential growth and distinct mechan-
ical properties in different neighboring parts of a growing body. Thus,
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adjacent layers or domains sharing open two-dimensional [28,23] or
one-dimensional [34] adhesion boundaries have been examined.
Confinement of a growing body within a closed regular two-
dimensional boundary not undergoing growth has also been consid-
ered [25,32]. Less explored appear to be the morphogenetic possibi-
lities for encased growing bodies, wherein a growing bulk is
surrounded/protected by a closed regular growing surface layer (as
with the skin or rind of fruits, or in bacterial membrane [15]), whose
mechanical and growth properties will in general differ from those in
the bulk.

The aim of the present study is thus to highlight how encase-
ment may generate interesting morphogenetic instabilities in
growing bodies. We treat growth by following the approach
introduced in [14,33], and extensively adopted in theoretical studies
of growing systems, as in [4,10] among many examples. A pecu-
liarity in our approach is that two multiplicative decompositions for
the deformation gradient must be introduced to correctly account
for the possibly independent growth of the bulk and the coat. In the
bulk, growth is described by the factor Fg in the decomposition
F ¼ FeFg of the three-dimensional deformation gradient F . Simul-
taneously, a similar decomposition A¼ AeAg is introduced for the
surface deformation gradient A. The strain energy then depends
only on the elastic factors Fe and Ae. By following [18,36] in our
treatment of elastic continua surrounded by elastic surfaces, we
consider an incompressible neo-Hookean material for the bulk, and
Föppl–Van Kármán elastic coat, undergoing finite strains.

The growth components Fg;Ag are at least partially determined
by external processes, typically of biochemical origin. Further-
more, material remodeling may possibly influence such processes
[1], and at least partially relieve the residual stresses which may
have been originated by incompatible growth. The choice of
including or not such an evolution for the growth components
determines whether we are considering morphogenesis at stress-
free conditions vs. in the presence of residual stresses. This might
for instance depend on the relative time scales of growth and
relaxation (see [6] for an example of how a soft material may
exhibit purely elastic or apparently plastic behavior, depending on
the deformation and relaxation times). We keep our study as
simple as possible here, and do not consider any remodeling, so
that in general the deformed shapes we characterize possess
residual stresses (as, for instance, the systems considered by [26]).

Our analysis is based on the combination of two effects. The
first is the role that non-homogeneous growth may play in giving
incompressible bodies the possibility of undergoing apparently
non-isochoric deformations. The second factor is showing how
encasement, i.e. the coexistence of a growing bulk inside a pos-
sibly differently growing skin, may affect the equilibrium config-
urations of the body even in the absence of instabilities of the bulk
or the boundary separately.

Here we illustrate these effects by means of a simplest example,
that is, a bending instability for an isotropically growing straight
cylinder encased within a cylindrical boundary which is in turn
growing at possibly different rates in the longitudinal and trans-
verse directions. Such growth anisotropy may occur, for instance,
when parallel fibers are present in the skin, which may also
possess anisotropic elastic moduli. We show how encasement
induces, in a range of growth and elastic parameters, instabilities
which lead to new equilibria with a bent shape for the cylinder.
Depending on the material properties, other instabilities, which
we do not explore here, may occur in encased growing cylinders,
such as bulging, twisting, or others (see for instance the deforma-
tions considered in [20]). Our analysis shows that for a growing
body the constraint of encasement is different from simple con-
finement as in [25,32], as the growth of the external coat along
with the growth of the bulk creates instabilities which might not
be present when the coat is (deformable but) incapable of growth.

This paper is organized as follows. In Section 2 we show how
inhomogeneous growth may provide new degrees of freedom for
the distortion of incompressible growing bodies. In Section 3 we
analyze the effects of encasement on growth, showing how
mechanical instabilities may arise when a growing body is surro-
unded by a differently growing coat. In Section 4 we evidence a
bending instability generated by encasement. An Appendix con-
tains some of the computations leading to the results presented in
the main text.

2. Growth in incompressible materials

In this section we analyze how inhomogeneous growth may
enlarge the class of deformations available to incompressible
materials. Let χ be the map transforming the reference configura-
tion into the present placement, and F ¼ ∇χ. We model growth by
assuming [14,33] that F may be decomposed as the product of an
elastic and a growth component:

F ¼ FeFg: ð1Þ
The growth tensor Fg describes how growth would locally shape
body volume elements, where they allowed to grow stress-free,
that is, in the absence of the surrounding elements. The balance
equations driving Fg may not entirely be included in the bio-
mechanical model. When this is the case, some or all of its entries
may be explicitly specified, and therefore treated as external
parameters. We remark that Fg need not be the gradient of any
‘growth deformation', as growth is a local phenomenonwhich may
induce a lack of compatibility whenever curl Fga0. Moreover,
since mass is not conserved during growth, no isochoricity condi-
tion must be a priori enforced on det Fg.

The elastic distortion Fe is defined by the decomposition (1):
Fe ¼ FF �1

g . The assumption that Fg identifies the current stress-
free configuration implies that the strain-energy density must be a
function of the elastic strain

Ce ¼ F >
e Fe ¼ F � >

g F >FF �1
g ¼ F � >

g CF �1
g ; ð2Þ

where C ¼ F >F is the standard Lagrangian strain tensor. As Ce is
itself a function of C, any strain-energy density depending on Ce

automatically complies with frame-invariance requirements.
The incompressibility constraint establishes an isochoricity

condition on the elastic distortion Fe, so that

det F ¼ det Fg: ð3Þ
If the point-wise mass supply is assigned, the map det Fg must be
treated as an external parameter, and incompressibility limits as
usual the class of deformations available to the growing body. If,
on the contrary, the system deforms sufficiently slowly, apparently
non-isochoric deformations become possible, in which growth
accommodate local volume variations by concentrating mass pro-
duction at sites undergoing greater expansion det Fg. When this is
the case, the incompressibility constraint applies only globally, and
the determinant of F may neither be 1 nor even uniform. Much
more general deformations thus become available to a slowly
growing body, the map det F giving the explicit details on the local
mass production.

3. Encasement

We now study how the independent growth of an elastic bulk
and of a closed, regular elastic surface surrounding it, may induce
morphological instabilities. We consider the simplest geometry
and constitutive assumptions on the material to better evidence
the origin of such instabilities. The bulk of the body is given
by a capped, isotropically growing cylinder made of simple



incompressible neo-Hookean material, coated with a possibly
anisotropic Föppl–von Kármán elastic surface undergoing finite
strains. Two half spherical caps are considered, with centers on the
cylinder axis and suitable radius, to enforce encasement, while
ensuring C1-regularity of the external boundary, see Fig. 1, left. We
denote r0;h0 respectively the cylinder radius and height in the
reference configuration, which in cylindrical coordinates is given
by

B0 ¼ PAE : P ¼ Oþρ cosΘexþρ sinθeyþZez;
�

ZA ð�r0;h0þr0Þ;ρA 0;Rr0 ;h0 ðZÞ
� �

;ΘA ½0;2πÞ�; ð4Þ

where fex; ey; ezg is a fixed orthogonal basis and, for any positive r
and h, Rr;h : ð�r;hþrÞ-Rþ is defined as

Rr;hðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p
if zA ð�r;0�

r if zA ð0;hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�ðz�hÞ2

q
if zA ½h;hþrÞ:

8>>><
>>>:

ð5Þ

The reference body is therefore identified by the reference radius
r0 and height h0 of its cylindrical part.

As mentioned in the Introduction, we are interested in deter-
mining under which conditions the straight shapes of the capped
cylinder become unstable, in particular in favor of bent stable
shapes. We perform our analysis by introducing a parameterized
family of shapes, and checking the stability of straight cylinder
configurations against bending. The critical values we identify in
this way thus provide a sufficient criterion for the loss of stability
of the straight configuration. Other instabilities, not presently
analyzed, could in principle occur at different critical thresholds,
depending on the values of the constitutive parameters.

In detail, the family of bent shapes that we consider is obtained
by assuming that the axis of the cylinder becomes the arc of a
circle with curvature κ, as in the right panel of Fig. 1 (see the
Appendix for further details):

Bκ ¼ PAE : P ¼ Qκþρ cosθexþ ρ sinθ�κ�1� �ð cos κzey� sin κzezÞ;
�

zAð�r;hþrÞ;ρA ½0;Rr;hðzÞÞ;θA ½0;2πÞ�; ð6Þ

where Qκ ¼Oþκ�1ey is the center of the circle on which the axis
lies. The domain Bκ approaches the upright shape B0 for vanishing κ.

The encased cylinder undergoes growth, with details on the
bulk and surface growth distortions Fg;Ag provided below, while it
deforms to achieve the current configuration Bκ , determined by
minimizing the strain energy below.

� The bulk material undergoes a possibly inhomogeneous dila-
tion, characterized by the growth tensor (see (3))

Fg j bulk ¼ ðdet FÞ1=3I; ð7Þ
where I is the identity. Since the bulk material is assumed to be
incompressible, growth fixes the total volume of the current
configuration. We therefore introduced a positive scalar α
which represents the relative volume increase in the grown
body, and require

Vcurr ¼ α3V0: ð8Þ

� The coat of the cylinder undergoes an independent growth
process, described by anisotropic elongation factors β; γ,
respectively in the longitudinal and radial directions in the
cylindrical part of the coat, plus an isotropic growth factor γ for
the semi-spherical caps. We do not require the coat material to
be inextensible, although stretches with respect to the locally
grown configuration will be energetically penalized.

In this framework, growth is therefore encoded in the geome-
trical dilation factors α;β; γ, fixed by external processes, which we
treat as parameters in the analyzed solutions of the problem. We
remark that encasement induces a lack of compatibility in the field
Fg whenever β differs from γ, as no dilation of the growing bulk
may succeed in accommodating anisotropic surface growth. This
occurs often in growth processes, and is at the basis of the
existence of residual stresses [33].

3.1. Strain energy

To determine the optimal deformed configuration, we follow
[36] and assume that the total strain energy of the encased cylin-
der can be decomposed into a bulk and a surface contribution

F ½χ � ¼
Z
B0

σðCÞJg dVþ
Z
∂B0

ςðA;KÞJg dA; ð9Þ

in the absence of any loads. The strain-energy density depends in
fact only on the elastic distortion but, by using (2) for the bulk
term and a similar decomposition for the surface deformation
gradient (see (A.20) in the Appendix), it may be written as density
in the reference configuration, depending on the Lagrangian strain
C, the surface deformation gradient A, and the curvature tensor K .
The Jacobians Jg;Jg, respectively of the bulk and surface growth
transformations are included in (9) because the strain-energy
density is defined with respect to grown volume/area elements.

We assume a simple, isotropic neo-Hookean behavior for the
bulk strain-energy density:

σðCÞ ¼ μ tr Ce�3ð Þ ¼ μ tr F � >
g CF �1

g

� 	
�3

� 	
¼ μ tr ðdet FÞ�2=3C

� 	
�3

� 	
¼ μ tr ˚C�3ð Þ ð10Þ

with μ being the shear modulus, and˚ C ¼ ðdet CÞÞ�1=3C the isochoric
strain.

To include in our study materials with possibly anisotropic (e.g.,
fiber-structured) coats [35], we choose the following anisotropic
expression for the surface strain-energy density:

ςðA;KÞ ¼ S J ðEeTZ � TZ Þ2þS? ðEeTΘ � TΘÞ2þBJeH
2 ð11Þ

where TZ ;TΘ are respectively the longitudinal and azimuthal
tangent unit vectors on the reference surface (see A.2), S J and
S? represent the longitudinal/transverse 2D stiffness moduli, and
B the bending stiffness. The first and second terms in the surface
strain-energy (11) depend on the elastic component Ae of the
surface deformation gradient A¼ AeAg, as Ee ¼ A>

e Ae�Is, where Is

Fig. 1. (Left) Reference straight capped encased cylinder. (Right) Grown, stretched
and bent configuration for the same cylinder.



denotes the identity operator on the tangent planes to B0. The
term penalizing the mean curvature H carries a further factor
Je ¼ det Ae, as it penalizes curvature in the current configuration.
Eq. (11) defines for the coat a finite-elasticity counterpart of the
strain energy of a classical Föppl–von Kármán plate [40].

4. Bending instability

We now examine under which conditions the straight config-
uration may become unstable, possibly leading the cylinder to
undergo a morphological transformation towards a bent shape
(some of the computations are given in the Appendix). We remark
that our model treats separately the bulk and surface strains, so
that fairly straightforward changes of the computations presented
below could also account for boundary slip and/or detachment
during encased-growth phenomena. However, these are absent in
the ensuing first analysis of encasement instabilities, as the family
of deformations which we consider now is continuous at the coat-
bulk boundary.

We decompose the capped cylinder into the cylindrical part,
plus the two spherical caps, and consider the family of deforma-
tions χ explicitly defined in the Appendix (see (A.4)), parameter-
ized by the height and radius h; r of the current configuration, and
the curvature κ of the cylinder axis. The deformation gradient of
the bulk transformation in the cylindrical part of the material (see
(A.4)) may be written in the orthogonal basis used in (4) as

FðX;Y ; ZÞ ¼ r
r0
ðex � exþ f ðZÞ � eyÞþ

h
h0

1�κrY
r0


 �
f ? ðZÞ � ez; ð12Þ

with

f ðZÞ ¼ cos
κhZ
h0

ey� sin
κhZ
h0

ez; f ? ðZÞ ¼ sin
κhZ
h0

eyþ cos
κhZ
h0

ez:

ð13Þ
The Jacobian

J ¼ det F ¼ hr2ðr0�κrYÞ
h0r30

ð14Þ

provides the volumetric dilation factor in the bulk, and sets a
maximum admissible value for the curvature κ for the deformation
to be regular. More precisely, since jY jrr0, the deformation is
regular only when κro1, so that

0rκor�1: ð15Þ
The cylindrical contribution to the volumetric strain-energy

density gives (see (10) and (A.9))

σ j cyl ¼
μhr2ðr0�κrYÞ

h0r30
2

h0r
hðr0�κrYÞ


 �2=3

þ hðr0�κrYÞ
h0r


 �4=3

�3

" #
:

ð16Þ
The caps only undergo a dilation by a factor r=r0, so that˚ C j caps ¼ I,
and σ j caps ¼ 0.

Identifying the elastic component of the surface deformation
gradient Ae and the mean curvature H requires lengthier compu-
tations, reported in the Appendix. In the deformed configuration,
the cylindrical section of the coat stores a strain energy given by
(see (A.20) and (A.21)):

ςj cyl ¼
S J

4
h2ð1�κr sinΘÞ2

β2h20
�1

!2

þS?
4

r2

γ2r20
�1

!2

þ Bh
4h0r0rð1�κr sinΘÞ: ð17Þ

The coat caps undergo an isotropic extension of factor r=r0,
remaining half-spheres of mean curvature H¼ �r�1 (see (A.23)).

Therefore

ςj caps ¼
ðS J þS? Þ

4
r2

γ2r20
�1

!2

þ B
r20
: ð18Þ

Let us now introduce the dimensionless parameters u¼ r=ðαr0Þ,
v¼ h=ðαh0Þ, which reflect whether the current shape respects the
dimensions obtained by a simple rescaling of the reference shape
with a factor dictated by (8). Let further ~κ ¼ αr0κ measure the
bending state of the current configuration, and ~β ¼ β=α, ~γ ¼ γ=α
be the rescaled surface growth factors. We also introduce the
reference aspect ratio Λ0 ¼ r0=h0. Notice that (u, v, ~κ) parameterize
the current configuration, while the parameters ð ~β ; ~γ Þ characterize
the normalized anisotropic growth. The total strain energy takes
the form

F ¼
Z
B0

σðFeÞJg dVþ
Z
∂B0

ςðA;KÞJg dA

¼ μα3h0r20u
2v
Z 1

0
~ρ d ~ρ

Z 2π

0
dΘ

� 2u2=3ð1� ~κu sinΘÞ1=3
v2=3

þv4=3ð1� ~κu sinΘÞ7=3
u4=3 �3

" #

þα2r0h0 ~β ~γ
Z 2π

0
dΘ

S J

4
v2ð1� ~κu sinΘÞ2

~β
2 �1

0
@

1
A

2
2
64

þS?
4

u2

~γ2�1

!2
3
5

þBvh0

4ur0

Z 2π

0

dΘ
1� ~κu sinΘ

þπα2r20 ~γ
2ðS J þS? Þ

u2

~γ2�1

!2

þ4πB:

ð19Þ
To compute the above integrals we define, for any jajo1,

f 1ða; bÞ ¼
1
2π

Z 2π

0
ð1�a sin ΘÞbdΘ¼ 2F1

1
2
ð1�bÞ; �1

2
b;1; a2


 �
ð20Þ

with 2F1 the Gauss hypergeometric function such that

f 1ða;0Þ ¼ f 1ða;1Þ ¼ 1 and

f 1ða; bÞ ¼ 1þ1
4 a

2bðb�1ÞþOða4Þ as a-0: ð21Þ

For future use, we also introduce, for any jajo1,

f 2ða; bÞ ¼ 2
Z 1

0
~ρf 1ða ~ρ; bÞ d ~ρ ¼ 2F1

1
2
ð1�bÞ; �1

2
b;2; a2


 �
: ð22Þ

We thus obtain

F ¼ 2πμh0r20α
3u2v

Z 1

0
~ρ 2

u2=3

v2=3
f 1 ~κu ~ρ;

1
3


 �
þv4=3

u4=3f 1 ~κu ~ρ;
7
3


 �
�3

� 

d ~ρ

þ2πα2r0h0 ~β ~γ
S J

4
v4f 1ð ~κu;4Þ

~β
4 �2v2f 1ð ~κu;2Þ

~β
2 þ1

0
@

1
A

2
4

þS?
4

u2

~γ2�1

!2
3
5

þπBvh0f 1ð ~κu; �1Þ
2ur0

þπα2r20 ~γ
2ðS J þS? Þ u2

~γ2�1

!2

þ4πB: ð23Þ

The hypergeometric integrals in (23) may again be computed,
and provide the strain energy per unit current volume ðΨ ¼
F=ðπα3r20h0ÞÞ

Ψ ¼ μ 2u8=3v1=3f 2 ~κu;
1
3


 �
þu2=3v7=3f 2 ~κu;

7
3


 �
�3u2v


 �



þ2 ~β ~γ
αr0

S J

4
v4f 1ð ~κu;4Þ

~β
4 �2v2f 1ð ~κu;2Þ

~β
2 þ1

0
@

1
AþS?

4
u2

~γ2�1

!2
2
4

3
5

þBvf 1ð ~κu; �1Þ
2αr30u

þ ~γ2ðS J þS? ÞΛ0

αr0
u2

~γ2�1

!2

þ4BΛ0

α3r30
: ð24Þ

We remind that u and v are not independent variables. Indeed,
the volume of the current configuration is fixed by the growth, so
that (see Eq. (8))

u2ðvþ4
3Λ0uÞ ¼ 1þ4

3Λ0; ð25Þ

where Λ0 represents the reference aspect ratio.
Eq. (24) evidences that encasement, i.e. the combined effect of

bulk and coat growth, may not be simply renormalized as the
effective growth of one of them (either bulk or coat) with the
other considered as a simple elastic medium, so that encasement
does not in general reduce to the constraint of confinement. For
instance, in the present case, we describe the surface growth in
terms of the renormalized parameters ~β and ~γ , but the bulk
growth parameter α enters also the ratios between surface and
bulk elastic constants. Therefore, when α (i.e. the bulk) grows,
even if the relative growth parameters ~β and ~γ remain constant,
the surface effects become less important, affecting the stability
thresholds and possibly their existence.

The straight shape is always a stationary configuration for the
energy functional, because, setting Ψ 0 ¼Ψ j ~κ ¼ 0:

Ψ ¼Ψ 0þ
μu8=3v1=3ð7v2�u2Þ

18
þS Ju2v2ð3v2� ~β

2Þ ~γ
2αr0 ~β

3 þ Buv
4αr30

2
4

3
5 ~κ2þoð ~κ2Þ

ð26Þ

as ~κ-0, with

Ψ 0 ¼ μðu2=3v7=3þ2u8=3v1=3�3u2vÞþS? ~βðu2� ~γ2Þ2
2αr0 ~γ

3 þS J ~γ ðv2� ~β
2Þ2

2αr0 ~β
3

þ Bv
2αr30u

þ2r0
h0

ðS? þS J Þðu2� ~γ2Þ2
2αr0γ2

þ 2B
α3r30

!
: ð27Þ

To check the stability of the straight shape we assume that the
unknown curvature ~κ is small enough that u may be determined
by minimizing the zero-curvature strain energy Ψ0, as defined in
(27). We then replace the values obtained in the square-brackets
term in (26), checking its sign to test stability. This leads to a
number of possibilities for the bending instability of the growing
encased cylinder, depending on the imposed material parameters.

Among these possibilities, we only examine here a particular
case. We look for the equilibrium configurations of a cylinder with
initial aspect ratio Λ0 ¼ r0=h0 ¼ 1, with a soft (though incompres-
sible) bulk, almost negligible bending stiffness and an anisotropic
coat, reinforced on the tangential direction. Precisely we set
B=ð2αr40μÞ ¼ 10�3, S? =ð2αr20μÞ ¼ 102, and vary S J , as indicated in
Fig. 2. For each value of S J and ~γ we determine numerically the
optimal value of u in (27), and check the straight stability sign in
(26). Fig. 2 evidences how, for each ~γ , a critical value of ~β exists,
above which the straight configuration becomes unstable. Due to
the meaning of the growth constants ~γ and ~β , this in turn indicates
the critical value of the aspect ratio of the grown cylinder at which
there is the onset of the bending instability. We notice in Fig. 2
that such critical value increases as S J approaches S? , indicating
that surface elastic anisotropy helps triggering the instability of
the straight configuration.

The features of the bifurcation connected with such instability
may be analyzed by using the energy functional (24), obtaining for
each value of ~γ and ~β the optimal value of the axis curvature ~κ . We
use the same material parameters as in Fig. 2, along with
S J =S? ¼ 10�1, and ~γ ¼ 0:8. We see from Fig. 3 that the bending
transition is of the second order, with the curvature continuously
departing from zero (the underlying bifurcation for the growing
encased cylinder corresponds to an axially symmetric supercritical
pitchfork).
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Appendix A. Geometry of bent cylindrical deformations

A.1. Bulk deformation

Let us consider the reference and current illustrated in Fig. 1:

B0 ¼ PAE : P ¼Oþρ cosΘexþρ sinΘeyþzez;
�

zA ð�r0;h0þr0Þ;ρA 0;Rr0 ;h0 ðzÞ
� �

;ΘA ½0;2πÞ�; ðA:1Þ

Bκ ¼ PAE : P ¼Qκþρ cosΘexþ ρ sinΘ�κ�1� �ð cos κzey� sin κzezÞ;
�

zA ½�r;hþr�;ρA ½0;Rr;hðzÞ�;ΘA ½0;2πÞ�; ðA:2Þ

where r0, h0, r, h, and κ are positive parameters, O and
Qκ ¼Oþκ�1ey are points in the three-dimensional Euclidean
space E with orthogonal basis fex; ey; ezg, and Rr;h : ð�r;hþrÞ-
Rþ is defined as

Fig. 2. Phase diagram evidencing the onset of an instability for the straight
configuration when the longitudinal growth, represented by ~β , is large enough.
Displayed values of the longitudinal-to-tangential stiffness ratio are, top to bottom,
S J =S? ¼ 0:1;0:15;0:2;0:25;0:3;0:35, with fixed S? .

Fig. 3. Optimal value of the curvature ~κ as a function of ~β for the material
parameters provided in the text. The critical value of the longitudinal growth is
~β65:617. The dashed line is a best fit for the critical behavior, showing that
~κopt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β� ~βcr

q
as ~β approaches the critical value leading to the bending bifurcation.

The same parameters as in Fig. 2 are used.



Rr;hðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p
if zAð�r;0�

r if zAð0;hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�ðz�hÞ2

q
if zA ½h;hþrÞ:

8>>><
>>>:

ðA:3Þ

In all our calculations we consider the smooth deformation χ :
B0-Bκ such that, for every P ¼ OþXexþYeyþZezAB0, the coor-
dinates of the transformed point χ ðPÞ ¼Oþxexþyeyþzez are given
by

x¼ rX
r0

y¼ rY
r0

þ κ�1�rY
r0


 �
1� cos

κhZ
h0


 �

z¼ hZ
h0

þ κ�1�rY
r0


 �
sin

κhZ
h0

�hZ
h0

: ðA:4Þ

We introduce the orthogonal unit vectors

f ðZÞ ¼ cos
κhZ
h0

ey� sin
κhZ
h0

ez and f ? ðZÞ ¼ sin
κhZ
h0

eyþ cos
κhZ
h0

ez

ðA:5Þ
which, along with ex, constitute an orthogonal basis in E. The
deformation gradient associated with (A.4) may thus be written as

F ¼ r
r0
ðex � exþ f ðZÞ � eyÞþ

h
h0

1�κrY
r0


 �
f ? ðZÞ � ez: ðA:6Þ

The isochoric deformation gradient is defined by

F
˚
¼ J�1=3F with J ¼ det F ¼ hr2ðr0�κrYÞ

h0r30
; ðA:7Þ

and the related isochoric right Cauchy–Green strain˚ C is

C
˚
¼ F

˚ > F
˚
¼ h0r

hðr0�κrYÞ


 �2=3

I�ez � ezð Þþ hðr0�κrYÞ
h0r


 �4=3

ez � ez: ðA:8Þ

In particular,

tr C
˚
¼ 2

h0r
hðr0�κrYÞ


 �2=3

þ hðr0�κrYÞ
h0r


 �4=3

: ðA:9Þ

We end this computation by determining the condition on the
parameters h; r which ensures that the current placement Bκ

occupies a prescribed volume V curr ¼ α3V0, where V0 ¼ r20ðh0þ
4
3 r0Þ is the reference volume, and the positive scalar α provides the
bulk volume increase. The current caps are two hemispheres of
radius r, and so their volume is 4

3πr
3. The volume of the bent

cylindrical part in Bκ can be computed asZ h0

0
dz
Z r0

0
ρ dρ

Z 2π

0
dΘ

hr2ðr0�κrρ sinΘÞ
h0r30

¼ πhr2 ðA:10Þ

and does therefore not depend on the curvature κ. As a conse-
quence, the volume grows by a factor of α if and only if

r2ðhþ4
3 rÞ ¼ α3r20ðh0þ4

3 r0Þ: ðA:11Þ

A.2. Surface deformation

We now compute the surface deformation gradient which
maps tangent vectors on the reference coat ∂B0 into tangent
vectors on the boundary of the current deformed body ∂Bκ . We
refer to [36] for more details. We first consider the deformation
which maps the cylindrical part of ∂B0 into the corresponding
portion of ∂Bκ . We introduce the notations:

erðΘÞ ¼ cosΘexþ sinΘey
eΘðΘÞ ¼ � sinΘexþ cosΘey
hðZÞ ¼ cos κhZ=h0

� �
ey� sin κhZ=h0

� �
ez

h? ðZÞ ¼ sin κhZ=h0
� �

eyþ cos κhZ=h0
� �

ez; ðA:12Þ

and identify points on ∂B0 by the coordinates ðΘ; ZÞAf½0;2πÞ�
½0;h0�g, with YðΘ; ZÞ ¼ Oþr0erðΘÞþZez . Then, yðΘ; ZÞ ¼ χ ðYðΘ; ZÞÞ
is given by

yðΘ; ZÞ ¼Qκþr cosΘexþ r sinΘ�κ�1� �
hðZÞ; ðA:13Þ

where again Qκ ¼ Oþκ�1ey. The tangent unit vectors in ∂B0 and
∂Bκ , which in this simple example may be identified with their
duals, are respectively given by

TΘ ¼ TΘ ¼ eΘ; tΘ ¼ tΘ ¼ � sinΘexþ cosΘhðZÞ
TZ ¼ TZ ¼ ez; tZ ¼ tZ ¼ h? ðZÞ; ðA:14Þ
thus leading to the following grown and current normal unit
vectors:

N ¼ er n¼ cosΘexþ sinΘhðZÞ: ðA:15Þ
The metrics associated with the parameterizations provide the
local area dilation factor, which connects the current and the
reference area element: da¼JðΘÞ dA, with

JðΘÞ ¼ hrð1�κr sinΘÞ
h0r0

: ðA:16Þ

The surface deformation gradient

A¼ r
r0

tΘ � TΘþhð1�κr sinΘÞ
h0

tz � T z ðA:17Þ

may be decomposed into an elastic and a growth component:
A¼ AeAg. This latter represents an anisotropic elongation of factors
β; γ, so that

Ag ¼ γTΘ � TΘþβT z � T z and ðA:18Þ

Ae ¼ AA�1
g ¼ r

γr0
tΘ � TΘþhð1�κr sinΘÞ

βh0
tz � T z: ðA:19Þ

The elastic strain tensor is then

Ee ¼
1
2

A>
e Ae�Is

� 	

¼ 1
2

r2

γ2r20
�1

 !
TΘ � TΘþ h2ð1�κr sinΘÞ2

β2h20
�1

!
T z � T z

" #
;

ðA:20Þ
where Is ¼ TΘ � TΘþT z � T z is the identity tensor in the refer-
ence tangent plane.

We obtain the mean curvature H from the current tensor
curvature

H¼ tr �1
r
tΘ � tΘ� κ sinΘ

1�κr sinΘ
tz � tz


 �
¼ � 1

2rð1�κr sinΘÞ:

ðA:21Þ
The deformation in the caps is simpler, as it transforms a

reference half-sphere of radius r0 into the current half-sphere of
radius r. Since Ag j caps ¼ γIs, we obtain da¼ J dA, with

Jj caps ¼ r2

r20
; Ae j caps ¼ r

γr0
Is and Ee j caps ¼ 1

2
r2

γ2r20
�1

 !
Is:

ðA:22Þ
The curvature tensor is isotropic, with mean curvature

Hj caps ¼ �r�1: ðA:23Þ
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