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Abstract— The ability of building maps of environments
where they operate is one of the main requirements for
autonomous mobile robots. An efficient map building process
is based on a good exploration strategy that determines the
most convenient observation positions in a partially known en-
vironment in order to incrementally map it. Several exploration
strategies have been proposed in literature but their compar-
ative evaluations are rare. In this paper, we experimentally
compare some exploration strategies in order to contribute to
assess their strengths and weaknesses.

I. INTRODUCTION
The ability to build spatial models, or maps, of envi-

ronments where they operate is undoubtedly one of the
main requirements for autonomous mobile robots [1]. To be
efficient in map building, an autonomous robot needs a good
exploration strategy that determines the most convenient
observation positions in a partially known environment in
order to incrementally map it. More precisely, the process
of exploring an unknown environment using a mobile robot
equipped with a suitable sensor can be sketched as follows:
(a) build a local map St that represents the portion of the

environment surrounding the robot at position pt (t is
the current discrete time step),

(b) update the global map M t according to the newly
acquired St, obtaining M t+1, and

(c) use the exploration strategy to determine the next ob-
servation position pt+1, reach it, and start again from
(a).

Several exploration strategies have been proposed in
the literature. However, only sometimes they are evaluated
against other strategies (see, for example, [2], [3], [4], [5]).
To the best of our knowledge, [6] is the only work that
has been explicitly devoted to a comparative experimental
assessment of different exploration strategies. However, the
strategies compared in [6] are very primitive when compared
to those proposed during the following decade. In this paper
we evaluate some recent exploration strategies to provide an
original contribution that, in this sense, expands and updates
that of [6].

More precisely, in this paper, we experimentally compare
a number of exploration strategies that represent a significant
sample of those presented in literature, covering a spectrum
from simple strategies that randomly move the robot to so-
phisticated strategies that evaluate the worthiness of possible
observation positions. The comparison has been performed
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in simulation (as it is usual when systematic experiments are
performed [3]) in different environments and with different
parameters, in order to get a comprehensive assessment of
the strengths and weaknesses of the approaches.

We explicitly note that the original contribution of this
paper is not in proposing new exploration strategies but in
experimentally analyzing some of the proposed strategies to
get some insights for helping the future development of better
exploration strategies.

This paper is structured as follows. The next section
reviews some significant exploration strategies proposed in
literature. Section III describes our experimental setting
and the strategies we selected for comparison. Section IV
discusses the experimental results we obtained. Section V
concludes the paper.

II. A REVIEW OF EXPLORATION STRATEGIES

Mapping is an incremental process. Since the ranges of
the sensors are limited, measurements are inaccurate, and
occlusions may occur, map building is usually performed
by taking several measurements of environments at differ-
ent positions and by integrating these measurements in a
global map. Maps are thus built incrementally by integrating
measurements on the basis of the (probabilistic) estimated
positions of the robot [7] or of the geometrical features of
the maps [8], [9].

At a given time of the incremental process of map
building, exploration strategies drive the selection of the
successive observation positions, on the basis of the global
map built until that time. Excluding the cases in which the
robots are manually driven to acquire the measurements used
to build the map, in the following we review a number of
significant exploration strategies that have been presented
in literature, roughly going from simple to complex ap-
proaches. We mainly concentrate on systems developed for
single robots (a good survey of exploration strategies for
multirobot systems is provided by [3]). We also note that
not all the exploration strategies reported below are directly
comparable, since they refer to different map representations
(e.g., grid- or point-based). However, our aim is to provide a
review of the basic ideas on which the different exploration
strategies are built, abstracting from many details.

Some systems employ a fixed path to explore an envi-
ronment. For example, the exploration strategies proposed
in [10] include the Concentric strategy, in which a robot
successively traces concentric circles starting from its initial
position. [11] extends this approach using a parameterized
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trajectory to direct the exploration of the robot in an en-
vironment. Other exploration strategies make a robot to
move randomly to observation positions without explicitly
evaluating their worthiness [12], [13].

The most complex exploration strategies try to determine
the best observation positions to improve the efficiency of
exploration process. In particular, they aim at reducing the
exploration time, by making a small number of exploration
steps and limiting the travelled path, while building an
accurate map. In general, these methods employ a greedy
approach [14], that consists in moving the robot from its
current location towards the next best observation position.
It has been shown [15] that planning long exploration paths
with only partial knowledge of the environment can result in
a waste of resources. The idea on which these strategies are
based is that a number of candidate observation positions
are first generated and then evaluated using an evaluation
function f( · ) in order to pick out the next best observa-
tion position among the candidate ones. Some exploration
strategies include in f( · ) only the cost of reaching a
candidate observation position. For example, the frontier-
based exploration strategy of [16] directs a robot towards
the nearest frontier, namely towards the nearest boundary
between free and unknown space. Some other approaches,
like that in [17], include in f( · ) an evaluation of the utility of
reaching a candidate observation position p, that is measured
as the amount of new information about the environment that
a robot is expected to gain from p.

One of the first exploration strategies using a combina-
tion of utility and cost for evaluating candidate observation
positions is that proposed in [18]. The approach employed
in [3] coordinates the exploration activities of multiple robots
in order to minimize the overall exploration time. In this
case, grid maps are employed and the cell in which a robot
should move next is the one that maximizes the difference
between a (probabilistic-based) measure of expected utility
and the path cost (multiplied by a factor β that determines the
relative importance of utility versus cost). A mechanism to
reduce the utility of a cell when other robots can be around
is implemented. [19] describes an exploration strategy for
building segment-based maps. Candidate observation posi-
tions are generated across the edge of the explored regions, in
which the robot is guaranteed to move without collision risks.
Candidate observation positions are evaluated using a combi-
nation of cost and utility. The exploration strategy proposed
in [20] adds to cost and utility also a component relative to
localizability in defining f( · ). Localizability accounts for the
expected precision of robot localization in a candidate obser-
vation position. While in [20] these three components (cost,
utility, and localizability) are simply summed up, in [21]
they are combined in a theoretically founded information-
based criterion. Also other exploration strategies make use
of information theory to define criteria for selecting the
next best observation position, for example [4], [5], [22]. In
particular, [5] combines cost and utility in an entropy-based
framework for finding the next best observation position.

In [15], the problem of planning optimal exploration

paths is considered. Candidate observation positions along
a path are evaluated with a complex evaluation function that
accounts for a number of issues, including: (i) recognition
of landmarks for localization, (ii) extraction of features that
can be used to integrate local maps (i.e., corners), (iii)
maximizing the view of unexplored areas, (iv) smoothing the
robot’s trajectory, and (v) minimizing the distance travelled
by the robot. Finally, there have been also some attempts
to consider the determination of the next best observation
position as a multi-objective optimization problem [2], in
which objective functions are related to cost, utility, and
localizability and in which the best observation position is
picked up among those on the Pareto frontier by using the
concept of distance from ideal solution.

III. THE EXPERIMENTAL SETTING AND THE
SELECTED STRATEGIES

The main contribution of this paper is to provide a compar-
ative experimental evaluation of some exploration strategies.
We compared these strategies in a common setting that is
described in the following.

We assume to have an holonomic mobile robot that can
move in a two-dimensional environment and that is equipped
with a sensor able to perceive obstacles in the surrounding
environment. We assume that the field of view of the sensor
has a width of 360◦ and a range r. The portion of the
environment scanned by the robot during a sensing operation
is thus a circle with radius r. In our experimental activity,
we let r assume different values. To be concrete, in the
following we assume that this sensor represents a laser range
scanner, but also some vision systems can take this form.
For many purposes the simulated robot can be thought as
dimensionless; we consider its size in the path planning and
collision checking algorithms.

We store the map in two lists of line segments, that
represent the obstacles and the boundary of the unexplored
area, respectively. The first list, called obstacle list, stores
the line segments representing the edges of the observed
obstacles; while the second list, called free edge list, stores
the line segments representing the free edges of the map,
namely the boundaries between explored and unexplored
areas. (Similar data structures are used, for example, in [19].)
The map is updated once new sensorial data are acquired
by the robot. Raw sensorial data are the points returned
by the simulated sensor. We approximate them with line
segments using the algorithm of [19]. The two lists of line
segments are updated by inserting the new line segments
just acquired. During this operation, line segments that are
collinear and consecutive are fused together to reduce the
dimensions of the lists. For efficiency reasons, we keep also
a list of raw points perceived by the simulated sensor and a
polygon representing the known area of the environment.

We used the following general algorithm for evaluating
the exploration strategies.

• Generate a set of random candidate observation po-
sitions along the line segments of the free edge list,
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namely along the boundary between known and un-
known space. We generate a candidate observation
position for each line segment in the free edge list longer
than 1.5 m. Reacheability of a candidate observation
position p is checked by building a path, composed of
a sequence of line segments, from the current position
of the robot to p. Candidate observation positions that
cannot be safely reached from the current position of
the robot (for example, because they are too close to a
line segment of the obstacle list or because the only
path to reach them goes through a line segment of
the obstacle list) are discharged. A maximum of 50
reachable candidate observation positions are generated.

• Evaluate each candidate observation position p ac-
cording to an evaluation function f(p). The different
strategies we experimentally compared use different
implementations of the evaluation function f( · ).

• Select the best position p̄ that maximizes the function
f( · ), p̄ = maxp f(p).

In the following, we present the exploration strategies we
experimentally compared, without any attempt to provide a
comprehensive discussion of their details; please refer to the
original papers for more information.

A. Random Strategy
With the random strategy, the next observation position

is chosen at random. This means that f( · ) evaluates a
candidate position p with a random value f(p). This strategy
mimics exploration strategies like [12], [13] and has been
selected because it constitutes a “bottom line” to which other
strategies can be compared, as it is usually done in literature
(for example, see [4]).

B. Greedy Strategy
The greedy strategy evaluates a candidate observation

position p only on the basis of its utility, namely only
on the basis of the amount of new information about the
environment that the robot is expected to gain from p. We
implemented this strategy by considering a f( · ) formed
only by the first three terms of Eq. 1 (discussed below).
We included this strategy in our comparison because other
strategies that include cost in f( · ) can be compared to the
greedy strategy for assessing the contribution of cost to the
selection of the next best observation position. Greedy strat-
egy is usually considered when evaluating other exploration
strategies [2], [4], [5].

C. GB-L Strategy
The Gonzáles-Baños and Latombe’s exploration strategy

(GB-L strategy) is presented in [19]. The strategy evaluates
a candidate observation position p by:

f(p) = A(p) · exp(−λ ·L(p))

where A(p) is an estimate of the unexplored area visible
from p, L(p) is the length of the path connecting the current
robot position and p, and λ (set to 20−1 cm) weights the
new information obtainable from a position and the cost

of travelling to reach the position. We calculated A(p) as
the difference between the area of a circle with radius r
centered in p and the area of its intersection with the known
space. L(p) is calculated summing up the lengths of the line
segments composing the path from the current position of
the robot to p.

We considered this strategy because it is representative
of complex exploration strategies that use ad hoc forms
for f( · ). The above formula for f( · ) is justified by its
experimental effectiveness but not theoretically.

D. A-C-G Strategy

In [21], we proposed an information-based exploration
strategy (A-C-G strategy) that has been derived using the
concept of relative entropy. The evaluation function used to
compare the candidate observation positions is:

f(p) = 1

N+A

∑
i∈A∪N ln σunc,i

σ
+ N ln σ

P
+

∑
i∈A ln σ

σp,i
+ N ln 2π×c

σ
(1)

where N = |N | is the expected number of new points sensed
from p, A = |A| is the expected number of already sensed
points that are sensed again from p, σunc,i is the standard
deviation of the contribution to the measurement error due to
the robot pose uncertainty, σ is the standard deviation of the
sensor accuracy, P is the expected perimeter of the area to be
mapped, σp,i is the prior standard deviation of the already
sensed point i, and c is the distance between the current
position of the robot and p. In this case, the smallest values
of f( · ) identify the best observation positions. The first term
of Eq. 1 is the contribution to the entropy of the points sensed
from p, the second term of Eq. 1 is the contribution to the
entropy of the points sensed for the first time from p, the
third term of Eq. 1 is the contribution to the entropy of the
already known points that are sensed again from p, and the
last term of Eq. 1 is the contribution to the entropy of the
cost of reaching p. In general, the first and the fourth terms
increase entropy, while the second and the third terms reduce
entropy.

We calculated these quantities as follows. A is the set of
points already perceived that lie within the circle of radius
r centered in p. N is calculated as the difference between
the number of points perceived in the last step and A; the
implicit assumption here is that the environment is enough
regular, namely that the number of sensed points at each step
is roughly constant. σunc,i is equal to Vθd

2 +Vxy , where Vθ

is the expected error in the rotational position of the robot
in p, d is the distance between the current position of the
robot and p, and Vxy is the expected error in the translational
position of the robot in p (in our experiments Vθ = 0.01
and Vxy = 0.001). σ = 0.01 and σp,i = 2σ. Finally, c
is calculated summing up the lengths of the line segments
composing the path from the current position of the robot to
p.

We explicitly note that, in order to determine the next best
observation position, this exploration strategy blends together
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the expected information gathered by the sensing activity
(the first three terms of Eq. 1) and the distance travelled
by the robot to reach the position (the last term of Eq. 1).
The expected information gain is derived both from points
which became visible from the observation position and from
the reduction of uncertainty on the location of previously
observed points.

We considered this strategy because it represent an exam-
ple of complex exploration strategies that are theoretically
founded in information theory.

IV. EXPERIMENTAL RESULTS

A. Setup

We used a software simulator (also used in [2]), in which it
is possible to define the environment to be explored, the num-
ber of exploring robots (1, in our case), their sensor ranges,
and their initial positions. The simulator is implemented in
C++, using the LEDA libraries [23] for data structures and
graphics.

The exploration strategies have been evaluated in three
different environments (Fig. 1, the unit shown in the figures
is 30 m). The first one (office environment) is a portion of
an office-like environment with three corridors. The second
one (open environment) is a large open space, like a large
outdoor place. The third one (obstacle environment) is a large
space scattered with several obstacles.

For each environment, strategy, range for the robot sensor
(r = 10 m, r = 15 m, or r = 20 m), and percentage C
of the free environment to be covered (85%, 90%, or 95%),
we performed 10 trials. Since in the office environment we
used only C = 95% and since we did not consider r =
10 m in open and obstacle environments, we performed 600
trials, each one lasting from few seconds to some hours.
Differences between trials are due to the initial position of
the robot in the environment (randomly determined at the
beginning of the trial and the same for all strategies) and to
the generation of candidate observation positions (randomly
generated on the free edges, as discussed in the previous
section).

Two parameters have been considered to compare the
performances of the exploration strategies: the number of
sensing operations (steps) needed to complete the exploration
and the total distance travelled by the robot during the
exploration (similarly to [5], [11], [15]).

B. Results

For the office environment, the average performances
(over 10 trials) of the strategies are reported in Table I.
In parentheses, we report also the standard deviation for
the distance metric (the standard deviation for the number
of steps is almost uninformative). These results have been
obtained with C = 95%.

For the open and obstacle environments, the average
performances (over 10 trials) of the strategies are reported
in Table II and in Table III, respectively. We did not
perform experiments with r = 10 because they were too

# OF STEPS DISTANCE

SENSOR RANGE 10 15 20 10 15 20

random 120.6 57.8 33.7 66626.7 (2265.8) 3473.0 (1158.2) 1990.4 (349.3)
greedy 116.0 58.5 37.3 1915.0 (236.6) 2390.0 (874.5) 2359.0 (505.9)
GB-L 127.8 64.8 40.5 1655.4 (203.3) 1121.0 (122.0) 866.9 (74.6)
A-C-G 119.7 54.6 35.2 1673.2 (214.9) 1132.4 (147.3) 909.8 (110.0)

TABLE I: Office environment

# OF STEPS DISTANCE

SENSOR RANGE 15 20 15 20

C = 85%

random 164.0 95.4 9241.0 (1824.9) 6503.0 (1733.2)
greedy 163.5 91.7 3884.9 (576.0) 2900.8 (357.0)
GB-L 185.3 110.1 4150.4 (436.9) 3061.9 (427.5)
A-C-G 164.9 96.3 3410.3 (324.9) 2441.9 (180.3)

C = 90%

random 173.9 101.1 10700.1 (2299.4) 6672.5 (834.2)
greedy 177.9 103.9 4315.9 (599.1) 3404.2 (522.6)
GB-L 197.3 115.7 4332.0 (417.2) 3119.4 (208.5)
A-C-G 182.5 104.5 3840.7 (344.2) 2164.7 (282.2)

C = 95%

random 191.3 107.8 11749.7 (1462.7) 7255.3 (1052.7)
greedy 194.7 111.9 4841.8 (559.4) 3737.3 (418.4)
GB-L 208.8 122.7 4767.8 (474.2) 3490.9 (327.6)
A-C-G 197.3 111.2 4312.5 (284.4) 3044.1 (341.1)

TABLE II: Open environment

computationally expensive (several hours per trial) in such
large environments.

From the tables, it can be seen that, somehow surprisingly,
the small office environment is not always mapped faster than
the large obstacle environment. We note also that mapping
the obstacle environment is faster that mapping the open
environment. This somehow counterintuitive results can be
explained recalling that the termination condition of the
exploration is relative to the percentage C of free area of
the environment to be covered. The amount of free area
is smaller in the obstacle environment than in the free
environment and so the exploration ends faster in the first
case than in the second one. From Tables I, II, and III it can
noted also that, in all environments, the larger the range of
sensor, the faster the exploration; similarly the larger C, the
longer the exploration.

It is interesting to compare the performances of the explo-
ration strategies in the open and in the obstacle environments.
Considering the number of steps, there is not very much
difference between the considered strategies. This is due to
the fact that the candidate observation positions are generated
along the free edges for all the strategies. Any selected
observation position is therefore a good view-point over the
unexplored area. However, when considering the distance
travelled by the robot, the random selection of the next
observation position among the candidate ones shows its
inefficiency. The greedy strategy seems to perform worst
that GB-L and A-C-G strategies in both large environments

# OF STEPS DISTANCE

SENSOR RANGE 15 20 15 20

C = 85%

random 50.2 27.6 2671.9 (1222.0) 1403.9 (674.9)
greedy 44.6 27.2 816.7 (175.4) 820.4 (450.4)
GB-L 46.9 26.4 688.6 (86.1) 509.2 (64.6)
A-C-G 45.9 27.0 708.1 (81.1) 568.7 (111.0)

C = 90%

random 53.1 29.8 2854.6 (831.7) 1688.1 (603.1)
greedy 49.2 29.3 941.9 (279.0) 934.9 (513.6)
GB-L 49.4 28.5 730.3 (84.7) 549.4 (85.6)
A-C-G 47.5 28.6 737.7 (102.4) 615.9 (149.0)

C = 95%

random 56.5 31 2880.0 (930.5) 1735.6 (791.6)
greedy 52.8 30.8 1027.4 (408.4) 985.2 (495.5)
GB-L 52.3 29.7 767.4 (83.0) 576.6 (72.2)
A-C-G 51 30.9 777.7 (81.7) 692.3 (194.5)

TABLE III: Obstacle environment
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(a) office (b) open (c) obstacle

Fig. 1: The three environments (points represent different starting positions for the robot)

demonstrating that the introduction of the cost in computing
f( · ) can provide some advantages. In open environments,
the A-C-G strategy seems to perform better than the GB-
L strategy, while the two are almost equivalent in obstacle
environment (A-C-G performs slightly better in terms of
number of steps, while GB-L performs better in terms of
distance travelled). This leaves open the question if an ad hoc
definition is preferable to a theoretically-founded definition
of f( · ).

To validate these intuitions, we analyzed the data from the
open environment and the data from the obstacle environ-
ment using a one-way analysis of variance (ANOVA) [24].
We also applied a series of post hoc procedures aimed at
identifying groups of strategies which performed similarly
in terms of distance metric. In the open environment, the
analysis of variance showed that the performance of the four
strategies was significant with a probability of 99.99%. The
next post hoc procedures (Student-Newman-Keuls, Tukey
HSD, and Scheffé) identified two groups: one consisting
of the random strategy, one consisting of the other three
strategies. Thus, all the strategies except the random strategy
perform similarly. Also in the obstacle environment, the
ANOVA showed that the four strategies performed signif-
icantly different, with a probability of 99.99%. However,
in this case, three post hoc procedures (Student-Newman-
Keuls, Tukey HSD, and Tukey B) identified three groups:
one consisting of the random strategy, one consisting of the
greedy strategy, and one consisting of the GB-L and A-C-
G strategies. That is, GB-L and A-C-G strategies perform
similarly (not statistically different) but their performance is
significantly different from the random strategy (as in the
previous case) and from the greedy strategy. In contrast,
the Scheffé test confirmed what showed by the previous
environment: it identified the same two groups: one for the
random strategy, one for the other three strategies.

It is also interesting to analyze how the performances
of the exploration strategies scale with the percentage of
environment to be explored. For example, Fig. 2 shows the
distance travelled by the robot when exploring the obstacle
environment with r = 15 m according to the different
strategies. The distance travelled with GB-L and A-C-G
strategies slowly grows linearly with the percentage of the

environment to be explored. This can be explained by the
fact that the two strategies map uniformly the environment,
without leaving “holes” of unexplored areas. Similar results
hold also for the open environment and for different values
of r.

Fig. 2: Distance travelled vs. C

Finally, we compare the results we obtained with other
experimental results reported in literature. In [5], it is shown
that a greedy exploration strategy (namely, an exploration
strategy that only cares about the amount of new infor-
mation it expects to obtain from a view-point) has good
performances when considering the number of steps but not
when considering the distance travelled. With this last metric,
exploration strategies that consider also the cost of reaching
a view-point perform better. This result is also reflected by
our experiments. Moreover, in [6], exploration strategies that
try to evaluate the utility of a candidate observation position
are shown to be the most effective when compared with basic
exploration strategies that do not evaluate the worthiness of
candidate observation positions. Also this result is confirmed
by our findings.
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V. CONCLUSIONS

In this paper, we have experimentally compared four
exploration strategies that mobile robots can employ in
mapping an unknown environment. Although such compar-
ative analysis is rather uncommon in literature on robot
mapping, it is useful to evidence and quantify the strengths
and weaknesses of different approaches. For example, with
our analysis we confirmed that exploration strategies that
balance utility and cost (like GB-L and A-C-G strategies)
tend to be more efficient than those that use only utility (like
greedy strategy). However, some issues, like the comparison
between ad hoc and theoretically-based strategies, are still
open.

The results presented in this paper constitutes only a step
toward a comprehensive evaluation of different exploration
strategies. For example, more environments and more strate-
gies need to be tested to assess stronger conclusions that can
influence the future development of exploration strategies.
Moreover, some important aspects, including the effects of
uncertainty and the extension to outdoor environments, have
not been fully considered in this paper and deserve more
attention.
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