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1. Introduction

The fulfilment of human needs in remote areas, as islands or
small villages, is a challenging task which can be faced only with
an economical and sustainable provision of electricity. In many
cases, the main grid extension is not a cost-effective solution since
it requires large investments and maintenance costs and generally
the power demand is locally covered by Diesel Internal
Combustion Engines (ICE) [1,2]. However, this solution is far to
be economic and sustainable for the environment. The high fuel
cost, strongly affected by transportation, leads to a relevant
increase of the levelized cost of electricity and represents a barrier
to social and economic development in rural regions [3].
Furthermore, an ICE locally releases air pollutants, as well as CO2,
and it requires a periodic maintenance to avoid malfunctioning
and oil leakages. The possibility to install standalone systems
together with the high availability of Renewable Energy Sources
(RES) makes the renewable-based hybrid MGs (Microgrid) [4] a
suitable and promising solution in most of these contexts, as con-
firmed by a large number of studies and publications about this
topic [5–7].

In a standalone MG, the electricity (but same considerations can
be addressed for the thermal energy or others) can be generated
and consumed by a variety of units. A storage is usually present
to level off the imbalances of electricity on the grid, to increase sys-
tem flexibility and to limit energy losses or power shortages. MG
stability requires large size and expensive storage systems espe-
cially if most of the electricity generated is coming from
non-programmable units and if the demand is not concurrent with
the generation. This effect is mitigated by the presence of pro-
grammable units which allow shifting in time the generation
and/or the consumption of electricity, thus limiting the use and
the size of the storage. The operation of programmable units and
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Nomenclature

a auxiliary variable
d dumped
# self-discharge
l unmet
p penalty term
u non-programmable contribution
y on/off variable
b intercept
c C consumption
CC cycle-charging
CHP combined heat and power
EMS energy management system
G set of goods
U set of units
ICE internal combustion engine
LCOE levelized cost of electricity
LF load following
m slope
M big-M term
MG microgrid
MILP mixed integer linear programming
N minimum running hours

on start-up variable
ORC organic ranking cycle
p P production
PW piecewise
PV photovoltaic
RES renewable energy source
SL storage level
SOC state of charge
SP set point
WT wind turbine
USD United States dollar

Subscripts/superscripts
aux auxiliary
p producer/production
c consumer/consumption
el electrical
g good
i unit
min minimum
max maximum
0 initial condition
the methodology to determine their schedule, i.e. the Energy
Management System (EMS) can strongly affect the efficiency, the
operating cost, the electric storage life and the availability of the
system.

The aim of this work is to propose a new and more general
approach to the solution of the EMS problem starting from the
state of the art methodologies in literature and adding new fea-
tures. In the proposed approach, the MG operation is defined
through an EMS model able to determine the schedule of each pro-
grammable unit to fulfil the community needs at the lowest oper-
ation cost. Unlike the current approaches, described in detail in the
next section, the problem formulation allows considering different
goods in the MG and multi-input and multi-output units. In litera-
ture there are different works in which the optimal planning of a
MG takes into account the heat and cooling demand, as well as
the electricity consumption [8,9]. However, this work goes beyond
the current state of art investigating the possibility to include in
the optimal planning each valuable asset requested by the commu-
nity served by the MG. The possibility to consider explicitly goods
easily storable (i.e. woodchips, potable water, heat) can play a rel-
evant role in operating cost reduction and adds new degrees of
freedom in MG scheduling. Formulating the problem with different
goods, instead of considering them only as deferrable electric loads
(a solution already adopted in other publications [10–12]), allows
modeling units requiring more than one good during operation
and taking into account their off-design performance, as well as
technical operation constraints and start-up penalties.
Furthermore, the management of complex systems including
multi-input and multi-output units can be really optimized only
considering the different good separately, as shown by the second
test case results.

These features represent a consistent step ahead in the simula-
tion of MGs, leading to a general, flexible and compact formulation
of the problem and to the possibility to use multi-fuel generators
and units requiring and/or producing more than one good during
operation.
2. Relevant literature

The approach to face the EMS problem is not univocal and in lit-
erature different methodologies are proposed, from simple heuris-
tic strategies to more advanced optimization methods.

Most of the studies on MG design rely on heuristic dispatch
strategies where the operation of programmable units is
pre-defined. These studies are generally focused on the design of
standalone systems and calculations are carried out using
HOMER (Hybrid Optimization Model for Electric Renewables), a
commercial optimization software developed by NREL since 1995
[13] and based on heuristic strategies. It implements a large data
bank of different components, i.e. wind turbines, photovoltaic pan-
els, small hydro power, biomass fired engines, fuel cells and battery
systems with referenced off-design performance maps. It works by
simulating one year of operation for several combinations of gen-
erator sets and comparing them on the basis of the Levelized
Cost of Electricity (LCOE). Each simulation is performed selecting
a priori one of the two following heuristic dispatch strategies:
the load-following (LF) and the cycle-charging (CC) [14]. These
strategies are simple and effective tools for the management of
an off-grid power system but they present some limits in the sim-
ulation of complex systems.

In LF strategy, whenever a programmable generator is on, it
produces only enough power to cover the electricity demand.
This means that the generator operates at part load for most of
the time, thus increasing its variable cost due to the lower
off-design efficiency. On the other hand, the use of the energy stor-
age is limited, thus entailing economic benefits related to a longer
life of the batteries [15]. In the CC strategy, whenever a generator is
on, it runs at its maximum rated capacity and charges the battery
bank with the energy excess. The generator runs until the battery is
charged up to a certain level, called Set Point (SP). The main advan-
tage is the more efficient use of the generators; on the other hand
the sequence of charging and discharging process may damage the
energy storage leading to a higher replacement cost.
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Fig. 1. Example of the rolling horizon approach with Th = 10 h.
In addition, HOMER can handle deferrable loads shifting in time
a part of the electricity demand. This is an extremely relevant fea-
ture in systems with a high share of intermittent power sources as
WT and PV plants [16]. HOMER treats programmable loads as
tanks gradually depleted proportionally to the load demand [13].
The load is served when intermittent RES power is available and
dispatchable power sources are used only if the tank is close to
be empty. In this case the deferrable load is treated as a primary
load. However, even in this case, the schedule of deferrable loads
is not really optimized but it is the result of a greedy strategy,
which may lead to non-optimal solutions.

The quality of the results obtained with these approaches
depends on the value of input parameters assumed for the simula-
tion, such as the storage set point or the battery minimum state of
charge [14]. A first improvement to the standard heuristic methods
is obtained with the optimization of these parameters which
allows obtaining a consistent decreasing of the operation costs.
This approach is implemented by Dufo-Lopez et al. [17] who pro-
posed a novel dispatch strategy for off-grid hybrid systems. It is
based on traditional heuristic dispatch strategies but each
user-defined parameter is chosen solving an auxiliary problem
with a genetic algorithm. Similarly, Zhao et al. [18,19] proposed
an optimization model to define the schedule of a standalone MG
in Dongfushan Island (China). The model takes into account gener-
ators and battery operating cost (using a battery lifetime model) to
obtain the set of optimal parameters for the operation strategy. The
problem is solved using a nondominated sorting genetic algorithm.
Similarly, Urtasun et al. [20] proposed an energy management
strategy for a hybrid PV-battery-diesel power system. In particular,
three modes of operation and the conditions required to switch
from one to another are investigated.

A further and consistent improvement can be reached facing
the MG management as a Unit Commitment Problem [21,22]. In
this approach, the schedule of each unit in the MG is defined solv-
ing an optimization problem using forecast of future generation
and consumption of electricity. A relevant number of studies have
been published in these years regarding the management of MGs
connected to a main grid [23]. Bischi et al. [8] proposed a model
for planning the operation of combined cooling, heat and power
energy systems. The resulting non-linear problem is converted into
a Mixed Integer Linear Programming (MILP) by piecewise linear
approximation of the non-linear performance curves of the pro-
grammable units. A similar problem, applied to the specific case
to the Savona Campus trigeneration microgrid, has been solved
by Bracco et al. using both MILP [24] and nonlinear solvers [25].
In Parisio [26] a model predictive control in combination with
MILP is tested on an experimental microgrid located in Athens.
Morais et al. [27] described a dispatch strategy based on 24 h
ahead forecast for a case study in Budapest Tech. The MG includes
a fuel cell, photovoltaic panels, a wind turbine and a controllable
load. The schedule of each controllable component is defined at
the beginning of the day solving a MILP problem based on the min-
imization of the operating cost. This approach allows obtaining a
smart units operation schedule but it does not take into account
forecast errors. Wu et al. [28] presented a hierarchical framework
to handle uncertainties during generation schedule. The upper
level of the framework determines the optimal generation plan.
The objective function includes operation cost of the dispatchable
generators and the cost or revenue by purchasing or selling elec-
tricity with the main grid. The overall schedule is updated during
each time step using more accurate available forecast. The problem
is solved using genetic algorithm. The same approach of grid con-
nected MG has been applied to autonomous power systems. Dai
et al. [11] developed an Energy Management System (EMS) based
on a rolling horizon strategy. The inner problem is solved using
the MILP. The result is the optimal schedule of both the generators
and the schedulable loads over the time horizon. The proposed
approach is tested on two different off-grid systems, a household
and an electric boat. In Palma-Behnke et al. [12], a detailed EMS
is proposed and tested using real data sets from an existing MG
in Chile provided with two Photovoltaic (PV) plants, a wind turbine
(WT), a Diesel Internal Combustion Engine (ICE), a battery bank
and a controllable load (water pump with storage). A rolling hori-
zon strategy is adopted and, for each time step, a MILP problem is
solved. The inner problem includes nonlinear constrains repre-
sented by piecewise linear models and binary variables. Hassan
and Abido [29] proposed a dynamic economic dispatch of a MG
provided by different DGs and loads, both controllable or not.
The optimal scheduling is obtained minimizing the objective func-
tion using Particle swarm optimization. A similar problem has
been solved by Marzband et al. [30] using multi-period gravita-
tional search algorithm and the final results show a better perfor-
mance in comparison with Particle swarm optimization.
3. Energy management system

The most important novelty introduced in this work is the con-
cept of good, defined as every valuable asset in the MG which can 
be produced, consumed and possibly stored. Examples of goods are 
the traditional energy vectors (AC and DC electricity, heat, cooling) 
and material products (potable water, ice, woodchips). The pur-
pose of the EMS is to properly manage the balance of each good 
in the MG in order to cover community needs with the minimum 
operational cost.

In our work, the EMS is based on a rolling-horizon strategy, 
including the solving of a Unit Commitment problem through 
Mixed Integer Linear Programming (MILP). The inner problem con-
sists in finding the optimal schedule of each unit over a certain 
time horizon (Th) considering all the operation constrains. 
Forecasts of the production and consumption of each good by 
non-programmable units over the whole time horizon are required 
to properly solve the problem. The objective function to be mini-
mized includes the actual operation cost of each unit and penalty 
terms proportional to the unmet demand of each good.

The rolling horizon approach allows diminishing the effect of 
forecast uncertainties on the schedule errors [31]. In fact, the opti-
mization results are followed only during the first time step, then 
the forecasts are updated and the inner problem is solved again 
and the schedule of each unit over the time horizon is re-optimized 
as shown in Fig. 1. In this way the actual schedule of the MG is 
always based on more recent and reliable forecast and forecast 
error impact is reduced. The advantages related to an hour-by-hour 
update of the optimal solution make this kind of strategy very 
useful and commonly adopted in many fields [12,32,33]. The use of 
robust programming, widely used in differ-ent application fields to 
further reduce the impact of error in fore-cast [34,35], is not 
implemented in this work.

In addition to the optimal schedule definition, the EMS has to 
ensure MG stability against unavoidable fluctuations in



intermittent RES power and load consumption [36]. For this rea-
son, during MG operation, a control strategy is needed to maintain 
frequency and voltage stability and guarantee power quality [37]. 
This level of control strategy is not discussed in this work, which 
is focused on the definition of the optimal hourly units operation, 
but a proper operating reserve constraint is considered to obtain 
a schedule feasible in real operation. The EMS takes into account 
that the available units have to face the worst-case scenario, where 
intermittent RES supply is not available and the highest load con-
sumption in each time step is considered.

3.1. Problem statement

The solving of the EMS problem determines for each time step t 
in the whole time horizon Th the schedule of each programmable 
unit and the storage level of each storable good, minimizing the 
overall operation cost and respecting all the operation constrains. 
The information required are: (i) the initial condition of storages 
and programmable units, (ii) the production and consumption of 
each good by non-programmable units for each time step, (iii) 
the performance curves, the start-up penalties and operations con-
strains of each programmable unit and (iv) the penalty for the 
unmet demand and the storage properties of each good.

Every good in the MG represents a subsystem. Each subsystem 
is composed by the storage (if present for that kind of good) and a 
set of units that produce or consume the good. In Fig. 2 the subsys-
tem ‘‘Heat’’ is represented as example. The units which interact 
with this good are listed in two categories. First we have 
non-programmable units, whose production and operation cannot 
be modified by the EMS. Concentrating solar thermal collectors, as 
Fresnel or parabolic trough, are an example of non-programmable 
producers while the use of the heat by domestic and civil users can 
be considered a non-programmable load. The difference between 
production and consumption by non-programmable units is the 
gross aggregate balance of the good, a useful information to assess 
properly the programmable units schedule.

On the other hand, there are programmable units whose oper-
ation is defined by the EMS. For goods without storage, the EMS 
ensures the balance of production and consumption in each time 
step using the programmable units. If the storage is available, the 
excess of production in a certain time step can be stored and used 
in the future; otherwise the storage can be discharged to satisfy the 
good demand. In Fig. 2 two programmable producers are shown: a 
boiler which uses fuel to produce heat and a cogenerator that pro-
duces both heat and AC power. An example of a programmable 
consumer of the good ‘‘Heat’’ is the absorption chiller. The cogen-
erator and the absorption chiller are two examples of multi-input
absorption 
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Fig. 2. Example of the subsystem framework for the good ‘‘Heat’’, including storage,
producers and consumers (both programmable and not).
and multi-output programmable units respectively; these units
can be simulated by the definition of a specific performance curve
for each good consumed or produced.

The penalty term is a function of the unmet demand of each
good: depending on the penalty value, the EMS could decide to
meet only partially the demand, if this avoids a huge increase of
operation costs. In general, a high penalty term is related to a very
high priority load, as for example healthcare appliances, and a low
penalty term is related to interruptible load, as part of the public
lighting.

3.2. Mathematical model

The core of the methodology proposed in this work is the MILP
problem that allows the definition of the most cost effective sched-
ule of each programmable unit over a certain time horizon. The rig-
orous formulation of the scheduling problem is a Mixed Integer
Non-Linear Problem, but a conversion in MILP is obtained using
linearization techniques [38]. Hence, near-optimality and fast con-
vergence is ensured thanks to current MILP solvers [39].

The problem is implemented in AMPL and the algebraic formu-
lation is here presented. First of all, we define the sets that allow
describing the problem in a concise and clear formulation. The
time steps considered in optimization model are defined with
the set T ¼ 1;2; . . . ; Thf g where Th is the time horizon that is the
number of hours which are taken into account in the schedule
defining.

The set G includes each good present in the MG. The following
subset is defined:

Gstorage # G: set of goods that have storage.
The set U includes each programmable unit present in the MG.

The following subsets are defined:

Uminload # U: set of units that have minimum production rate
once they are on.
Ustartup # Uminload: set of units that have start-up penalization.
UminN # Ustartup: set of units that have constraints on minimum
running hours once they are switched on.

The following subsets describe relations between goods and
units in terms of production and consumption:

Gp
i : set of goods that can be produced by the unit i, with i e U.

Gc
i : set of goods that can be consumed by the unit i, with i e U.

Up
g: set of units that produce the good g, with g e G.

Uc
g: set of units that consume the good g, with g e G.

PWi,g1,g2: set of linear inequalities that relate production of good
g1 by unit i and the consumption of good g2, with
i 2 U; g1 2 Gp

i ; g2 2 Gc
i :

3.2.1. Parameters
The parameters are constant values and they represent the

inputs of the problem. Some parameters have a different value
for each time step. The parameters used to goods properties defini-
tion are hereafter reported:

ut;g: production and consumption by non-programmable units
of the good g during the time step t, "t e T, g e G.
ureserve

t;g : production and consumption by non-programmable
units of the good g during the time step t in the worst case sce-
nario, "t e T, g e G.
pg: penalty related to the unmet demand of the good g, "g e G.

SLmin
g : minimum level of the good g that can be stored in the

related storage, "g e Gstorage.



SLmax
g : maximum level of the good g that can be stored in the

related storage, "g e Gstorage.
SL0

g : amount of the good g stored in the related storage in the
first time step, "g e Gstorage.
#g: self-discharge factor of the good g in the related storage,
"g e Gstorage.

The parameters used to units properties definition are hereafter
reported:

Prate
i;g : maximum production rate of the unit i of each good g that

can be produced by unit i, 8i 2 U; g 2 Gp
i .

Pmin
i;g : minimum production rate of the unit i of each good g that

can be produced by unit i, 8i 2 Uminload; g 2 Gp
i .

cstartup
i;g : start-up additional consumption of good g by the unit i,

8i 2 Ustartup; g 2 Gc
i .

Ni: number of minimum running hours of the unit i, "i e UminN.
N0

i : number of residual minimum running hours of the unit i,
"i e UminN.
on0

i : state of operation of the unit i at the beginning of time
horizon, "i e Ustartup.
mi,g1,g2,pw: slope of the pw line that relates production of good g1
by unit i and the consumption of good g2, with
i 2 U; g1 2 Gp

i ; g2 2 Gc
i ; pw 2 PWi;g1;g2.

bi,g1,g2,pw: intercept of the pw line that relates production of
good g1 by unit i and the consumption of good g2, with
i 2 U; g1 2 Gp

i ; g2 2 Gc
i ; pw 2 PWi;g1;g2.

3.2.2. Variables
Variables are the quantities that are varied by the solver in

order to reach the minimum of the objective function while
respecting all the constraints of the problem. They are divided in
real continuous variables and Boolean variables.

3.2.2.1. Continuous.
SLt,g: storage level of the good g in the time step t,

8t 2 T [ Th þ 1f g; g 2 Gstorage and SLmin
g � SLt;g � SLmax

g .
dt,g: amount of the good g dumped in the time step t, "t e T,
g e G.
lt,g: unmet demand of the good g in the time step t, "t e T, g e G.
pt,i,g: production of the good g by unit i in the time step t,
8t 2 T; i 2 U; g 2 Gp

i and pt;i;g � 0.
ct,i,g: consumption of the good g by unit i in the time step t,
8t 2 T; i 2 U; g 2 Gc

i and ct;i;g � 0.
preserve

t;i;g : production of the good g by unit i in the time step t in

the worst-case scenario, 8t 2 T; i 2 U; g 2 Gp
i and preserve

t;i;g � 0.
creserve

t;i;g : consumption of the good g by unit i in the time step t in

the worst-case scenario, 8t 2 T; i 2 U; g 2 Gc
i and creserve

t;i;g � 0.

3.2.2.2. Boolean.
yt,i: Binary variable related to off/on status of unit i in time step,
"t e T, i e Uminload.
ont,i: Binary variable related to the switching on of unit i in the
time step, "t e T, i e Ustartup.
at,i,g: Binary variable that avoids simultaneous production and
consumption of the same good by the same unit,
8t 2 T; i 2 U; g 2 Gp

i \ Gc
i .

3.2.3. Objective function
The objective function is to minimize the operative costs and

the penalties related to unmet goods demand:
X

t2T

Ct;money þ
X

t2T

Cstartup
t;money �

X

t2T

Pt;money þ
X

t2T

X

g2G

lt;g � pg ð1Þ

where Ct,money denotes the operation cost of all the units in time
step t, Cstartup

t;money denotes the start-up cost of all units in time step t
and Pt,money denotes the total revenue in time step t (only if a unit
in the MG can produce the good ‘Money’). They are defined simi-
larly for each generic good:

Ct;g ¼
X

i2Uc
g

ct;i;g 8t 2 T; g 2 G ð2Þ

Cstartup
t;g ¼

X

i2Uc
g\Ustartup

ont;i � cstartup
i;g 8t 2 T; g 2 G ð3Þ

Pt;g ¼
X

i2Up
g

pt;g 8t 2 T; g 2 G ð4Þ

The last term of Eq. (1) is the penalization related to the unmet
demand of each single good over the whole time horizon. In this
case we consider only money as good whose consumption has to
be minimized, but, if requested, other goods (as for example pollu-
tants emission) can be considered similarly.

3.2.4. Constraints
The goods without storage must respect the balance between

consumption and production in each time step as shown in Eq.
(5). Note that the parameter u is positive if the difference between
non-programmable units production and consumption is positive
and negative is the consumption exceeds the production.

ut;g þ Pt;g þ lt;g ¼ Ct;g þ Cstartup
t;g þ dt;g 8t 2 T; g 2 G C Gstorage

ð5Þ

Goods with storage can be stored if there is excess of production
to be exploited when there is an excess of consumption, as shown
in following equation:

SLtþ1;g ¼ SLt;g � ð1� #gÞ þut;g � dt;g þ lt;g þ Pt;g � Ct;g

� Cstartup
t;g 8t 2 T; g 2 Gstorage ð6Þ

Relation between consumption and production of good by each
unit are expressed through a set of linear inequalities:

ct;i;g2 � mi;g1;g2;pw � pt;i;g1 þ bi;g1;g2;pw � yt;i 8t 2 T; i 2 U; g1

2 Gp
i ; g2 2 Gc

i ;pw 2 PWi;g1;g2 ð7Þ

The last term, present only for units with on/off binary variable,
disables the constraint when the unit is switched off. This formu-
lation requires that performance curve to be linearized has to be
convex; if it is not, piecewise linearization techniques are used
[38]. This approximation introduces error in performance curve
representation which can be partially reduced increasing the num-
ber of intervals of piecewise linearization at the expense of an
increment of computational time [8]. In the configurations studied
in this work, only the battery life loss is modeled with a
non-convex relation. This is because in the weighted-Ah model
[40] used in this work, the life loss of the battery (and so money
consumption) is not a linear function of the state of charge and
the actual energy throughput.

ct;battery;money ¼ f ðpt;battery;DC; SLt;batteryÞ 8t 2 T ð8Þ

Maximum production by a unit is expressed with Eq. (9). For
units that have minimum load constrains, two additional con-
straints have to be considered:

pt;i;g � Prate
i;g 8t 2 T; i 2 U ð9Þ
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pt;i;g � yt;i � P
rate
i;g 8t 2 T; i 2 Uloadmin ð10Þ

pt;i;g � yt;i � Pmin
i;g 8t 2 T; i 2 Uloadmin ð11Þ

The variable related to the start-up of a unit is defined through
the following constraint:

ont;i � yt;i � yt�1;i 8t 2 T; i 2 Ustartup ð12Þ

Note that this constraint allows to consider ont,i as a continuous
variable because yt,i is boolean. Some units can be affected by tech-
nical limit as minimum running hours once the unit is switched on.
This is taken in to account through the following constraints:

y~t;i � ont;i 8i 2 UminN ; t 2 T;~t 2 T : t � t1 � t þ Ni ð13Þ

y~t;i ¼ 1 8i 2 UminN; t 2 T : t � N0
i ð14Þ

Eq. (14) takes into account the minimum number of residual
hours of operation if the unit is already operative at the beginning
of the time horizon. Some auxiliary constraints are added for those
units that can produce and consume the same good. This is the case
of the bidirectional inverter than can produce and consume both
DC and AC power depending on the way it is working. In order
to avoid a simultaneous production and consumption of the same
good the two following constraints are considered:

pt;i;g � at;i;g �M4;i 8t 2 T; i 2 U; g 2 Gp
i \ Gc

i ð15Þ

ct;i;g � ð1� at;i;gÞM5;i 8t 2 T; i 2 U; g 2 Gp
i \ Gc

i ð16Þ

where the parameters M4,i and M5,i are large enough to enable or
disable the respective constraint.

In off-grid systems where a significant amount of power is sup-
plied by intermittent RES, the operating reserve is needed to guar-
antee system stability even if forecasts are inexact. The EMS has to
ensure that the running units can cover the goods demand if the
supply by intermittent RES is not available and the real load con-
sumption is higher than the forecasted one. The parameter
ureserve

t;g is similar to ut;g but it describes the worst-case scenario,
where intermittent RES supply is omitted and highest feasible
good consumption is considered.

preserve
t;i;g1 � Prate

i;g 8t 2 T; i 2 U ð17Þ

preserve
t;i;g1 � yt;i � Prate

i;g 8t 2 T; i 2 Uloadmin ð18Þ

preserve
t;i;g1 � yt;i � P

min
i;g 8t 2 T; i 2 Uloadmin ð19Þ

creserve
t;i;g2 � mi;g1;g2;pw � preserve

t;i;g1 þ bi;g1;g2;pw � yt;i 8t 2 T; i

2 U; g1 2 Gp
i ; g2 2 Gc

i ;pw 2 PWi;g1;g2 ð20Þ

ureserve
t;g þ Pt;g þ Ct;g þ lt;g � 0 8t 2 T; g 2 G C Gstorage ð21Þ

ureserve
t;g þ ðSLt;g � SLmin

g Þ þ Pt;g þ Ct;g þ lt;g � 0 8t 2 T; g

2 Gstorage ð22Þ

Eqs. (17)–(20) define the production and consumption by pro-
grammable units in the scenario with ureserve

t;g in place of ut;g . The
constraints defined by Eqs. 21, 22 have the same structure of
Eqs. 5, 6 and guarantee that the available units, moduling the pro-
duction and consumption, can face the worst case scenario. In
addition to the units production, goods provided with a storage,
can use an amount of previously stored good to meet the operating
reserve constraint (see Eq. (22)).
4. Results and discussion

In this section the proposed approach is tested with two differ-
ent configurations. They differ in both the units installed and the 
goods produced and consumed.

Common points to both configurations are: (i) the presence and 
the size of non-programmable RES producers, namely a PV plant 
and a WT (both of them have a nominal power of 100 kWel) and 
(ii) the AC loads for domestic consumption. The trends of the elec-
tricity generated and consumed by non-programmable units is 
reported in Fig. 3.

Simulations are carried out on a 48 h timespan and it is pos-
sible to notice that the first day is characterized by a large pro-
duction by RES, in fact the PV plant reaches its nominal power 
output and the WT operates with a high average power. On the 
other hand, the second day is representative of a cloudy day with 
a low wind speed. The AC loads are higher in the morning and 
during the night because of public lighting and domestic appli-
ances use. The grey shaded area represents the resulting aggre-
gate energy flux through the battery (u) if programmable units 
are not used. Minimizing the extent of these fluxes allows reduc-
ing the battery wear and the energy losses in charging/discharg-
ing process and it is implicitly accounted for by the objective 
function of the EMS problem.

The properties of all the other units considered in the two test 
cases are reported in Table 1 and Fig. 4.

All the simulations have been performed by an i5 2.6 GHz desk-
top computer with 8 GB RAM, using Gurobi [41] as solver for MILP 
problems. Each step of the rolling horizon strategy requires in 
average 2.7 s for the first test case and 4.2 s for the second one. 
Because in real management the solver is called only once an hour, 
the computational time are fully compatible with practical imple-
mentation. The heuristic strategies are implemented in MATLAB 
environment [42] and they require less than 1 s because based 
on if-then constructs.
4.1. Comparison with heuristic dispatch strategies

The first test case aims to compare our methodology with the 
heuristic dispatch strategies commonly used to manage standalone 
hybrid MG. Fig. 5 shows the diagram of the MG, goods present on 
the grid are described in Table 2.

Two identical programmable generators are available: the first 
one (ICE) is used as primary generator while the auxiliary one 
(ICEaux) is switched on only to avoid battery depletion or power 
shortages. The wear cost of lead-acid battery is related to the oper-
ative SOC level and two different cost of supplied energy are con-
sidered: 0.09 USD/kW h if the SOC is over 50% and



Table 1
Properties of programmable units considered in this study.

Unit Produced good Hourly production Consumed good cstart-up Hourly consumption

Pmin Pmax C (Pmin) C (Pmax)

Battery DC/DCstorage kW h 0 – 200 DCstorage/DC kW h – See Fig. 4a

Boiler Heat kW h 400 – 800 Woodchips kg 190 100.64 193.24
Money (fuel) USD 5.7 3.02 5.8
Money (O&M) USD 3.3 1.46

Chipper Woodchips kg 500 AC kW h 0 5
Money (O&M) USD 1 1

ICE AC kW h Money (fuel) USD 3.68 See Fig. 4b
50 – 100 Money (O&M) USD 2.62 1

Icemaker Ice kg 250 AC kW h 9.5 37.5
Water m3 0 0.28
Money (O&M) USD 0.1 0.1

Inverter AC/DC kW h 0 – 250 DC/AC kW h – 0 260

ORC AC kW h 50 – 100 Heat kW h 400 See Fig. 4c
Money (O&M) USD 1.25 1.25

Osmosis plant Water m3 3.5 – 7 AC kW h – 14 28
Money (O&M) USD 0.7 0.7
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Table 2
Properties of goods in test case 1.

Good Storage SL(t = 0) SLmin SLmax # (%)

AC kW h No – – – –
DC kW h No – – – –
DCstorage kW h Yes 250 40 400 0
Water m3 Yes 12 0 60 0
0.14 USD/kW h otherwise. The rolling horizon strategy is based on
a 24-h time horizon with an exact forecast. A sensitivity analysis
on the forecast error is presented at the end of this section.
The operation cost to be minimized by the EMS problem is
formed mainly by three terms: (i) ICE operation cost due to O&M
the fuel and (ii) the battery wear due to the charging and discharg-
ing fluxes. In addition, a penalty term proportional to the differ-
ence between a reference storage level (SL) and the actual SL at
the end of day has been added. We assume that the reference SL
is equal to the maximum one among the different strategies. The
monetary value of the energy stored in the battery is set equal to
0.2 $/kW h, which is the price of a kW h of electricity generated
by Diesel ICE working in nominal condition and stored in the bat-
tery. This additional term allows a proper comparison between dis-
patch strategies having different SL at the end of the simulation
and it is required only for short-term simulations. In fact, if a whole
year is considered the effect of different final battery levels on the
overall solution is negligible. Finally, the comparison between the
different dispatch strategies have been carried out under two dif-
ferent assumptions: (i) neglecting the start-up penalizations and
(ii) considering them as an additional cost the first hour of opera-
tion. In the start-up cost two terms are considered: (i) a consump-
tion of the input goods without any useful effect and (ii) a
monetary cost due to component wear and O&M.

The MILP based strategy has been investigated under two dif-
ferent assumptions: the first one can use the two generators, while
in the second one only the primary ICE is available. This approach
is compared with the five different heuristic dispatch strategies
considered: the LF and four CC strategies with different battery
Set Point levels. The minimum SOC level of the battery is a param-
eter of great influence since the same battery operation at a lower
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The following observations can be addressed:

� Both the MILP-based strategies (with and without auxiliary ICE
respectively) and the CC approach limit the number of start-ups
and shutdowns for the ICE generator. The LF approach requires
seven start-ups instead of four and three times the generator is
operated for just one hour leading to high overall start-up costs.
� The MILP strategy is the only one able to fulfil the electricity

demand without using the auxiliary ICE. In this case, the EMS
is able to modify the schedule to cover the demand with a slight
cost increasing (3.2% addressable to a higher wear of the battery
the second day). The battery is charged to a higher SL since the
first hours of the days to satisfy the operating reserve. During
the last hours of the second day the ICE is switched on and it
runs close to its nominal load even if the battery SOC is about
100%. This allows storing energy in the battery during the eve-
ning to be released during the nocturnal hours when the ICE
generator is not able to cover the whole demand. This farsighted
operation cannot be scheduled by any of the heuristic dispatch

storage levels results in higher wear cost. On the other hand, work-
ing at high SOC may lead to battery saturation and energy dump-
ing. For each heuristic strategy, the minimum SOC is optimized 
with a relevant operational cost decrease, especially for the LF 
approach, which tends to manage the battery close to the mini-
mum SOC level.

The operative costs for all the investigated strategies are 
reported in Fig. 6 where it is possible to appreciate the cost reduc-
tion attainable with MILP based strategies. Without considering 
start-up penalization of the components, the MILP-based strategy 
reaches a cost reduction of 9.61% in comparison with the most cost 
effective heuristic dispatch strategy (LF strategy).

Considering start-up penalizations, the cost saving of 
MILP-based strategy increases to 13.09% in comparison with the 
CC-SP = 50% strategy which becomes the most cost effective among 
the heuristic dispatch strategies. In fact, the start-up impact is 
higher in LF because of the high frequency of start/stop affecting 
ICE schedule.

These results can be explained considering the differences of 
unit scheduling and battery use for the different strategies. 
Results are reported in Fig. 7 for the two MILP-based strategies, 
for the LF and for the best CC among those investigated.
strategies, because it requires the use of forecasts of future
power production and consumption. For this reason, besides
obtaining a not negligible cost saving during operation, the
MILP-based strategy leads to investment cost reduction during
the design and the sizing of MG. In fact a better use of the avail-
able units avoids the need to oversize the power generation set
or the battery system.
� CC strategies work always at full load and the average ICE effi-

ciency is equal to 34.2% (the nominal one). In load following the 
average efficiency is lower (30%) because of the frequent part 
load operation of the generator. In MILP-strategy, instead, where 
the ICE load in each hour is the result of an optimization process, 
the average efficiency is equal to 32.3%. A value slightly higher is 
attainable if no auxiliary ICE is available because the generator is 
operated at full load for a longer number of hours.
� The auxiliary ICE (if available) is used by all the strategies at the 

end of the second day to avoid the total discharge of the battery. 
The CC strategy since it cannot control the generators power 
output operates the generator at its nominal load for six hours 
until the battery is full. LF is able to reduce the number of hours 
of operation but it entails two start-ups. Finally, he MILP based 
configuration runs the ICEaux for only three hours at reduced 
loads with evident economic benefits;
� Battery state of charge trend changes appreciably from one case 

to the others. The trend of the energy fluxes trough the battery is 
reported in Fig. 8 for three different strategies with the 
respective curves of cumulative absolute energy handled by the 
battery. In CC strategies, the battery wear cost is on average 
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Table 3
Properties of goods in test case 2.

Good Storage SL (t = 0) SLmin SLmax # (%)

AC kW h No – – – –
DC kW h No – – – –
DCstorage kW h Yes 300 35 350 0
Water m3 Yes 14 0 25 0
Heat kW h Yes 1500 0 3000 1
Ice kg Yes 150 0 1000 2
Woodchips kg Yes 1800 0 3000 0
higher than in all the other cases because it is frequently used
with a total processed energy three times higher than in the
other cases leading to a relevant loss in charging/discharging
process. Furthermore, the average hourly absolute flux is close
to 35 kW h entailing a high wear of the battery compared to
LF and MILP showing an average value of 11 and 9 kW h respec-
tively. This problem is reduced in both the MILP and the LF
strategies where the usage of the battery is reduced and a small
part of energy is lost in the charging/discharging process.

Finally, the difference of operation cost between MILP and the 
best heuristic strategy becomes less marked considering errors in 
forecast. For this example, we assumed that errors on the aggre-
gate power are a linear function of time with an exact forecast in 
the first hour of the time horizon and a ±75 kW h error at the last 
(24th) hour. If always positive errors are added to the actual aggre-
gate power the MILP operation cost is 433.1 USD, while, if only 
negative errors are considered, a value of 436 USD is obtained with 
a money saving respectively of 9.03% and 8.42%, in comparison 
with the CC-SP = 50% strategy. It is important to point out that 
these examples are the most critical ones since the presence of uni-
lateral errors appreciably modifies the overall power forecast over 
the time horizon and induces the EMS to take wrong choices. In 
real cases where random errors are considered this effect is less 
marked and it could not affect deeply the optimal solution. These 
examples demonstrate that the MILP-based strategy, thanks to 
the rolling horizon approach, could be still advantageous even in 
presence of relevant errors on the forecast.

4.2. Advanced configuration test

The second test case is focused on a more complex MG whose 
diagram is reported in Fig. 9. This configuration could be used to 
cover the demand of a rural village located in a remote area. The 
power supply is provided by a WT, a PV plant and an ORC which 
produces AC power consuming medium temperature heat [43]. 
The thermal power can be produced by both Fresnel collectors 
and a biomass boiler: the Fresnel collectors produce heat when 
direct solar radiation is available while the biomass boiler is a pro-
grammable unit and the only constraint is the availability of a suf-
ficient amount of woodchips. Woodchips can be previously 
produced by the chipper and stored in a dedicated tank. The ORC 
is the only controllable unit producing AC power and it guarantees 
in each time step the grid power balance with the assistance of the 
Lead-acid battery, connected to the DC bus. A thermal storage
allows decoupling heat and AC power production increasing the 
flexibility of the EMS. Respect to the previous case, the community 
requires water and ice blocks which are produced by an icemaker, 
consuming water and AC power during its operation. The goods 
properties are described in Table 3. The assumptions for the 
Lead-acid battery are the same of the previous test case.

In this case is not possible to make a comparison with other 
approaches since none of the heuristic strategies proposed in liter-
ature is able to manage a grid with several goods, a variety of pro-
grammable units and multi input/output components. Hence, the 
analysis is limited to the optimal operation of the whole system 
obtained using the proposed MILP strategy. We adopt a time hori-
zon equal to 18 h and we assume that the forecasts are exact. The 
optimal operation of all the units over two-days is reported in 
Fig. 10.

The first day is sunny and windy and the PV plant, the WT and 
the Fresnel collector supply a large amount of power, while in the 
second day most of the power is provided by the biomass 
combustion.

In the first day, the ORC is immediately switched on because of 
the fixed AC consumption for public and domestic uses. The bat-
tery is slightly discharged during the following hours but the SL 
level remains above the minimum threshold (35 kW h) avoiding 
excessive storage depletion. Forecast information about the 
Fresnel contribution during the day and the trend of fixed AC loads 
are available and the EMS runs the ORC only for two hours exploit-
ing the available stored heat without switching on the biomass 
boiler. During the central hours of the day the Fresnel collector 
produces a large amount of thermal power and the ORC is switched 
on again to avoid heat storage saturation and energy dumping.

The programmable AC loads are scheduled in those hours to 
shave the energy flux to the battery. The battery is filled by
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intermittent generators PV and WT production up to 80%. At this
point the EMS discharges the heat storage to operate the ORC with
the aim to minimize the energy fluxes through the battery and to 
limit its wearing.

The heat stored during the day is not sufficient to fuel the ORC 
during the nocturnal hours and the biomass boiler is switched on 
the 21th hour. This unit runs almost until the end of the two days, 
minimizing the number of start-ups and working, when it is possi-
ble, at partial load with a higher efficiency. During the biomass 
operation the woodchips are gradually consumed and the chipper 
is switched on to fill the tank again.

In the second day the energy supplied by intermittent energy 
sources is not relevant and the biomass boiler runs the whole 
day to provide heat to the ORC. Both the biomass boiler and the 
ORC modulate their power to follow the load and limiting the 
use of the battery. Consequently, the heat storage remains almost 
empty until 14th hour when the EMS starts to increase the boiler 
load because it is aware of the future forecast. The small contribu-
tion of WT in the nocturnal hours of the second day results in the 
necessity of filling both the heat storage and the battery. In this 
manner, the EMS is able to guarantee a sufficient available energy 
in the following hours when the AC loads are higher and the bio-
mass boiler is not enough to satisfy the thermal load of the ORC.

The scheduling of the osmosis plant and the icemaker highlights 
the advantages related to the multigood approach. In fact, consid-
ering the two goods separately and not as a singular deferrable 
electric consumption, allows decoupling the icemaker and osmosis 
plant operation. The EMS exploits this possibility, scheduling these 
two units in different hours in the central hours of day in order to 
shave diurnal power peaks and to obtain an operational cost 
reduction.

The operating costs resulting from the optimized management 
of the MG are reported in Fig. 11a (hourly data) and b (aggregate 
cost over two days). Pattern shaded and solid fill data refer to start-
up and operation costs respectively. Table 4 reports numeri-cal 
results.

More than 60% of the total cost is related to the boiler operation 
because the wood consumption cost is allocated to the biomass 
boiler instead of the chipper. This assumption is due to numerical



Table 4
Total costs for the two-day simulation.

Operation Startup %

Boiler 150.94 9.00 61.67
Osmosis 9.10 2.80 4.59
ORC 36.25 6.25 16.39
Chipper 0.50 0.20 0.27
Icemaker 0.80 0.20 0.39
Battery wear 43.31 16.70
reasons and it allows finding the solution with a reduced computa-
tional time and without any effect on the veracity of the results.
Finally, Fig. 10a highlights as the battery wear cost is extremely
low for many hours during the two-days simulation proving the
capability of the proposed approach in limiting the fluxes through
this component.

5. Conclusions

In this paper, we presented a novel strategy for the definition of
the optimal management of a multigood standalone MG integrated 
with RES. The optimal schedule, obtained solving a MILP problem, 
is frequently updated according to the rolling horizon strategy. The 
approach is tested on two problems highlighting the capabilities of 
this strategy to reduce the operational cost and to manage complex 
systems.

The first test case shows that a significant cost reduction can be 
reached using the proposed approach in place of the most com-
monly adopted heuristic strategies. In particular, the farsighted 
operation of programmable units allows a better exploitation of 
the RES and a limited wear of the battery. The advantage is greater 
if start-up penalties are considered because, in our test case, partial 
load operation of programmable units is more advantageous than 
their intermittent use.

In the second test case, an innovative configuration of the MG is 
proposed. The most interesting components are (i) the ORC that 
can be powered both by the Fresnel collector and the biomass boi-
ler and (ii) the icemaker, modeled as a multi-input unit which 
requires water and AC power during operation. The management 
of such MG is not trivial and cannot be faced neither with common 
heuristic strategies or other formulations proposed for indepen-
dent MG scheduling.

One of the main aspects is that the analytical formulation is 
extremely flexible and it is able to describe any MG since any type 
of components can be modeled including information on real oper-
ation constraints representing the first step to have an exhaustive 
and holistic approach to properly manage complex systems. 
Thanks to its features, the proposed method is a valuable option 
for the solution of two tasks. First it can be used to determine 
the optimal scheduling of programmable unit in an existing MG 
instead of using greedy approaches. In this case, it allows for a 
reduction of both operational cost and components wear and it 
avoids power shortages thanks to the possibility to exploit fore-
casts. On the other hand, it can be used for design purpose and 
in particular for the selection of generators and storages size lead-
ing to the lowest LCOE. Once the input data for a specific location 
are obtained, different power producer sets can be tested over one 
year of operation, highlighting the most cost effective solutions 
able to satisfy the goods demand without oversizing the system 
components.
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