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Abstract. The recovery of an unknown density function from the knowledge of its projections is the aim of

tomography. In many cases, considering the problem from a discrete perspective is more convenient than

employing a continuous approach: discrete tomography, and in particular binary tomography, is therefore ex-

ploited. One of the main goals of tomography is guaranteeing that the produced output coincides with the

scanned object, namely, one wants to achieve uniqueness of reconstruction, even when only a few directions,

from which projections are taken, are employed. Relying on a theoretical result stating that special sets of just

four lattice directions are enough to uniquely reconstruct a binary grid, we prove that such sets are stable, in

the sense that a small discrete perturbation of the components of the directions returns sets which again ensure

uniqueness of reconstruction. Examples are provided.

1 Introduction

Tomography takes its practical foundation from the fol-

lowing request: reconstruct the interior of an object which

is not directly accessible (for instance, a human brain)

without opening and/or damaging it. Tomography is there-

fore a branch of the inverse problems, and was born thanks

to the theoretical work done by Johann Radon [1], who

gave a formula to reconstruct a function from its line inte-

grals. This continuous approach is known as computed to-
mography. In order to achieve the reconstruction, X-rays

are sent from a source to a detector, and what we mea-

sure is their attenuation coefficient, meaning that the ray

encountered some kind of obstacle in its trajectory.

The continuous framework in which Radon inversion

formula takes place, however, reveals not to be the best

way of modeling reality. The most important drawback

in the continuous approach is the necessity of considering

projections from all angles in [0, 2π), which is of course

not achievable in the real world. This reflects into per-

forming some kind of discretization, leading to discrete
tomography, where integrals are replaced by finite sums,

and different models can be employed according to the dif-

ferent ways of representing pixels and X-rays. As a special

case of discrete tomography we have binary tomography,
where one is interested in detecting the presence or the

absence of the object itself. This paper deals with binary

objects.

A fundamental issue of tomography is uniqueness of

reconstruction, namely, one wants to ensure that the re-

constructed object is exactly the original one. Generally

speaking, the reconstruction problem is ill-posed. Ambi-

guities descend from the fact that the Radon transform is
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injective only if projections are available for all angles in

[0, 2π). If some angles are missing, then the kernel of the

Radon transform is not trivial. In the discrete case, this

reflects in the presence of non-zero images, having null

projections along the considered directions. Such images

are known as ghosts. The presence of ghosts was the input

to investigate which parts of the object could be anyway

reconstructed; this problem has been developed in [2–4].

In binary tomography, however, one can exploit the up-

per bound on the number of allowed grey levels in order to

get some extra conditions. This has been done by Brunetti,

Dulio and Peri in [5] (and later generalized to higher di-

mensions in [6]), who prove that just four suitably chosen

valid directions guarantee uniqueness of reconstruction.

Their main theorem is reported and explained in Section

3.

Starting from that result, we want to address another

common issue which arises when facing the real world:

that of stability, namely, what happens when a small per-

turbation affects four directions which ensure uniqueness.

This problem is closely related to that of the presence of

noise. In this paper, we prove that sets ensuring unique-

ness are stable under the action of a small lattice perturba-

tion.

The paper is organized as follows. In Section 2 we re-

call the main definitions concerning discrete tomography

and lattice directions. In Section 3 the main uniqueness

theorem of [5] is reported, while Section 4 shows the new

results concerning stability. In Section 5 examples are de-

picted and commented; Section 6 focuses on possible fur-

ther work and concludes the paper.
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2 Definitions

2.1 Main models for discrete tomography

We restrict our investigation to the two-dimensional case,

so the object we aim to reconstruct is an image, occupying
a subset of the lattice Z2, say a rectangular grid A. We

can therefore say that an image is a map f : A → Z.

By an abuse of notation, we will sometimes say that we

reconstructA instead of f .
The image is represented as a column vector x ∈ RN ,

where N is the number of the pixels composing the im-

age. The projection data are collected in a vector p ∈ RM ,

where M corresponds to the sum of the lengths of the ar-

rays gathering the measurements along each direction. So,

the tomographic reconstruction problem is modeled as an

equivalent linear system

Ax = p, (1)

where A is the M × N matrix such that its entry ai j is re-

lated to the contribution that the j-th pixel gives to the i-th
equation. In general, such an approach is severely under-

determined, and many solutions are allowed for a given

set of projections. Usually this leads to rely on iterative

methods, such as ART, DART and SIRT (see for instance

[7]).

Different ways of computing ai js give different models

for discrete tomography. We recall the two we will employ

throughout the paper; in both of them, a pixel is considered

to be a-dimensional, namely, collapsed into a point of the

lattice, say its bottom-left corner.

In the discrete strip model (see Figure 1(a)), X-rays are

strips of given width w. Here ai j = 1 if the pixel x j belongs

to the i-th strip, and ai j = 0 otherwise. Therefore, pi sums

the values of the lattice points falling in the corresponding

strip.

For w → 0, we get the grid model (see Figure 1(b)),

where therefore X-rays are lattice lines. Consequently,

ai j = 1 if the pixel x j belongs to the i-th line, and ai j = 0

otherwise. This model is the basic discrete theoretical

model.

2.2 Valid directions

As previously said, the presence of ghosts causes ambi-

guities in the reconstruction. Ghosts’ non-null pixels form

the so-called (weakly) bad configurations, namely, pairs of

sets of pixels having the same projections along the con-

sidered directions (see Figure 2 for an example). The pres-

ence of weakly bad configurations prevents an image from

being uniquely reconstructed. We call S -bad configuration

a bad configuration associated to a set S of directions. If

pixels can be counted with multiplicity greater than one,

we deal with S -weakly bad configurations.

It is known from [8] that a grid A is uniquely deter-

mined by a set S of directions if and only if no S -bad con-

figuration can be constructed insideA.

However, uniqueness can be trivially achieved, even

with just one direction: for instance, if one takes a direc-

tion u whose slope is such that each line parallel to u has
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Figure 1. Different models for discrete tomography. (a) The

discrete strip model. (b) The discrete line model, or grid model.
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Figure 2. A ghost associated to the three depicted directions.

The non-null pixels are the ones of the associated bad configura-

tion.

at most one intersection with the gridA, then the resulting

linear system (1) has only one solution (see Figure 3). In

real tomographic applications, however, non-valid direc-

tions are undesirable, since each detector should collect

information point by point. We therefore consider a differ-

ent approach.

In 2001, Hajdu and Tijdeman [9] introduced an alge-

braic approach to discrete tomography, which shows how

ghosts can be treated in terms of polynomials.
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.

Figure 3. A single direction can ensure uniqueness of rec-

onstruction.

Fix a lattice grid A = {(z1, z2) ∈ Z2 | 0 ≤ z1 < m, 0 ≤
z2 < n}. A direction is modeled as a pair (a, b) of coprime

integers; coordinate directions are represented by the pairs

(1, 0) (the horizontal one) and (0, 1) (the vertical one). We

can assume without loss of generality that a ≥ 0.

Definition 1 A set S = {(ar, br) | r = 1, . . . , d} of d lattice
directions is said to be valid for the grid A if

d∑
r=1

ar < m and
d∑

r=1

|br | < n. (2)

Therefore, valid sets are the ones that allow us to con-

struct a ghost inside the grid.

3 A uniqueness result for binary
tomography

Since valid sets of directions imply the presence of

bad configurations inside the image, they cannot lead to

uniqueness of reconstruction. To do so, we need to add

other constraints. A commonly employed one is the prior

knowledge of the number of grey levels of the image; in

particular, one is often interested in detecting the presence

or the absence of a body, reflecting in the presence of just

two shades, say black and white. This is the framework of

binary tomography.

This kind of prior knowledge reveals to be fundamen-

tal in order to get uniqueness results with valid directions.

The result we are going to recall, due to Brunetti, Dulio

and Peri ([5]), characterizes the smallest sets of binary

uniqueness, namely, sets of valid directions which ensure

uniqueness of reconstruction for binary images. Such sets

are composed of just four directions, built in a peculiar

way; we now define the tools which will be employed in

the characterization theorem.

First of all, sets S of directions have to satisfy a neces-

sary condition: one of the directions has to be the sum of

the other three, or the sum of two of them must equal the

sum of the other two. This means that S = {u1, u2, u3, u4 =

u1 + u2 ± u3}. Note that u4 has to be a direction, namely,

a pair of coprime integers, so not all triples u1, u2, u3 are

allowed. This condition on the directions reflects in the

fact that a minimal bad configuration associated to the set

S has a pixel which is counted twice, so its value is 2 or

−2. This is not allowed in a binary fashion, so such a bad

configuration cannot be constructed inside a binary grid.

Set ur = (ar, br), r = 1, 2, 3, 4, and

4∑
r=1

ar =: h,
4∑

r=1

|br | =: k.

Consider the set D = ±S ∪ Ŝ , where

±S = {±u1,±u2,±u3,±u4}
and

Ŝ = {±(u1 − u4),±(u2 − u4),±(u1 + u2)}.
Note that the set D is a set of pairs, so its elements are not

necessarily directions.

Define the subsets A, B of D as follows:

A := {(a, b) ∈ D | |a| > |b|},
B := {(a, b) ∈ D | |b| > |a|}.

Moreover, if |a| = |b|, for some (a, b) ∈ D, we then include

(a, b) in A if min{m − h, n − k} = m − h, while (a, b) ∈ B
otherwise. Thus D is the disjoint union of A and B, where

one of the two sets may be empty.

We can now state the uniqueness theorem.

Theorem 2 ([5], Theorem 6) Let S = {u1, u2, u3, u4 =

u1+u2±u3} be a valid set for the lattice gridA = {(z1, z2) ∈
Z2 | 0 ≤ z1 < m, 0 ≤ z2 < n}. Then every binary image
defined on A is uniquely determined if and only if

min
(a,b) ∈ A

|a| ≥ min{m − h, n − k}, (3)

min
(a,b) ∈ B

|b| ≥ min{m − h, n − k}, (4)

and

m − h < n − k ⇒ ∀(a, b) ∈ B :

|a| ≥ m − h or |b| ≥ n − k, (5)

n − k < m − h ⇒ ∀(a, b) ∈ A :

|a| ≥ m − h or |b| ≥ n − k, (6)

where, if one of the sets A, B is empty, the corresponding
condition (3) or (4) drops.

Denote by S(A) the collection of sets of binary

uniqueness for a grid A. We wish to exploit Theorem 2

to solve the linear system (1), which will have a unique

binary solution.

4 Stability results

In view of applications, given a lattice grid A, it would

be desirable to have different sets from S(A), in order to

select the set S which better fits with the faced constraints.

Therefore, we wish to investigate how S could be changed

without affecting uniqueness.

A first simple but useful result is the following.
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Theorem 3 Let A = {(z1, z2) ∈ Z2 | 0 ≤ z1 < m, 0 ≤ z2 <
n} be a lattice grid, and let S = {u1, u2, u3, u4} ∈ S(A).
Denote by pS the projection vector obtained by employing
the directions of S . Then there exist continuous intervals
Ji, i = 1, 2, 3, 4, such that ui ∈ Ji, and, for all S ′ = {u′i |
u′i ∈ Ji}, the linear system Ax = pS ′ has only one solution,
which equals the unique binary solution of Ax = pS .

Proof. Slightly changing the directions in S , we can al-

ways obtain a set S ′ formed by directions which are not

valid for the m × n lattice grid A. This can be easily

achieved by replacing some (possibly all) ui = (ai, bi) ∈ S ,

i = 1, 2, 3, 4, with u′i = (a′i , b
′
i) (see Figure 4), such that

b′i
a′i
= tan γ =

w

L
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi

n(a2
i + b2

i )
if bi > ai

ai

m(a2
i + b2

i )
if bi < ai.

L 

M 

N 

w 

ui(ai,bi) 

γγγγ 

ui’(a’i,b’i) 

Figure 4. Angle γ between a non valid direction u′ = (a′i , b
′
i )

obtained by a slight change of ui = (ai, bi) ∈ S .

In fact, in this case, each line in direction u′i inter-

sects the grid in a segment completely included in the strip

bounded by two adjacent lattice lines parallel to the direc-

tion ui. Since S ′ contains non-valid directions, then S ′
does not satisfy condition (2). Therefore, S ′ is a set of

general (not necessarily binary) uniqueness, meaning that

the linear system Ax = pS ′ has just one solution. �

Remark 4 We have already said that non-valid directions
are not desirable. However, instead of regarding Theorem
3 as a stable noise-free reconstruction result, we could in-
terpret it as an exact reconstruction result for X-ray af-
fected by some noise.

As previously observed, in the grid model X-rays count
the number of lattice points belonging to lines having ra-
tional slopes. In view of real applications we should also
remark that, moving from source to detector, X-rays can
be affected by deviations from the straight line paths, due
to mechanical and physical phenomena. This means that a
single X-ray, in fact, counts more points than in the usual
grid model, since its trajectory meets different lattice lines.
Trajectories could be highly different from ray to ray, so,
in order to model the various behaviors, we assume that

each X-ray path is confined in a strip of prescribed width
w, and that each point in the strip cannot be visited twice.
This means that the number of lattice points included in a
given strip represents an upper bound on the correspond-
ing detected projection.

This can be interpreted as a discrete strip model of the
continuous approach, where a ray issuing from a given
source P could be detected by any point of the line seg-
ment LP of length w, and axis of symmetry passing through
P. In term of back-projection, the strip orthogonal to LP

is spanned, and consequently a noise, depending on the
width of the strip, is introduced with respect to the cor-
responding grid-model reconstruction process. This sug-
gests to interpret the discrete strip model as a kind of noisy
grid model, where the width w of the strips corresponds to
the amount of noise that affects the grid model projections.

Now we want to show that a small discrete perturba-

tion of a valid set of uniqueness, that preserves the validity

of the employed directions, also preserves uniqueness. To

this, we need to introduce a notion of lattice perturbation
of a lattice direction.

Definition 5 Let d = (d1, d2) be a given lattice direction.
For each ε = a

b ∈ Q ∩ [0, 1], and δx, δy ∈ {0, 1}, the ε-
lattice perturbation of d is the vector d(ε, δx, δy), parallel
to d + δx(ε, 0) + δy(0, ε), given by

d(ε, δx, δy) = (d1b + aδx, d2b + aδy).

Note that

d2

d1 + ε
≤ d2

d1

≤ d2 + ε

d1

,

and also

d2

d1 + ε
≤ d2

d1 + εδx
≤ d2b

d1b + aδx

≤ d2b + aδy
d1b + aδx

≤ d2b + aδy
d1b

≤ d2 + ε

d1

,

so that the slope of d(ε, δx, δy) is sufficiently close to the

slope of d. Therefore, d(ε, δx, δy) is a lattice vector (not

necessarily a lattice direction), bounded in a small angular

neighbor of d.

Theorem 6 Let A be a lattice grid, and let S =

{u1, u2, u3, u4} ∈ S(A). Let S ′ = {u′1, u′2, u′3, u′4} such
that u′1 = u1(ε, δx, δy), u′2 = u2(ε, δx, δy), u′3 = u3 and
u′4 = u′1 + u′2 + u′3 if u4 = u1 + u′2 + u3, or u′4 = u′1 + u′2 − u′3
if u4 = u1 + u2 − u3. If S ′ is a set of valid directions for A,
then S ′ ∈ S(A).

Proof. Assume ur = (ar, br), u′r = (a′r, b′r), and consider

the case when u4 = u1 + u2 + u3. We have

h′ = 2(a′1 + a′2 + a′3) ≥ 2(a1 + a2 + a3) = h
k′ = 2(|b′1| + |b′2| + |b′3|) ≥ 2(|b1| + |b2| + |b3|) = k,

and consequently

min{m − h′, n − k′} ≤ min{m − h, n − k},
max{m − h′, n − k′} ≤ max{m − h, n − k}.
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Now, consider the set D′ = ±S ′ ± Ŝ ′ = A′ ∪ B′. For each
d′ = (d′1, d

′
2) ∈ D′ let d = (d1, d2) ∈ D be the correspond-

ing vector. Note that d′1 ≥ d1 and d′2 ≥ d2.

Now, let d′ ∈ D′ = A′ ∪ B′. There are several cases to

be considered.

Case 1: d′ ∈ A′. Since S ∈ S(A), we have two sub-

cases.

Case 1a: If d ∈ A, then |d1| ≥ min{m− h, n− k}, so that

|d′1| ≥ |d1| ≥ min{m − h, n − k} ≥ min{m − h′, n − k′}.
Case 1b: If d ∈ B, then |d2| ≥ min{m− h, n− k}, so that

|d′2| ≥ |d2| ≥ min{m − h, n − k} ≥ min{m − h′, n − k′}
and, since d′ ∈ A′, |d′1| ≥ |d′2|, so that |d′1| ≥ min{m−h′, n−
k′} as in subcase 1a.

Therefore, for all d′ ∈ A′, it is

|d′1| ≥ min{m − h′, n − k′},
and consequently

min
(a′,b′) ∈ A′

∣∣∣a′∣∣∣ ≥ min{m − h′, n − k′},

so that condition (3) in Theorem 2 holds.

Case 2: d′ ∈ B′. Since S ∈ S(A), there are two sub-

cases again.

Case 2a: If d ∈ A, then |d1| ≥ min{m− h, n− k}, so that

|d′1| ≥ |d1| ≥ min{m − h, n − k} ≥ min{m − h′, n − k′}
and, since d′ ∈ B′, |d′2| ≥ |d′1|, so that |d′2| ≥ min{m−h′, n−
k′}.

Case 2b: If d ∈ B, then |d2| ≥ min{m− h, n− k}, so that

|d′2| ≥ |d2| ≥ min{m − h, n − k} ≥ min{m − h′, n − k′},
as in subcase 2a.

Therefore, for all d′ ∈ B′, it is

|d′2| ≥ min{m − h′, n − k′}
and consequently

min
(a′,b′) ∈ B′

∣∣∣b′∣∣∣ ≥ min{m − h′, n − k′},

so that condition (4) in Theorem 2 holds.

Now, suppose that min{m − h′, n − k′} = m − h′, and
consider any d′ ∈ B′. If d ∈ A, then, by condition (3) in

Theorem 2, we have |d1| ≥ min{m − h, n − k}, so that

|d′1| ≥ |d1| ≥ min{m − h, n − k}
≥ min{m − h′, n − k′} = m − h′.

If d ∈ B, and min{m− h, n− k} = m− h, then, by condition

(5) in Theorem 2, it may be |d1| ≥ m − h, so that

|d′1| ≥ |d1| ≥ m − h ≥ m − h′,

or |d2| ≥ n − k, so that

|d′2| ≥ |d2| ≥ n − k ≥ n − k′.

If d ∈ B, and min{m − h, n − k} = n − k, then, by condition

(4) in Theorem 2, we have |d2| ≥ n − k, so that

|d′2| ≥ |d2| ≥ n − k ≥ n − k′.

Therefore, we have

∀d′ ∈ B′ : |d′1| ≥ m − h′ or |d′2| ≥ n − k′

and condition (5) in Theorem 2 holds.

Similarly, if min{m − h′, n − k′} = n − k′, consider any
d′ ∈ A′. If d ∈ A and min{m − h, n − k} = m − h, then, by
condition (3) in Theorem 2, we have |d1| ≥ m − h, so that

|d′1| ≥ |d1| ≥ m − h ≥ m − h′.

If d ∈ A and min{m − h, n − k} = n − k, then, by condition

(6) in Theorem 2, it could be |d1| ≥ m − h, so that

|d′1| ≥ |d1| ≥ m − h ≥ m − h′,

or |d2| ≥ n − k, so that

|d′2| ≥ |d2| ≥ n − k ≥ n − k′.

If d ∈ B, then, by condition (4) in Theorem 2, we have

|d2| ≥ min{m − h, n − k}, so that

|d′2| ≥ |d2| ≥ min{m − h, n − k}
≥ min{m − h′, n − k′} = n − k′.

Therefore, we have

∀d′ ∈ A′ : |d′1| ≥ m − h′ or |d′2| ≥ n − k′,

and condition (6) in Theorem2 holds.

A similar proof works for u4 = u1 + u′2 − u3. �

Theorem 7 Let S = {ui = (ai, bi) | i = 1, 2, 3, 4} be a set
of lattice directions, and r1, r2 be such that

a1 = mini ai b1 = mini bi

a2 = a1 + r1, b2 = b1 + s1,
a3 = a1 + r2, b3 = b1 + s2,
a4 = a1 + a2 + a3 b4 = b1 + b2 + b3

r1 + r2 ≥ m−7a1

2
s1 + s2 ≥ n−7b1

2
.

Then S ∈ S(A).

Proof. The set S is of the form S = {u1, u2, u3, u4 = u1 +

u2 ± u3}, therefore we must prove that the assumptions of

Theorem 2 hold.

Consider the set Ŝ = {±(u1−u4),±(u2−u4),±(u1+u2)}.
Since a1 = mini ai, and b1 = mini bi, then, for each ŝ =
(̂s1, ŝ2) ∈ Ŝ , we have ŝ1 ≥ a1 and ŝ2 ≥ b1. Therefore, for

any vector d = (d1, d2) ∈ D = ±S ∪ Ŝ = A ∪ B, it results
d1 ≥ a1 and d2 ≥ b1.

Now, note that

h = a1 + a2 + a3 + a4 = 6a1 + r1 + r2

and

k = b1 + b2 + b3 + b4 = 6b1 + s1 + s2.
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Therefore, it results

m − h = m − 6a1 − r1 − r2 ≤ a1

n − k = n − 6b1 − s1 − s2 ≤ b1.

Assume that min{m− h, n− k} = m− h. If u1 ∈ A, then

a1 ≥ b1 ≥ n − k ≥ m − h.

Consequently, if (d1, d2) ∈ A, then d1 ≥ a1 ≥ m − h, and
Condition (3) in Theorem 2 holds. If (d1, d2) ∈ B, then
d2 ≥ b1 ≥ m − h, and Condition (4) in Theorem 2 holds.

Moreover, d1 ≥ a1 ≥ m − h, so that the first inequality of

Condition (6) in Theorem 2 holds.

Suppose now that min{m − h, n − k} = n − k. If u1 ∈ A,
then

a1 ≥ b1 ≥ n − k ≥ m − h.

Consequently, if (d1, d2) ∈ A, then d1 ≥ a1 ≥ n − k, and
Condition (3) in Theorem 2 holds. Moreover, d2 ≥ b1 ≥
n − k, so that the second inequality of Condition (5) in

Theorem 2 holds. If (d1, d2) ∈ B, then d2 ≥ b1 ≥ n − k,
and Condition (4) in Theorem 2 holds. Moreover, d1 ≥
a1 ≥ m − h, so that the first inequality of Condition (6) in

Theorem 2 holds.

Therefore, all conditions in Theorem 2 hold, and con-

sequently S ∈ S(A). �
In the experimental section we will provide a few ex-

amples of lattice perturbations.

5 Experimental results

In the following experiments, performed in a noise-free

context, we employed ε equal to 1. This choice is due to

the fact we reconstruct small images (11× 11 and 15× 15,

respectively), so that greater values for a, b (recall that ε =
a
b ) make the set S ′ non-valid for the gridA.

In the first experiment, we consider the set

S = {u1, u2, u3, u1 + u2 − u3}
= {(1, 5), (2,−3), (0, 1), (3, 1)},

which is a set of binary uniqueness for an 11×11 grid. For

ε = 1 and a suitable choice of the values of δxs and δys,
the first two directions are modified as follows:

u1 = (1, 5) �→ u′1 = (1 · 1 + 1 · 1, 5 · 1 + 1 · 0)
= (2, 5),

u2 = (2,−3) �→ u′2 = (2 · 1 + 1 · 1,−3 · 1 + 1 · 1)
= (3,−2).

The third direction of the new set S ′ is the same as the

third one of set S , and so we get

u′4 = u′1 + u′2 − u′3 = (5, 2).

The set S ′ = {(2, 5), (3,−2), (0, 1), (5, 2)} is again a set of

binary uniqueness forA. An example of reconstruction is

shown in Figure 5.

In the second experiment, we deal with an 15×15 grid

A, and initial set of uniqueness is

S = {u1, u2, u3, u1 + u2 − u3}
= {(1,−1), (3,−5), (0, 1), (4,−7)}.

(a)

(b)

Figure 5. Reconstruction performed with different sets of di-

rections on an 11 × 11 grid. In each line, the leftmost im-

age is the original phantom, the central image is the recon-

structed one, and the rightmost image shows the difference

between the previous two (white pixel means exactly recon-

structed pixel). (a) S = {(1, 5), (2,−3), (0, 1), (3, 1)}. (b) S ′ =
{(2, 5), (3,−2), (0, 1), (5, 2)}.

Also in this case, we consider ε = 1; the second direction

is not modified (namely, we choose δx = δy = 0 in that

case), while the first one becomes

u1 = (1,−1) �→ u′1 = (2,−1).
The new set is therefore

S ′ = {(2,−1), (3,−5), (0, 1), (5,−7)}.
Again, it satisfies all conditions of Theorem 2, so that S ′
is a set of binary uniqueness for A. Figure 6 shows an

example.

6 Conclusions and new directions of
research

In this paper we have proven some results concerning the

stability of sets of uniqueness in binary tomography, to-

gether with some experimental results. Sets of four direc-

tions, ensuring uniqueness for binary images defined on a
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(a)

(b)

Figure 6. Reconstruction performed with different sets of direc-

tions on a 15 × 15 grid. (a) S = {(1,−1), (3,−5), (0, 1), (4,−7)}.
(b) S ′ = {(2,−1), (3,−5), (0, 1), (5,−7)}.

given lattice grid A, are shown to be robust with respect

to lattice perturbations. This could represent an interesting

way of recovering sets of binary uniqueness, whose com-

plete enumeration is still missing (see for instance [10]).

Further work can be done. First of all, noise could be

introduced in the reconstruction process, so one has to face

modifications not only of the lattice directions, but also in

the entries of the projection vector p.
Also, it would be interesting to combine the obtained

stability results with another kind of investigation, rely-

ing on some preliminary results provided in [11, Theorem

2.5 and Corollary 2.1], which in turn rely on [12]. Here,

the binary rounding of the solution obtained by pseudo-

inversion (via iterative methods) is taken into account, and

different sets of binary uniqueness may play a role in the

speed of convergence of the iterations.
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