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Abstract. Nowadays customisation becomes more common due to vast requirement from the customers for which 
industries are trying to use make-to-order (MTO) strategy. Due to high variation in the process, workload control 
models are extensively used for jobshop companies which usually adapt MTO strategy. Some authors tried to 
implement workload control models, order review and release systems, in non-repetitive manufacturing companies, 
where there is a dominant flow in production. Those models are better in shop floor but their performances are never 
been investigated in high variation situations like MTO supply chain. This paper starts with the introduction of 
particular issues in MTO companies and a general overview of order review and release systems widely used in the 
industries. Two order review and release systems, the Limited and Balanced models, particularly suitable for flow 
shop system are applied to MTO supply chain, where the processing times are difficult to estimate due to high 
variation. Simulation results show that the Balanced model performs much better than the Limited model if the 
processing times can be estimated preciously.  

1 Introduction  
Customization is one of the major challenges faced by 
most of the high variety-low volume industries [1]. 
Usually strategies like make-to-order (MTO), engineer-
to-order (ETO), etc. are incorporated to tackle 
customization in these companies [2]. In MTO companies, 
there is lot of variation in the process as well as 
uncertainty in demand [3]. As a result, the companies 
sometimes struggle to meet the due dates promised to the 
customers. In order to tackle uncertainty in demand, 
many authors suggested Lean techniques like Kanban 
containers, etc. in MTO companies. Although these Lean 
techniques are efficient in repetitive companies, they are 
not proved to be effective in MTO companies where 
there is high variation in product types as well. Later on 
some authors tried to adopt Workload control (WLC) 
techniques like order review and release (ORR) systems 
particularly for job shop environment. These systems try 
to absorb the variation in demand and reduces the overall 
throughput time. As a result, the due dates of the orders 
are met. These systems are adopted successfully in many 
jobshop companies. The main focus is on production 
aspects and on the shop floor activities, particularly how 
to implement WLC techniques in MTO companies’ shop 
floors. But in MTO companies, orders’ value stream 
consists of the tendering phase, the design phase, the 
purchasing phase and the production phase and activities 
are not restricted only in the shop floor. Dealing only in 
the shop floor activities will ignore the other parts of the 
whole flow and also important issues like departments’ 

integration and coordination [4, 5, 6]. Therefore, WLC in 
MTO companies should not be confined only in the shop 
floor but should also address the other parts of the whole 
supply chain, from the tendering phase to the assembly 
stage [7,8], similar to a pure flow shop environment. 

There are ORR systems which are specifically 
designed for jobshop companies. These systems try to 
hold the orders in the pre-shop pool for some time before 
releasing them to the shop floor. In this way, the system 
is able to reduce WIP, any wastages due to cancellation 
of demand or changes in specifications. There are 
different kinds of load limiting models developed and 
implemented in jobshop companies. Few authors tried to 
apply some of these techniques in pure flow shop 
environment. Limiting (Upper bound limit) is one such 
Load limiting model which is proved to work best in the 
flow shop environment. There are some arguments that 
these systems should have workload balancing capability 
which is required for good performance in pure flow shop 
environment [9]. Therefore, a lean based Balanced 
release (BLR) ORR system is developed by [7] to control 
the shop floor process in such kind of environment. This 
BLR system, capable of balancing workload, shows 
much better performance as compared to Upper bound 
limited system in the shop floor of non-repetitive 
companies. But nowadays as the MTO companies are 
concerned more about the supply chain, the focus of the 
paper is on internal supply chain of MTO companies. The 
pure flow shop can be exactly comparable to the internal 
supply chain. It will be wise to apply those WLC models 
in supply chain environment where there is high variation 
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in the process. Therefore, the first research question of 
this paper is: How does the MTO supply chain perform 

under different ORR systems? To address this question, 
different simulation scenarios are run for both Limited 
and BLR ORR systems. Moreover, in MTO supply chain, 
it is really difficult to predict the expected processing 
time for each order at each workstation. But the 
preciseness of processing times can influence the load 
oriented ORR systems. Therefore, in order to analyze the 
impact of the preciseness of processing times on the 
overall performance of ORR systems in MTO supply 
chain, the second research question is: Does the 

prediction of processing times precisely influence the 

performance of ORR techniques in MTO supply chain? 

To answer this question, the expected processing times 
are grouped into simple classes [10] and simulation runs 
are performed for both the models.  

The remainder of the paper is organized as follows. 
The issues in MTO companies and the different ORR 
systems are described in section 2. The simulation model 
is described in Section 3. The discussion of the results is 
then presented in Section 4. Finally, in Section 5,
conclusions are drawn along with future 
recommendations. 

2 MTO companies and ORR systems 

2.1 MTO companies and their internal supply 
chain 

The term internal supply chain is used to address the 
whole set of stages that, from the reception of the 
customer order to the delivery [11]. In MTO companies’ 
internal supply chains, there are three main classes of 
business processes: physical, nonphysical and support 
processes [5]. Physical processes deal with the physical 
activities on products. Nonphysical processes particularly 
include the engineering and procurement activities. 
Support processes are distinguished by being linked to all 
the nonphysical and physical processes. When a customer 
orders a product, both physical and nonphysical activities 
are carried out. All these processes within the supply 
chain should be controlled using some suitable 
techniques otherwise the overall performance of the 
system will be degraded, particularly when there is high 
variation in the process. 

Another key issue that is highlighted in the literature 
for MTO companies is the due date (DD) setting at the 
tendering stage [12]. The high variability and incomplete 
historical data on lead times in MTO companies make the 
assessment of due dates very difficult [6]. The authors in 
[13] tried to show the benefits of WLC along with web 
functionality in supply chain integration. It is proposed in 
[14] three different procedures for DD quotation 
depending on the DD type and orders type of the MTO 
companies: Negotiable DD and fast order, Negotiable DD 
and slow order, Fixed DD. But DD determination largely 
depends on the whole flow of the supply chain within the 
company. Therefore, the main focus should be on the 
whole flow which handles the output performances. But 
there is still less attention in the area how to implement 

suitable techniques to handle high variation in process in 
MTO companies, particularly in the supply chain [8]. 

2.2 Limiting and lean based balanced ORR 
systems 

Most ORR systems are developed and used mostly in job 
shops [7], [15]. This system implies avoidance of the 
immediate release of customer orders, and instead creates 
a pre-shop pool of orders [16]. The benefits of using ORR 
systems also include easier control over WIP in a shop 
floor, better workload balance between the stations, 
reduces throughput times, increases the reliability of due 
dates [16]-[18]. ORR systems are in line with lean 
methodology, as they help to streamline the flow [7]. ORR 
systems consist of 3 main steps [19]: 1. Order entry phase; 
2. Pre-shop pool; 3. Order release phase. Order release 
phase is most important and there should be an effective 
selection mechanism at this phase [20]. The existing 
procedures of order release can be divided into two main 
categories based on the mechanism of release used [19]: 
load limited methods; time phased methods. Workload 
limiting and workload balancing are two order release 
systems based on load limiting methods These systems 
have been used the most as they offer an easy 
implementation and a simple control of the WIP. 

The workload norm of order release mechanism limits 
the load present in the shop floor and the release method 
sequences and releases the orders based on the parameters 
decided at the management level in the pre-shop pool.  
The workload norm helps to achieve an implicit balancing 
of productive resources. This makes it possible to load up 
all the machines with a workload as close as possible to 
their limit [15], [13], [21], [22]. There are three main 
techniques for the workload control within limited 
workload order release system: upper bound only [15],
[23]; lower bound only [11]; upper and lower bound 
method [17]. In [24], the authors found out that the upper 
bound limiting order release system performs the best.

An alternative to the limited workload methods is 
workload balancing method. This order release method 
balances the load between the different workstations using 
extended forecast horizon as well as keeping the overall 
load inside of certain limits [19]. This method prevents the 
centers to remain inactive and improves the predictability 
of the crossing times in the system [15], [25]. The lean-
based BLR method developed by [7] and applied to non-
repetitive manufacturing proves to be more effective than 
limited workload method. According to this method, the 
focus is on balancing the release workload, disregarding 
the current disbalance between the working stations. The 
choice of orders from the pre-shop pool is done by finding 
the similar amounts of workloads for each workcentre, 
taking into account the current release period as well as 
the future ones (extended schedule visibility). A 
mathematical model is developed and the objective of the 
mathematical model is to balance the overloading and 
underloading of loads at each job station over an extended 
period of time. The details of the mathematical model are 
available in the article by [7]. 
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3 Simulation model  

3.1 The structure of the supply chain model  

A supply chain model is constructed from the point of 
view of a customer request, which follows a route from 
an order entry phase to the delivery of an order. In this 
case, a supply chain resembles a flow shop, where orders 
follow the predefined sequence of departments. The 
simulation focuses on one of the main specifics of MTO 
supply chain – uncertainty in prior evaluation of 
processing times at a high level of variability. The 
estimation of expected processing times at release can be 
simplified by grouping the sample of orders into simple 
classes [10]. The assumptions made are that all the orders 
are of the same type, so they follow the same route. 
Python 3.4 Simpy module [26] is used for simulation and 
CPLEX 12.6 is used to solve the optimization problem 
for the BLR model. 

The ORR systems are tested in the model in order to 
discover their applicability to MTO supply chain’s 
performance. Before executing the algorithm of ORR 
system, a current aggregated workload present in a MTO 
supply chain and at each department is measured. The 
workload includes 2 main components: a direct workload 
of a department, which is found in the queues of each 
department; and indirect workload, which is the sum of 
processing times of all the orders in the system that sooner 
or later have to pass through this department (often 
referred as an upstream load). Two different ORR systems, 
Upper bound Limited Workload and BLR Workload, as 
described in [7] are used for order release in this paper. 
For simulation, the basic assumptions and the parameters 
for both the models are almost the same as that given in 
the article by [7] with little bit modification. According to 
the classifications by [19], the characteristics of both the 
ORR systems applied to the SSC simulation model are 
the same except for two factors. Aggregation of 

workload for Limited Workload is load at each 
department whereas for BLR Workload is total load in 
the supply chain; Schedule visibility for Limited 
Workload is limited whereas for BLR Workload is 
extended. 

3.2 Input parameters 

In order to simplify the model, the randomness in orders 
is ignored and they are assumed to be constant. Based on 
previous studies, the arrival of orders follow a Poisson 
distribution on average every 16 minutes. Thus on 
average there are 30 orders per day and all 30 orders 
arrive to the system just at the beginning of each release 
period (day in this case). It is decided to use a lognormal 
distribution of processing times, which is quite common 
in MTO supply chain [27]. The processing times at each 
department are assumed to be 29.7 minutes long on an 
average. As the objective of this paper is related to high 
variation situation, coefficient of variation of 0.8 is 
assumed here. Considering the assumptions, the input 
data is generated with the use of Minitab 17 software. 
The generated values represent the actual processing 

times, occurred at each stage of a supply chain. But they 
cannot be used for planning purposes, as they are not 
known in advance, before the request is processed. Thus 
the expected processing times, which are estimated when 
the request arrives, should be also considered. To do so, 
each sample is divided into equal parts – classes, and the 
mean of each class is found. Each class’ mean is used for 
planning purposes as an expected processing time, which 
is estimated on the requests’ arrival time. To answer the 
second research question, different number of classes are 
tested. Thus, for a low precision level there are 3 classes 
of expected processing times: short, medium and long. 
And for a high precision level in estimating the expected 
processing times, 7 classes are considered. 

3.3 Conduction of experiments 

As there is huge variation in processing times of different 
orders, the system workload cannot be calculated in terms 
of number of orders. Instead it is assumed to be the total 
capacity of the entire supply chain and it is defined in 
terms of minutes. To determine the optimal system 
workload, some preliminary simulation runs are 
performed. Simulation is started with very high system 
workload and then slowly the workload is decreased to 
lower values. Around 18000 minutes, the performance 
measures of the system are found to be optimal. 
Therefore, 18000 minutes is considered to be the system 
workload for the rest of the experiments. Warm-up period 
corresponds to the time interval, after which the system 
becomes stable. The most used method for the calculation 
of the warm-up period length is the graphical method 
described by [28]. To determine a warm-up period and 
length of the simulation runs, an experiment is conducted 
at 18000 minutes system workload. During the first 300 
days the MTO supply chain performance is not stabilized. 
As the simulation is of a steady-state type and its initial 
state doesn’t represent the real behavior of the system, a 
warm-up period is set to 300 days, until the output 
stabilizes. In order to avoid any possible errors, the length 
of the run is set to 500 days. These values are used for all 
the experiments. The performances [22] that are 
measured are: Average Gross throughput time (GTT) - 
total time from arrival of order till its delivery including 
waiting time in the preshop pool; Average Supply chain 
time (SCT) - total time from release of order for actual 
processing in the supply chain till its delivery; Average 
Output workload - the load of orders that are released per 
period.  

The experiments are planned in accordance to the 
research questions of the paper. First set of experiments 
are conducted with the actual processing times for both 
the models. The second set of experiments are conducted 
in order to simulate the MTO supply chain with different 
precision levels in processing times estimation. With the 
obtained results from the first set of simulation runs, it 
will be possible to compare the performance of both 
models in MTO supply chain. With the obtained results 
from the second set of experiments, it will possible to 
analyze the impact of uncertainty in processing times on 
the performance of upper-bound Limited ORR system 
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and BLR ORR system. In MTO supply chain, the 
workload does not remain stable. Therefore, it will be 
wise to test the models under all kinds of situation. 
Different target workload norms (defined in minutes), 
which range from very short queues in a MTO supply 
chain to very long ones (960 to 3500 minutes) are defined 
to limit the load for each job station in the supply chain. 
The actual output performances are obtained in minutes 
but for better understanding, they are converted into 
hours. 

4 Results and discussion 
The results of the simulation runs that are carried out to 
answer the research questions are shown in this section. 
Figure 1 shows the variation of GTT with respect to SCT. 
As the workload norms increase, less orders remain in the 
pre-shop pool and more orders flow into the actual 
system, thereby decreasing the throughput time of the 
orders upto certain extent. Therefore, GTT first decreases 
with SCT and then becomes more or less stable. It can be 
also seen from the figure that at same SCT, the GTT for 
BLR model is much lower than that of the Limited model. 
The difference in performance increases as the workload 
norms become tighter, i.e., situation when there is short 
queue within the supply chain. It convinces that the BLR 
model is better than the Limited model, especially at 
tighter workload norms. Therefore, it answers our first 
research question. 

 
Figure 1. Variability index (sigma/mu) of 80% for actual 
processing time. 

Figure 2 shows that the difference in performance 
between the Limited and BLR models at low precision 
level (Class 3). The GTT obtained from both the models at 
different workload norms are much higher than that 
obtained using actual processing time information. At 
some SCT, there is little bit difference between the models 
but the overall difference in performance is not so 
significant at low precision level. Therefore, the BLR 
model does not perform well when it is difficult to predict 
the processing times precisely. 

Figure 2. Variability index (sigma/mu) of 80% for low 
precision (Class 3) processing time. 

Figure 3 shows the difference in performance between 
the two models at high precision level (Class 7). The 
performance of Limited model is similar to that obtained 
with actual processing times. But for BLR model, the 
performance is little bit different at tighter workload 
norms with that at the actual processing times. The trend 
of the curves are more or less similar to that in Figures 1 
and 2. Both the models perform much better at high 
precision level than at low precision level. Moreover, 
there is not significant differences in throughput times for 
both the models with actual processing times as well as 
with high precision level. From Figures 2 and 3, it is 
revealed that BLR model performs better than Limited 
model when processing times can be estimated accurately 
at the planning stage. This answers our second research 
question. 

Figure 3. Variability index (sigma/mu) of 80% for high 
precision (Class 7) processing time. 

Order release decision solely depends on the 
processing times [29]. Both BLR and Limited models 
depend on the total load, in terms of processing times. 
Thus any wrong prediction in processing times of 
different orders will degrade the performance of BLR 
model. Therefore, BLR model performs better than 
Limited model only when the processing times can be 
estimated correctly at the planning stage. 

5 Conclusion 
This paper looks at the processes of the MTO companies 
from the point of the internal supply chain as a whole. 
This gives an opportunity to look at the flow along these 
processes and eliminate waste, thus leaning the supply 
chain, and not only its separate stages. Due to variation in 
processing times and uncertainty in demand, it is really 
difficult to manage the internal supply chain which 
directly impacts the customer requirements. In jobshop 
environment, similar kind of situation is tackled by using 
workload ORR techniques. But few authors [7] stated the 
importance of workload ORR techniques in a pure flow 
shop environment which is suitable for high 
customization. MTO supply chain is similar to a pure 
flow shop environment. Continuing the studies of [7] on 
ORR systems, which proved to be effective in leaning the 
processes in non-repetitive manufacturing, two types of 
ORR systems are applied to the MTO supply chain. The 
Limited and BLR models are run at different workload 
norms in order to capture all possible situations at 18000 
minutes system workload. It is seen form the simulation 
runs that GTT decreases with increase in SCT, which is 
quite logical. At actual planning situation, the BLR model 
performs much better than the Limited model, 
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particularly at tighter workload norms. But in reality it is 
very difficult to predict the processing times of different 
orders beforehand. Therefore, processing times are 
estimated at low and high precision levels and both the 
models are run at different workload norms. It is seen that 
the BLR model performs better than the Limited model 
only when the processing times can be estimated more 
closely to the actual data. As both BLR and Limited 
models depend on the load (processing times in this case), 
the accuracy of the load plays an important role in the 
performance of ORR systems in MTO supply chains. 
Therefore, the important contribution of this paper is that 
it is quite reasonable for the MTO companies to use the 
workload ORR systems to improve the performance of 
their internal supply chain but there should be some way 
to predict the data as close as possible to the original 
situation in order to obtain the maximum benefits. 

This paper is purely theoretical and is based on 
statistical distributions and generalized model. Though 
the results are statistically significant, the processing 
times in the companies might have different distributions 
and thus have different effects on the performance. But 
the findings of this paper create a strong base for further 
research on the applicability of ORR systems to different 
aspects of MTO supply chain. Here the study is 
concerned only with the pure flow along the internal 
supply chain with simple configuration but future studies 
can concentrate on other factors like the parallel 
processing of orders, multiple resources, transportation, 
etc. It will be quite interesting to see how the simulation 
model could be adapted to the real case. Therefore, 
another suggestion for further research is to collect data 
from a company or companies and confirm these 
theoretical findings empirically. 
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