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1 Introduction

Many small-package carrier companies provide their customers with a time window 
for delivery and display this in their online tracking system. UPS, for instance, 
shows information on the delivery time window of orders for DELL computers. 
Other exam-ples where companies dictate their arrival times at customers are 
furniture delivery, internet installation services and moving services. In each of these 
examples, the car-rier communicates a time window to the customer during which 
he/she can expect to be serviced. The time window establishes a mechanism for 
providing customer service. Once a time window is quoted to the customer, the 
carrier company strives to serve the client within this window. We argue that this 
reasoning should be reflected in the carrier’s routing and scheduling decisions.

Our problem at hand considers time windows but treats them as endogenous to 
the routing problem. Specifically, the carrier company assigns customers to vehicles, 
sequences the customers allocated to each vehicle, and sets the time windows in 
which it plans to serve the customers. In the remainder of this paper, we refer to the 
described problem as the vehicle routing problem with self-imposed time windows 
(VRP-SITW). The term ‘self-imposed’ refers to the fact that the carrier company 
selects the time windows by itself, independently of the customer. Once the time 
windows are quoted to the customer, however, the customer should be serviced 
within the window.

Carrier companies are faced with a number of uncertainties that need to be 
embed-ded in their daily planning. In this paper, we consider uncertainty that occurs 
in travel times due to disruptions and study its impact on adhering to quoted time 
windows. This uncertainty can reflect accidents, weather conditions, vehicle 
breakdowns or road works, and thus may hamper planned arrival time. As a 
consequence, effective customer service may be hindered in the event that arrival 
times deviate from the quoted time windows. One natural way to protect schedules 
against this uncertainty is to include time buffers (see, for instance, Hopp and 
Spearman 1996 for a similar logic in a production environment). Inspired by the 
scheduling literature, we propose a buffer allocation model that inserts slack time 
into the schedule to cope with possible delays.

The described environment is clearly distinct from the classic vehicle routing prob-
lem (VRP) (Laporte 2009), which considers deterministic travel times. It also differs 
from the VRP with stochastic travel times, which does not account for the impact of 
stochasticity on the quality of customer service. This is due to the fact that the objec-
tive of the VRP with stochastic travel times is to minimize the operational costs, i.e., 
distances or travel times (Laporte et al. 1992).



The VRP-SITW is conceptually different from the well-studied VRP with time 
windows (VRPTW), which considers exogenous time windows, i.e., imposed by the 
customer (Bräysy and Gendreau 2005a, b). Thus, the VRPTW minimizes the opera-
tional cost subject to customer-imposed restrictions. The VRPTW is suitable to 
situa-tions where customer service is crucial. However, the concept of VRP-SITW 
applies to situations where customer service is influential but does not warrant 
imposing arrival times on the carrier. Therefore, the VRP-SITW is distinct from the 
literature since it considers operational cost and customer service cost, where the 
latter is scheduled by the carrier rather than exogenously imposed by the customers.

Our aim is to construct an a priori plan for the VRP-SITW that best copes with 
disruptions; in other words, a solution is generated at the start of the planning 
horizon and is not altered during execution. Therefore, a solution for the VRP-SITW 
consists of a set of routes and scheduled arrival times. We assume that service cannot 
start before the time window, leading to waiting in case of early arrivals. 
Furthermore, late arrivals are permitted but penalized proportionally to their 
tardiness. Drivers have a fixed shift length and are paid a fixed amount per day. Our 
solution framework relies on the tabu search heuristic for assigning customers to 
routes and for the sequencing of each route. The actual evaluation of the target 
function is achieved by solving the resulting buffer allocation model to optimality 
for each route separately; this sub-problem is modeled as a linear program.

The main contributions of this paper are fivefold:

1. We describe and model the concept of SITW in vehicle routing; to the best of our
knowledge, this concept has as such never been studied before in the scientific
literature, but is of great practical value.

2. We describe how a VRP with SITW and stochastic travel times can benefit from
time buffers as a means to uphold customer service levels.

3. We develop a hybrid LP/tabu search algorithm for producing high-quality solutions.
4. We conduct a series of numerical experiments on benchmark datasets. Our

analysis indicates that, compared to the standard VRPTW with fixed time
windows, the flexibility to the transporter of selecting his own time windows
allows to travel significantly less distance and use far less vehicles.

5. We develop an efficient solution framework for the VRP with SITW. This frame-
work can be used by practitioners to weigh the cost of routing solutions against
revenues corresponding to customer service levels.
The remainder of the paper is organized as follows. In Sect. 2 we survey the relevant

literature. We provide a number of definitions and a detailed problem statement in 
Sect. 3. Our solution procedure is described in Sect. 4. The computational 
experiments are presented and discussed in Sect. 5. Finally, in Sect. 6, we highlight 
the main results and indicate directions for future research.

2 Literature review

The parallelism between vehicle routing and production scheduling is highlighted by 
Gendreau et al. (1995b), who study single-vehicle routing and scheduling to minimize 
the number of delays. Given a deadline for servicing each customer, the objective is to



minimize the number of late deliveries. The problem is equivalent to single-machine 
scheduling with sequence-dependent setup times to minimize the number of tardy 
jobs. The scheduling aspect is fundamental in Mitrović-Minić and Laporte (2004), in 
the context of dynamic pickup and delivery with time windows. The authors first 
solve the routing component and then look into the scheduling component. Four 
waiting strategies are presented and assessed based on the distance along with the 
number of vehicles required. Xiang et al. (2008) study the dynamic dial-a-ride under 
various types of uncertainty. They propose several scheduling strategies for handling 
dynamic events, accounting for a fixed duration and overtime costs in the case of 
exceeding the shift length. Our problem VRP-SITW differs from the above literature 
in that customer demand is known in advance while the time windows are set by the 
company.

A number of stochastic versions of the VRP have been studied in recent years 
(see Cordeau et al. 2007 for a comprehensive survey). The majority of this literature 
deal with minimizing the operational cost in a stochastic environment. Thus, 
scheduling arrival times to ensure timely customer service was not explicitly 
addressed. The VRP with stochastic demands (VRPSD) is the most studied 
stochastic variant of the problem. In the VRPSD, demand is only revealed upon 
arrival to the customer. Therefore, a vehicle route may fail when the vehicle has 
insufficient residual capacity to serve the observed demand. Several policies have 
been proposed to cope with route failure, see for instance Christiansen and Lysgaard 
(2007), Laporte et al. (2002), and Secomandi and Margot (2009). However, these 
policies aimed at minimizing travel time while ignoring customer inconvenience. 
Similarly, the VRP with stochastic customers as presented in Gendreau et al. (1995a) 
only accounts for operational costs. Stochastic travel times in VRP are investigated 
by Laporte et al. (1992), where vehicles incur penalties for exceeding a limit on the 
route duration. Lei et al. (2012) examine the VRP with stochastic service times and 
penalize shift duration violations. Kenyon and Morton (2003) developed a solution 
method that embeds a branch-and-cut scheme within a Monte Carlo procedure. 
Time-dependent travel time, i.e., where the travel time between locations depends 
upon the time of day this distance is traveled, was considered by Jabali et al. (2009). 
The authors studied the time-dependent VRP subject to a single disruption, which 
had an equal probability of occurring on each arc; under these assumptions the 
objective was to minimize the expected route duration.

Li et al. (2010) examine VRPTW with stochastic travel and service times. Their 
model also includes overtime costs for exceeding route duration and soft time 
windows; the actual penalties are computed by means of simulation. A similar 
problem was studied by Taş et al. (2013), who developed an effective tabu search 
solution method to the problem. Finally, Groër et al. (2009) introduced the notion of 
consistent service. In this context, they defined consistency as having the same driver 
visiting the same customers at roughly the same time on each day that these 
customers require service. Determining the time at which customers receive orders, 
over a number of days, is similar to the concept of SITW treated in this paper.

3 Description of VRP-SITW

Consider a set of N customers with a fleet of K identical vehicles. Each customer i 
has a demand qi and is to be serviced by a single vehicle. The logistics network is



represented by a complete directed graph G = (V, A), with V = {0, . . . ,  N } the set of 
vertices and A the set of directed arcs. The vertex 0 denotes the depot; the other vertices 
of V represent the customers. The non-negative weight di j  associated with each arc 
(i, j) represents the distance from i to j . Each vehicle must start and end its route at the 
depot, the total demand on each route cannot exceed the vehicle capacity Q and each 
customer should be visited exactly once. The objective of the VRP is to construct routes 
that bring the total travel time of the vehicles to a minimum. The VRP-SITW entails 
the same elements as the VRP but with a number of additional parameters. Below, 
we first give a general description of the objective function (Sect. 3.1). Subsequently, 
we elaborate on the SITW model and on the way in which stochasticity is captured 
(in Sects. 3.2 and 3.3, respectively).

Let a solution to the VRP-SITW be a set of routes Z = {R1, . . . ,  R|Z |} with 
|Z | ≤  K . Each route Rr (r = 1, . . . , |Z |) is a vector (0, i, j, . . .  , 0) whose components 
are elements of V , specifying which clients (vertices) will be visited by the vehicle 
following the route, and in which order. Each route begins and ends at the depot (vertex
0) and each vertex different from 0 belongs to exactly one route. We say that i ∈ Rr if
the vertex i ∈ V is part of route Rr ∈ Z and (i, j) ∈ Rr if i and j are two consecutive
vertices in Rr .

3.1 Objective function

The objective function of the VRP-SITW consists of three parts. The first part is the 
travel cost, which captures the vehicle operating costs such as fuel costs. The second 
part of the objective function is a tardiness penalty, which represents the desire to 
respect the quoted time windows as well as possible. A ‘railroad-scheduling approach’ 
is adopted: the lower bound of the time window is the earliest starting time of the 
service (see Lambrechts 2007 for the origin of this term; this concept is used in 
routing, see for instance Zhao et al. 2006). Arrival before the scheduled window is 
not penalized, since the driver cost is presumed to be fixed. Arrival after the time 
window, however, leads to a penalty proportional to the tardiness. The third 
component of the objective function is an overtime penalty. We suppose that the 
drivers are paid a fixed amount for a shift with fixed duration; if this duration is 
exceeded then overtime penalties are due. The objective function for the VRP-SITW 
is

F(Z) = c
∑

Rr ∈Z

∑

(i, j)∈Rr

di j +
∑

Rr ∈Z

�(Rr ), (1)

with c the cost of traveling one unit of distance and �(Rr ) representing the overtime 
and tardiness penalties of route Rr . This is evaluated by solving a buffer allocation 
problem, as is described in Sect. 3.2.

In an optimal solution to the VRP-SITW, the travel time will never be less than for 
the associated VRP instance since the latter has neither tardiness nor overtime penal-
ties. The travel time in optimal solutions to VRP-SITW and VRPTW is in principle 
incomparable, since the fixed time windows are relaxed in the former but there are 
extra penalties in the objective. With travel costs only, the VRP-SITW is equivalent 
to the VRP and is thus NP-hard.



3.2 Self-imposed time windows

Each route Rr consists of a set of nr customers. For convenience, when refer-
ring to one specific route, we relabel the customers in ascending order: Rr = 
(0, 1, . . . , nr , nr + 1), where the depot corresponds with 0 ≡ nr + 1. The distance 
di,i+1 between consecutive nodes i and i + 1 in the route is written as di . A schedule 
for route Rr is an (nr + 2)-vector s = (s0, s1, . . . , snr +1), specifying a departure time 
si from each node i ∈ Rr . The shift length is the time interval [ss, se], implying that 
ss ≤ s0. Each customer i ∈ Rr \{0, nr + 1} has a time-window length Wi within which 
the arrival of the vehicle is desired. The carrier company communicates time windows 
to its customers based on the schedule s. Each node i ∈ Rr also has a standard service 
time ui , e.g., for load/unload activities. We assume that a vehicle will never leave a 
customer earlier than scheduled. The left bound of the time window is then si − ui , as
this constitutes an earliest starting time for the servicing operations. An illustration is
provided in Fig. 1. The service times u0 and unr +1 at the depot are set to zero.

During the execution of this baseline schedule, disruptions might occur. We exam-
ine disruptions corresponding with an increase in the travel time di between customers 
i and i + 1. The length L i of this delay is a random variable, which is modeled by 
means of discrete scenarios; a similar choice in a machine-scheduling context is 
made by, e.g., Daniels and Carrillo (1997), Daniels and Kouvelis (1995), Kouvelis et 
al.(2000), and Kouvelis and Yu (1997). Specifically, we let L i denote the increase in 
di if i is ‘disrupted’, which takes place with probability pi . The variable L i is dis-
crete with probability-mass function gi (·), which associates non-zero probability with 
positive values lik  ∈ �i , where �i denotes the set of disruption scenarios for di , so
∑

k �i 
gi (lik  ) = 1. We use gik  as shorthand for gi (lik  ); the disruption lengths lik  are 

inde

∈
xed from small to large for a given i . The realization of L i becomes known only 

when arc (i, i + 1) is traversed. The actual departure time at customer i is denoted by 
si

a(s); this is a random variable that is dependent on the schedule s (in the remainder of 
the article, we omit the argument s when there is no danger of confusion). The value 
si − ui is a lower bound on the starting time of the client’s service. This so-called 
railroad-scheduling approach implies that si ≤ si

a, ∀i ∈ Rr , and guarantees that the 
actual schedule will strictly copy the baseline schedule if no disruptions occur. In 
effect, the scheduled times become ‘release dates’ for departure times si

a from each 
customer i ∈ Rr :

sa
0 = s0

sa
i = max{si ; sa

i−1 + di−1 + Li−1 + ui }, i = 1, . . . , nr + 1.

Fig. 1 Illustration of a time window at customer i



Arrival prior to si − ui is not penalized. With arrival later than si − ui + Wi , however,
we associate a cost proportional to the tardiness: a non-negative integer penalty ti is
incurred per unit-time delay. The value tnr +1 is the cost for arriving late at the depot
at the end of the tour.

We assume that the driver receives a fixed payment for the shift, which ends at se.
Arrival after the end of the shift incurs an overtime penalty b per time unit. We can
now elaborate the penalty term �(·) in Eq. (1). For a given route Rr , �(Rr ) consists
of two components, namely the expected delay costs at customers and at the depot on
the one hand, and the expected overtime penalty on the other hand. Specifically,

�(Rr )=
∑

i∈Rr \{0}
ti E[max{0; sa

i (s)−(si −ui +Wi )}]+bE[max{0; sa
nr +1 − se}], (2)

with E[·] the expectation operator (note that s is actually also a parameter to �(·)). 
We note that our objective measures the expected performance of a solution in a 
stochastic environment, and not the worst-case performance. This choice is 
motivated by the fact that in the context of the VRP-SITW good average customer 
service is desired, but this does not entail hard constraints per customer. A 
robustness approach would also be highly sensitive to the specific discretization 
choices for the disruption lengths. In the following subsection, we outline the 
disruption model in detail.

3.3 Modeling disruptions

When the durations are independent, little less is possible for objective-function eval-
uation than to consider all 

∏
i∈Rr \{nr +1}(|�i | +  1) possible combinations of 

duration disruptions. This was the motivation in a scheduling context in Herroelen 
and Leus (2004), Leus and Herroelen (2005, 2007) and Ballestín and Leus (2008) to 
develop a model that considers only the main effects of the separate disruption of 
each of the individual jobs rather than all possible disruption interactions. 
Computational results in the aforementioned scheduling applications show that the 
resulting model is quite robust to variations in the actual number of disrupted jobs. 
In the context of VRP with stochastic disruptions, considering the situation whereby 
each arc may suffer a disruption implies that the evaluation of a given route is 
exponential; this stems from the need to evaluate all possible duration interactions 
between the arcs. Therefore, it is not straightforward whether the corresponding 
decision problem is even in NP. To counter such effects, studies of stochastic 
versions of the VRP often employ realistic simplifying assumptions that restrict the 
solution space, enabling an effective evalu-ation process. In the VRP with stochastic 
demand, it is widely assumed that a route can suffer at most one failure, e.g., Laporte 
et al. (2002) and Gendreau et al. (1995a). In the context of time-dependent VRP with 
service disruptions, Jabali et al. (2009) study the effect that a single disruption of a 
unique length may have on the solution. We make a similar assumption in this paper: 
our model assumes that exactly one leg will suffer a disruption from its baseline 
duration. This disruption need not have only one given length, however: for each leg 
i we consider a set of disruption lengths �i . The underlying practical motivation is 
that we should only optimize for one ‘incon-



venience’ per day, as it would be very difficult to protect from multiple disruptions at
multiple places at multiple times. In conclusion: the model optimizes for the expected
effect of one disruption; the output of the model is useful when the real number of
disruptions is low, so that they are likely to be spread over time and the number of
interactions is limited.

For a given route Rr we distinguish between two situations: either no leg in Rr

is disturbed, or a single leg is disturbed in Rr . Let ζ denote the overtime for Rr

when no leg is disturbed (tardiness penalties are irrelevant if no leg is disturbed). The
total penalty �(Rr ) consists of two components, namely the expected delay costs at
customers and at the depot on the one hand, and the expected overtime penalty on the
other hand. Specifically, for a given route Rr , under the one-disruption assumption
and with si−1 + di−1 + ui ≤ si for all i > 0, the relevant penalty term in (2) can be
written as

�(Rr ) =
nr∑

i=0

nr +1∑

j=i+1

|�i |∑

k=1

pi gik t j�i jk + b
nr∑

i=0

|�i |∑

k=1

pi gik�ik + b

(
1 −

nr∑

i=0

pi

)
ζ.

In this expression,

�i jk = max

⎧
⎨

⎩0; si + di + lik +
j−1∑

m=i+1

(um + dm) − s j + u j − W j

⎫
⎬

⎭ ,

i ∈ Rr \ {nr + 1}; j ∈ Rr \ {0}; i < j; k ∈ �i ,

�ik  = max 
{
0; snr +1 + �i,nr +1,k − se

}
, i ∈ Rr \ {nr + 1}; k ∈ �i

and

ζ = max 
{
0; snr +1 − se

}
.

Remember that pi represents the probability that di is the unique disrupted value. 
The variable �i jk  represents the tardiness at client j due to a disruption according 
to scenario k of di , which is equal to zero or to the disruption length of i minus the 
buffer size in place between the customers i and j , whichever is larger. The term
∑ j

m
−1

i 1(um + dm ) is the service and travel time for the customers between i and j . 
Similarly

= + 
, �ik  is the overtime resulting from a disruption at customer i by scenario k.

The overtime is zero in case of arrival at the depot before the shift end se, and equal to 
the realized arrival time minus se otherwise. Thus, ζ is zero in case of arrival at the depot

before the shift end. The probability that a route is not disturbed is 
(
1 − 

∑
i
nr=0 pi 

)
.

4 A hybrid solution procedure

Our solution method for the VRP-SITW proceeds in two stages: first routing and then 
scheduling. The assignment of customers to vehicles and the sequencing of customers 
n stage 1; this stage uses tabu search. Iteratively, the routes generated by the



tabu search are then scheduled in the second stage, where we use linear 
programming to solve the sub-problem to optimality under the one-disruption 
assumption. We say that our solution procedure is ‘hybrid’ due to the combined use 
of a meta-heuristic and an exact optimization routine. In the terminology of 
Puchinger and Raidl (2005), our hybrid algorithm is collaborative, since there is a 
clear hierarchy between the two phases. Examples of earlier works that combine 
local search with LP are Finke et al.(2007), where job-machine allocation is 
performed via tabu search while an LP model is used for inserting buffers in between 
jobs. Flisberg et al. (2009) solve a VRPTW via tabu search based on the input of an 
LP that defines origins and destinations for full truckloads.

Below, we first describe the lower-level scheduling problem in Sect. 4.1, followed 
by the tabu search procedure (Sect. 4.2).

4.1 Scheduling and buffer insertion

For a given route Rr , the linear program below produces an optimal schedule, condi-
tional on exactly one leg being disrupted. Buffer sizes are implicit from the resulting 
schedule.

�(Rr ) = min
nr∑

i=0

nr +1∑

j=i+1

|�i |∑

k=1

pi gik t j�i jk + b
nr∑

i=0

|�i |∑

k=1

pi gik�ik + b

(
1 −

nr∑

i=0

pi

)
ζ

subject to

si−1 + di−1 + ui ≤ si i ∈ Rr \ {0} (3)

s0 ≥ ss (4)

si + di + lik +
j−1∑

m=i+1

(um + dm) ≤ s j − u j + W j + �i jk

i ∈ Rr \ {nr + 1}; j ∈ Rr \ {0}; i < j; k ∈ �i

(5)

snr +1 + �i,nr +1,k − se ≤ �ik i ∈ Rr \ {nr + 1}; k ∈ �i (6)

ζ ≥ snr +1 − se (7)

all �i jk ≥ 0; all si ≥ 0; all �ik ≥ 0; ζ ≥ 0 (8)

Constraints (3) can be viewed as precedence constraints: the scheduled departure 
time si from customer i is at least equal to the departure time of its predecessor si−1 
augmented with the distance di−1 and the service time ui . This implies that the 
buffer between customers i − 1 and i is si − (si−1 + di−1 + ui ). Constraint (4) 
ensures that the scheduled departure time from the depot does not precede the shift’s 
start time ss. Constraints (5), (6) and (7) determine the delay terms �i j k , �ik  and ζ , 
respectively, as described in Sect. 3.3.



4.2 Tabu search for the VRP-SITW

Tabu search has been widely used for solving the VRP, see for example Gendreau 
et al. (1994), Gendreau et al. (1996) and Hertz et al. (2000). Furthermore, it has 
been extensively used to solve VRPTW as well, examples can be found in Garcia et 
al. (1994) and Taillard et al. (1997). Thus, adopting the tabu search heuristic comes 
as a natural choice also for the VRP-SITW. Our tabu search procedure generates 
a set of routes that still need to be scheduled using the lower-level LP described in 
Sect. 4.1. The procedure iteratively scans the members of a neighborhood of the current 
solution to evaluate possible improvements in the objective function. Due to our bi-
level approach, the evaluation of each neighborhood solution requires a separate LP 
run, which, if performed to optimality, would require enormous computation times. 
We have therefore opted for approximations of these optimal overtime and tardiness 
penalties to guide the tabu search in selecting the best move in its current neighborhood: 
criteria C1, C2 and C3 below provide three estimates of the effect of the moves on the 
optimal objective value. Once a move is selected, its exact target function is computed 
by invoking the LP model for the changed route or routes, leading to a new optimal 
schedule.

The overall procedure is described in pseudo-code as Algorithm 1. We adopt three 
different criteria C1, C2 and C3 for choosing a move; these will be described in detail 
below. The tabu search procedure is run consecutively with each of the three criteria. 
The initial solution Z0 is the output of the nearest neighbor heuristic for each of the 
three criteria. Feeding the best-found solution of C1 into the run for C2 and for C2 
into C3 has been tested, together with many variations of the order of the three 
criteria, but this did not lead to better results. For each customer i ∈ V , we construct 
2-opt∗ (Potvin and Rousseau 1995) and Or-opt (Or 1976) neighborhoods for the η
nodes closest to i . A chosen move is declared tabu for the next κ iterations. The
process iterates until a maximum number of non-improving moves is reached.

Algorithm 1 Global algorithmic structure
1: construct initial solution Z0 and compute F(Z0)

2: for ξ = 1 to 3 do
3: set Z = Z0 and F(Z) = F(Z0)

4: generate the neighborhood of Z
5: evaluate all neighbors on criterion Cξ and retain the best non-tabu move as new solution Z
6: evaluate F(Z) and update the tabu list to include Z
7: if Z is feasible and is better than the current best solution then
8: update the best feasible solution for Cξ to Z
9: end if
10: update excess demand penalty
11: if no improvement in ηmax iterations then
12: store best solution for Cξ

13: else
14: go to step 4
15: end if
16: end for
17: return the best solution from ξ = 1, 2 and 3



Let 
(Z) be the total travel cost associated with solution Z , i.e.,


(Z) = c
∑

Rr ∈Z

∑

(i, j)∈Rr

di j .

In line with Gendreau et al. (1994), diversification of the search is achieved by 
allow-ing demand-infeasible solutions (i.e., routes with total demand exceeding the 
vehicle capacity). Such infeasible solutions are penalized in proportion to their 
capacity vio-lation by means of the following composite objective function, which 
replaces 
(Z):


2(Z) = 
(Z) + w
∑

Rr ∈Z

⎡

⎣

⎛

⎝
∑

i∈Rr

qi

⎞

⎠ − Q

⎤

⎦
+

. (9)

In Eq. (9) each unit of excess demand is penalized by a factor w. This excess penalty 
w is decreased by multiplication with a factor ν after φ consecutive feasible moves. 
Similarly, w is increased (multiplied by factor ν−1) after  φ infeasible iterations.

Below, we describe the three criteria that allow avoiding the use of the LP model 
for each candidate solution and lead to computationally efficient move selection pro-
cedures.

C1-distance based This heuristic is based purely on minimizing the modified travel
costs 
2(·), i.e., it does not take into account the time windows and their associated
penalties, nor does it consider overtime. Thus, C1 is similar to the criteria used
in local search for the VRP. Let Z ′ be a neighbor of the current solution Z and
define �1(Z ′) = 
2(Z) − 
2(Z ′). The chosen move is one that is not tabu and
maximizes �1(·).
C2-distance based and marginal penalties This measure adds to C1 an assessment
of the penalty component

∑
Rr ∈Z �(Rr ). For given Z , the marginal penalty of

route Rr is �(Rr )
nr +1 . Consider a move involving two routes R1 and R2, leading to

solution Z ′. Let n1 and n2 be the number of nodes visited by routes R1 and R2,
respectively, in the current solution Z , and n′

1 and n′
2 the number of nodes visited

by routes R1 and R2 in the new solution Z ′. C2 picks the move that is not tabu and
maximizes the following expression:

�2(Z ′) = 
2(Z) − 
2(Z ′)

+ρ

[
�(R1) + �(R2) − �(R1)

n1 + 1
(n′

1 + 1) − �(R2)

n2 + 1
(n′

2 + 1)

]
.

The logic behind this evaluation is based on the observation that penalties increase 
with the number of customers in the route. Decreasing the number of customers 
in a route with a large penalty value is likely to decrease the total objective value 
associated with the route.
C3-distance and buffer based As mentioned in Sect. 4.1, the buffer size between 
customers i and i + 1 is  bu(i) = si+1 − (si + di + ui+1). Criterion C3 favors 
moves with small buffers. Each buffer unit is penalized by γ . For each candidate



solution Z ′ involving a move between customer i and customer j , we compute the
following quantity:

�3(Z ′) = 
2(Z) − 
2(Z ′) − γ [bu(i) + bu( j)].

We chose a move that is not tabu and that maximizes �3(·). The reasoning involved
in this move selection process is the following: improvements in travel times are
more likely to also decrease the penalties when the buffers are small.

3
4

Different aspects of the problem are tackled by each criterion. The impact of a move 
on the travel time 
2(Z) is efficiently computed. The accurate impact of a move on the

penalty component 
∑

Rr ∈Z �(Rr ) of the target function, on the other hand, requires 
evaluation of the SITW model for the affected route or routes. Criteria 2 and 3 attempt
to assess moves based on the penalty values of the current solution rather than via the 
LP model. We note that C2 is equivalent to C1 for moves involving a single route, 
which can occur only with Or-opt moves.

5 Computational experiments

We have run a number of experiments to assess the computational performance of 
our algorithm and to compare the outcomes of the VRP-SITW with the results of the 
VRP. As previously mentioned, the VRP-SITW and the VRPTW are conceptually 
different, in that the former suits situations where customer service is influential and 
the latter suits situation where customer service is crucial. Therefore, we will compare 
the solutions of the VRP-SITW with those of the VRPTW based on their common 
elements, which are the travel time and the number of vehicles.

Throughout this section, the travel cost c in 
(Z) is set to one, thus we use the 
terms distance and travel time interchangeably. For an instance with N nodes, for each 
customer the η = 	0.3N
 closest customers are candidates for a move. The tenure 
size κ is set to 20. The infeasibility penalty w equals 12, with φ = 5 and ν = . The
penalties associated with C2 and C3 are chosen as ρ = 1 and γ = 0.1, respectively. 
The overtime penalty b takes the value 2. The probability pi is set to one over the 
total number of legs in a solution. Given a solution with k vehicles, where k ≤ K , 
pi = N

1
+k . Hence, the probability of disruption is identical for all the legs in the 

solution.
We consider four disruption scenarios for each leg: |�i | =  4. The probabilities of 

disruption are also the same for each leg i , namely gi1 = 0.5, gi2 = 0.3, gi3 = 0.1 
and gi4 = 0.1. Finally, the disruption lengths between customers i and j are assumed 
proportional to the baseline duration di j  , namely li1 = 0.1di j  , li2 = 0.2di j  , li3 = 
0.5di j  and li3 = di j  .

All experiments are performed on a Intel(R)Core Duo with 2.40 GHz and 2 GB of 
RAM. The implementation is coded in C++, in single thread. The LP instances are 
solved by embedding Gurobi Optimizer 2.0.2, which uses the simplex algorithm. The 
reported runtimes are in seconds. We have adopted two datasets from the literature. 
The first dataset contains a number of VRP instances from Augerat et al. (1998). We 
work with 27 VRP instances, with the number of customers ranging from 31 to 79. 
The vehicle capacity Q is 100 units. The baseline service time ui for each customer



i is set to 10 min. To fit the given data, the shift start time and end time ss and se are 
chosen as zero and 200, respectively. The window length Wi equals 60 for all i . The 
second dataset contains VRPTW instances and stems from Solomon (1987). We 
consider 29 instances with 100 customers [sets R1 (random), C1 (clustered) and RC1 
(random and clustered)]. The baseline service times ui and window sizes Wi are 
given. The opening hours of the depot are used to determine the shift’s starting time 
ss and ending time se. The vehicle capacity Q is 200 units.

Below, we first conduct some experiments related to move selection and tardi-
ness choices (in Sect. 5.1 and 5.2, respectively), followed by comparisons with VRP 
(Sect. 5.3) and with VRPTW (Sect. 5.4).

5.1 Move selection

Table 1 shows the results of implementations for the Augerat instances in which only 
one of the three criteria C1, C2 and C3 is used during the optimization; the tardiness 
penalty ti = 5 for all arcs. The left side of the table displays the target function value 
F(Z) attained. The right side of the table exhibits the runtime for each of the three 
measures. We evaluate performance based on the obtained objective function value. 
We observe that C3 outperforms the other two criteria in 15 out of the 27 instances, 
while C1 and C2 do so in seven and five instances, respectively. On average, C1 
requires less runtime than C2 and C3. The average runtime over all heuristics is 17.3 
min. Since we are working in an a priori setting, these running times are acceptable.

Table 2 contains similar results for the Solomon instances. The computation times 
are larger than those for the first dataset. This is partly due to a greater number of 
customers, but more importantly the number of customers per route is also larger 
than before. Thus, the LP subroutine will consume considerably more time. We note 
that we obtain identical results for some of the instances, which is due to the fact that 
the time window constraints in these VRPTW instances are now relaxed, and some 
of instances have the same time window lengths and customer locations. In line with 
Table 1, the three move selection criteria differ in performance, with respect to the 
objective function value. C2 performs best in 23 out of the 27 instances, while this 
occurs for C1 and C3 in two and four instances, respectively.

Considering the results in Table 1, we recommend running all three criteria for 
small- to medium-sized instances, i.e., 32–80 nodes. These have an average runtime 
of 17.3 min, which given the a priori nature of the problem is reasonable. 
Considering larger instances, the results in Table 2 indicate a significant superiority 
of C2 over the other criteria. This superiority leads us to recommend using C2 if 
running all three heuristics is computationally prohibitive.

5.2 Tardiness penalty choices

In order to evaluate the effects of varying delay penalty costs ti , we have conducted 
experiments under four different cost settings, which are subsequently referred to as 
‘P5’, ‘P10’, ‘Prop’ and ‘1.3dist’. In P5, we choose ti = 5, ∀i ∈ V \ {0} (which was 
the choice also in Sect. 5.1), while P10 corresponds to ti = 10. Under setting Prop, 
the delay cost for each customer equals the quantity ordered, so ti = qi , ∀i ∈ V \ {0},



Table 1 Comparison of the three move selection criteria for the Augerat instances

Instance Objective value CPU time (s) T otal

C1 C2 C3 C1 C2 C3

32 k5 955.4 1,038.2 957.2 734 103 1,568 2,405

33 k5 744.8 724.1 716.6 78 121 166 365

33 k6 801.1 798.7 791.0 213 151 177 541

34 k5 867.9 876.1 852.7 335 135 374 844

36 k5 958.0 990.1 950.5 552 222 438 1,212

37 k5 765.6 811.8 798.6 338 394 210 942

37 k6 1,071.1 1,069.0 1,080.5 112 158 148 418

38 k5 822.6 832.5 823.4 361 299 227 887

39 k5 1,013.1 957.5 995.9 200 302 289 791

39 k6 963.0 956.1 952.7 184 130 151 465

44 k6 1,102.9 1,057.7 1,054.7 128 124 175 427

45 k6 1,078.0 2,685.8 1,096.4 1,117 71 1,142 2,330

45 k7 1,294.4 1,281.4 1,302.8 80 86 82 248

46 k7 1,072.5 1,059.0 1,008.7 99 221 401 721

48 k7 1,256.3 1,243.1 1,247.2 169 230 224 623

53 k7 1,185.3 1,194.7 1,165.3 192 1,046 376 1,614

54 k7 1,293.7 1396.7 1,335.5 253 446 320 1,019

55 k9 1,158.7 1,137.4 1,132.2 340 212 255 807

60 k9 1,509.2 1,489.4 1,473.8 108 112 177 397

61 k9 1,197.9 19.7 1,177.3 225 224 214 663

62 k8 1,509.7 1,516.0 1,499.5 295 893 386 1,574

63 k10 1,556.2 1,411.1 1,493.0 157 607 292 1,056

63 k9 1,834.5 1,897.8 1,840.8 343 317 712 1,372

64 k9 1,658.5 1,626.5 1,587.8 202 431 521 1,154

65 k9 1,319.7 1,307.3 1,293.2 137 1,249 115 1,501

69 k9 1,254.5 1,276.8 1,291.3 616 452 552 1,620

80 k10 2,095.0 2,057.7 2,046.5 399 1,002 693 2,094

Arithmetic average 295 361 385 1,040

Geometric average 234 260 300 881

The result of the lowest objective value is highlighted in bold

which represents a situation where the delay penalty is proportional to the demand. 
The final experimental setting, denoted by 1.3dist, puts ti equal to 5 for all customers, 
similarly to P5, but all distances are now increased by 30 %. In this way, there is less 
slack time available, leading to less buffer time to be allocated and resulting in tighter 
instances.

Table 3 summarizes the results for the four experimental settings after running the 
full tabu search procedure (with the three criteria combined). The left side of the table 
shows the achieved target function values. Value M(Ci ) denotes the number of times



Table 2 Comparison of the three move selection criteria for the Solomon instances

Instance Objective value CPU time (s) Total

C1 C2 C3 C1 C2 C3

R101 918.6 905.7 922.4 1,773 3,388 775 5,936

R102 918.2 922.5 922.1 1,724 1,860 769 4,353

R103 918.2 922.5 922.1 1,734 1,865 774 4,373

R104 917.2 917.0 920.5 1,737 3,445 771 5,953

R105 917.0 908.8 920.1 1,722 2,412 767 4,901

R106 917.0 908.8 920.1 1,743 2,384 761 4,888

R107 917.0 908.8 920.1 1,752 2,362 773 4,887

R108 917.0 908.8 920.1 1,765 2,392 764 4,921

R109 917.0 908.8 920.1 1,728 2,375 767 4,870

R110 917.0 908.8 920.1 1,730 2,240 761 4,731

R111 917.0 908.8 920.1 1,717 2,229 768 4,714

R112 917.0 908.8 920.1 1,743 2,240 761 4,744

C101 834.7 834.6 859.2 805 3,209 1,315 5,329

C102 834.7 834.6 859.2 802 3,181 1,328 5,311

C103 834.7 834.6 859.2 799 3,210 1,317 5,326

C104 834.7 834.6 859.2 807 3,271 1,324 5,402

C105 834.7 834.6 859.2 796 3,308 1,317 5,421

C106 834.7 834.6 859.2 799 3,296 1,316 5,411

C107 834.7 834.6 859.2 798 3,211 1,327 5,336

C108 834.7 834.6 859.2 803 3,187 1,319 5,309

C109 834.7 834.6 859.2 792 3,198 1,327 5,317

RC101 1,024.5 1,013.2 1,022.6 1,198 1,318 1,071 3,587

RC102 1,024.5 1,013.2 1,022.6 1,196 1,318 1,075 3,589

RC103 1,024.5 1,013.4 1,022.6 1,195 1,740 1,121 4,056

RC104 1,024.5 1,042.0 1,022.6 1,201 1,026 1,137 3,364

RC105 1,025.0 1,013.6 1,023.2 1,195 1,318 1,093 3,606

RC106 1,024.5 1,042.0 1,022.6 1,189 1,024 1,083 3,296

RC107 1,024.5 1,042.0 1,022.6 1,209 1,021 1,090 3,320

RC108 1,024.5 1,042.0 1,022.6 1,191 1,023 1,083 3,297

Arithmetic average 1,298 2,347 1,029 4,674

Geometric average 1,233 2,172 1,002 4,598

The result of the lowest objective value is highlighted in bold

(out of 27) that criterion Ci produces the best result; these values are presented in the
last three lines of the table. Measure C3 performs best in more instances in all four
experimental settings. The best result for C3 is in P5. In total, C2 and C3 perform best
in 30 and 26 instances, respectively, when considering all four experimental settings.
The fact that C3 accounts for buffer sizes between customers might explain its superior
performance.



Table 3 Results for the Augerat instances with four different penalty settings

Instance Objective Penalty ratio

P5 P10 Prop 1.3dist P5 (%) P10 (%) Prop (%) 1.3dist (%)

32 k5 955.4 961.7 956.6 1,290.8 16.6 17.1 16.7 18.5

33 k5 716.6 716.9 716.5 998.7 6.3 5.0 6.3 12.4

33 k6 791.0 796.8 797.6 1,066.9 5.0 5.7 5.8 8.9

34 k5 852.7 857.6 857.2 1,190.6 7.0 7.6 7.6 13.4

36 k5 950.5 960.3 957.8 1,285.6 13.5 14.4 14.2 17.8

37 k5 765.6 766.8 766.4 1,101.0 10.9 11.0 11.0 17.0

37 k6 1,069.0 1,079.4 1,079.3 1,457.3 9.2 9.6 9.6 13.3

38 k5 822.6 824.3 824.0 1,162.0 7.6 7.8 7.8 15.2

39 k5 957.5 971.6 969.4 1,283.2 11.2 11.6 11.4 15.3

39 k6 952.7 957.8 953.4 1,295.1 10.5 11.0 8.7 16.0

44 k6 1,054.7 1,059.6 1,059.2 1,489.6 8.8 9.3 9.2 13.4

45 k6 1,078.0 1,081.3 1,066.1 1,469.0 8.4 8.6 8.2 12.7

45 k7 1,281.4 1,298.3 1,277.7 1,713.5 7.7 8.9 8.5 11.3

46 k7 1,008.7 1,007.5 1,009.4 1,371.5 7.0 6.9 7.1 10.6

48 k7 1,243.1 1,244.1 1,231.5 1,662.6 10.2 9.0 8.2 11.8

53 k7 1,165.3 1,168.2 1,167.1 1,542.7 7.4 7.6 7.5 11.7

54 k7 1,293.7 1,302.2 1,302.5 1,799.6 7.6 8.2 8.2 12.3

55 k9 1,132.2 1,135.5 1,136.8 1,506.1 2.7 2.9 3.0 5.1

60 k9 1,473.8 1,482.7 1,485.1 1,980.8 5.5 5.1 6.2 8.0

61 k9 1,177.3 1,178.6 1,178.5 1,651.2 3.4 3.6 3.5 6.6

62 k8 1,499.5 1,505.7 1,486.1 1,986.3 9.4 9.7 8.7 11.9

63 k10 1,411.1 1,500.0 1,501.2 1,914.9 4.0 4.1 4.2 6.8

63 k9 1,834.5 1,847.7 1,844.1 2,472.9 8.5 9.2 9.0 11.3

64 k9 1,587.8 1,598.7 1,597.1 2,166.2 8.5 9.1 9.0 11.3

65 k9 1,293.2 1,295.3 1,293.7 1,720.5 3.0 3.2 3.1 6.4

69 k9 1,254.5 1,256.6 1,256.7 1,643.9 4.0 4.1 4.1 6.4

80 k10 2,046.5 2,061.4 2,042.8 2,756.5 9.9 10.6 9.1 11.7

Average penalty % 7.9 8.2 8.0 11.7

M(C1) 7 8 7 8

M(C2) 5 5 7 9

M(C3) 15 14 13 10

On average, the objective values for P10 are only 0.7 % higher than for P5. This 
means that even doubling the customer delay penalty does not affect the final objective 
value to a large extent. With varying penalties, as in the Prop setting, the values are not 
dramatically different either. For the case of 1.3dist, the average objective increase is 
36.1 % compared to P5, while the distances are raised by only 30 %. This difference 
can be explained by the fact that when distances rise, there is less buffer time to be 
allocated and the solutions are more prone to suffer overtime and delay penalties.



The right part of Table 3 shows the ‘penalty ratio’, which is the proportion

∑

Rr ∈Z

�(Rr )

F(Z)

of the total objective that corresponds to penalties. The average over all four experi-
mental conditions is 9.0 %. The lowest ratios are achieved for P5 and Prop, followed 
by P10, and the ratios for 1.3dist are by far the largest. We conclude that an increase 
in the distances has a substantial impact on the delay penalties.

5.3 VRP-SITW versus VRP

The addition of SITW to the VRP can be expected to affect the distance traveled and 
the number of vehicles used. To assess the effect, we compare the total distance in 
VRP-SITW with the optimal VRP solutions (taken from Ralphs 2010). The details are 
provided in Table 4. For P5 and P10, the average distance increase is 3.3 and 3.7 %, 
respectively, which shows that, at least as far as distance minimization is concerned, 
our heuristic solutions are rather close to optimal; the same observation can be made 
for Prop. For 1.3dist the VRP distances are scaled by a factor of 1.3. Overall, we 
conclude that the distance increase is not substantial for any of the settings.

Distribution companies who do not account for any customer service dimension will 
often solve the VRP. The results shown in Table 4 indicate that incorporating SITW 
will not substantially increase the distance traveled by vehicles, when compared with 
that of the VRP. Therefore, companies may weigh the additional operating cost, as 
manifested in additional distance, against a potential increase in revenue by providing 
a more customer oriented service.

5.4 VRP-SITW versus VRPTW

The goal of this section is to evaluate the benefits of the flexibility in setting time 
windows compared to exogenously predetermined time windows. To this aim, we 
work with 29 VRPTW instances from Solomon (1987). We compare the results of the 
VRP-SITW with the best-known solutions for the Solomon instances as reported in 
Solomon (2010).

Table 5 reports the results. For brevity we denote the travel time, which is 
equivalent to the distance, by TF for the VRPTW (which has fixed time windows) and 
by TS for the VRP-SITW. The number of vehicles required in the VRPTW is 
represented by KF while the number of vehicles used by the VRP-SITW solution is 
written as KS . The  third column in Table 5 gives the ratio of the total travel times in 
both solutions. We observe that the VRP-SITW substantially reduces the travel time 
for instances with tight time windows such as those in the R1 and RC1 sets. Set C1, 
on the other hand, achieves zero penalty values, which can be read from the last 
column of the table. We conclude that these instances have quite unrestrictive time 
windows and exhibit a behavior similar to the VRP instances studied in Sect. 5.3. 
Across the datasets, the penalty component 

∑
Rr ∈Z �(Rr ) comprises at most 6.3 % of 

the total objective value.



Table 4 Comparison of
VRP-SITW with optimal VRP
solutions for the Augerat
instances

Instance Increase in distance

P5 (%) P10 (%) Prop (%) 1.3dist (%)

32 k5 101.1 101.1 102.7 101.1

33 k5 101.3 102.7 101.6 101.3

33 k6 101.2 101.2 100.7 101.2

34 k5 101.5 101.4 101.5 101.4

36 k5 102.5 102.5 101.3 102.5

37 k5 101.4 101.4 104.5 101.4

37 k6 102.0 102.5 102.1 102.5

38 k5 103.5 103.5 103.3 103.5

39 k5 102.6 103.7 100.9 103.7

39 k6 102.3 102.3 100.5 104.5

44 k6 102.4 102.4 105.6 102.4

45 k6 104.6 104.6 104.5 103.6

45 k7 103.1 103.1 101.9 101.9

46 k7 102.1 102.1 102.7 102.1

48 k7 103.9 105.4 105.0 105.2

53 k7 106.5 106.5 103.4 106.5

54 k7 102.0 102.0 103.6 102.0

55 k9 102.6 102.6 102.4 102.6

60 k9 102.7 103.8 103.4 102.7

61 k9 109.4 109.4 114.2 109.4

62 k8 105.0 105.0 104.0 104.9

63 k10 103.1 109.5 104.5 109.5

63 k9 103.4 103.4 104.0 103.4

64 k9 103.7 103.7 105.6 103.7

65 k9 106.1 106.1 104.8 106.1

69 k9 103.3 103.3 101.5 103.3

80 k10 104.4 104.4 106.0 105.1

Average 103.3 103.7 103.5 103.6

The fifth column of Table 5 displays the number of vehicles saved in VRP-SITW 
compared to VRPTW. A substantial reduction in the required number of vehicles is 
observed in the R1 and RC1 sets. In set C1, however, no such reduction is achieved. 
We conclude that those instances that allow for substantial reductions in travel times 
are eligible for similar improvements with respect to the number of vehicles.

6 Summary and conclusions

In this paper, we have analyzed the situation of carrier companies that face the prob-
lem of making routing decisions combined with the quotation of arrival times to their 
customers; we have referred to this setting by the term ‘Self-Imposed Time Windows’ 
(SITW). In the context of vehicle routing, the resulting VRP-SITW extends the VRP



Table 5 Comparison of
VRP-SITW with the best-known
VRPTW solutions for the
Solomon instances

Instance TF TS/TF (%) KF KF − KS
∑

Rr ∈Z �(Rr )/

F(Z) (%)

R101 1,637.7 52.0 20 12 6.3

R102 1,466.6 59.9 18 10 4.5

R103 1,208.7 72.7 14 6 4.5

R104 971.5 89.7 11 3 5.2

R105 1,355.3 63.5 15 7 5.6

R106 1,251.98 68.7 12 4 5.6

R107 1,064.6 80.8 11 3 5.6

R108 960.88 89.5 9 1 5.6

R109 1,146.9 75.0 13 5 5.6

R110 1,068 80.5 12 4 5.6

R111 1,048.7 82.0 12 4 5.6

R112 982.14 87.6 9 1 5.6

C101 827.3 100.9 10 0 0.0

C102 827.3 100.9 10 0 0.0

C103 826.3 101.0 10 0 0.0

C104 822.9 101.4 10 0 0.0

C105 827.3 100.9 10 0 0.0

C106 827.3 100.9 10 0 0.0

C107 827.3 100.9 10 0 0.0

C108 827.3 100.9 10 0 0.0

C109 827.3 100.9 10 0 0.0

RC101 1,619.8 61.9 15 6 1.1

RC102 1,457.4 68.8 14 5 1.1

RC103 1,258 79.4 13 4 1.4

RC104 1,261.67 79.6 11 2 1.7

RC105 1,513.7 66.2 15 6 1.1

RC106 1,424.73 70.5 11 2 1.7

RC107 1,207.8 83.2 12 3 1.7

Average 82.9 2.7

by the incorporation of customer-specific service aspects, reflected in the carrier com-
pany’s ability to uphold the time windows once quoted, in a stochastic environment.
In comparison with the VRP with exogenous time windows (VRPTW), the customer
service requirement is somewhat relaxed, in that the service provider has ex ante flexi-
bility in choosing a convenient time interval that will be quoted. Given the importance
of providing efficient customer service, the SITW are a timely topic.

Our solution approach is a hybrid algorithm that comprises two main components:
routing and scheduling. The routing component is handled via a tabu search procedure,
while scheduling is performed by solving an LP model that implicitly inserts buffers
into each route’s schedule. The buffer mechanism assumes that on a given route at most
one disruption will occur. We propose three possible criteria for guiding the algorithm



in its search. Our experiments show that running all three criteria on instances with
up to 80 nodes is desirable. However, for larger instances we found that the criterion
based on distance and on marginal penalties dominates the other criteria.

The proposed framework may also be capable of handling appropriately selected
samples of disruption combinations; an exploration of this option of allowing for
multiple disruptions is an opportunity for further research. Further research can also
be directed towards developing exact solution procedures for solving small to medium-
size instances.

We have compared the VRP to VRP-SITW under different choices for penalty
structures and distances. The results of our tests indicate that the VRP-SITW only
requires a very mild average increase in distance. An exploration of the effect of
different penalties and shift durations on the problem constitutes a valid extension.

Contrary to the VRP, the VRPTW exhibits substantial differences when compared
to VRP-SITW. In most cases, the VRP-SITW requires significantly less distance and
uses far less vehicles. Clearly, the VRP-SITW benefits greatly from its flexibility in
setting the time windows.

The VRP-SITW model and its solution algorithm are beneficial for a number of
companies. In what follows we highlight the three main beneficiaries.

• Distribution companies using the VRP model, i.e., companies ignoring customer
service. Such companies may use the VRP-SITW model to assess the potential
increase in operating costs as a result of incorporating SITW. The increase in
operational cost can be benchmarked against the added value of increased customer
service levels.

• Distribution companies using the VRPTW model, i.e., companies providing high
customer service levels by allowing each customer to impose a time window. Such
companies may consider decreasing their operating costs by shifting to SITW.
The VRP-SITW allows these companies to asses the cost of such a shift, while
accounting for uncertainty in service times. The results of the VRP-SITW may
lead to a significant reduction in the required fleet size and traveled distance. These
savings are to be compared with costs entailed by decreasing customer service.

• Distribution companies using SITW. These can use the VRP-SITW model to assess
the impact of different cost parameters and scenarios on the solutions.

In our opinion, there is important potential in conducting an in-depth study of
various flexibility levels in choosing delivery windows. Such a study can be beneficial, 
for instance, when negotiating service contracts. Another extension might look into 
the setting where only a subset of customers has fixed time windows. In addition, 
accounting for time-dependent travel times that reflect daily patterns of speed changes 
may also enhance the model. Furthermore, given some alterations the proposed model 
can also accommodate driving breaks, using the buffers for the breaks. The proposed 
model establishes an a priori plan for a static environment. Yet another major extension 
of the model might incorporate the quotation of time windows for dynamically arriving 
orders. Finally, a trade-off may be conjectured between tardiness penalties and total 
travel times. Additional vehicles, for instance, will tend to improve the ability to 
uphold time windows but will generally increase travel times. Such trade-offs also 
offer opportunities for further work.
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