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ABSTRACT
We show that for a Quantum Markov Semigroup (QMS) with a faithful normal invariant state, atomicity of the decoherence-free subal-
gebra and environmental decoherence are equivalent. Moreover, we prove that the predual of the decoherence-free subalgebra is isomet-
rically isomorphic to the subspace of reversible states. We also describe, in an explicit and constructive way, the relationship between the
decoherence-free subalgebra and the fixed point subalgebra.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5030954., s

I. INTRODUCTION
Starting from the fundamental papers of Gorini-Kossakowski-Sudarshan21 and Lindblad (GKSL),24 the structure of uniformly continu-

ous quantum Markov semigroups (QMSs) T = (Tt)t≥0, or, in the physical terminology, quantum dynamical semigroups, and their generators,
has been the object of significant attention (see Refs. 3, 6, 14, and 15 and the references therein).

The increasing interest in mathematical modeling of decoherence, coherent quantum computing, and approach to equilibrium in open
quantum systems continues to motivate investigation on special features of QMS. Special attention is paid to subalgebras or subspaces where
irreversibility and dissipation disappear (see Refs. 2, 3, 8, 15, 16, 23, and 30 and the references therein). States leaving in such subspaces are
promising candidates for storing and manipulating quantum information.

The decoherence-free (DF) subalgebra, where completely positive maps Tt of the semigroup act as automorphisms, and the set of fixed
points, which is a subalgebra when there exists a faithful invariant state, also allow us to gain insight into the structure of a QMS, its invariant
states, and environment induced decoherence. Indeed, its structure as a von Neumann algebra has important consequences on the structure
and the action of the whole QMS. Recently, we showed in Ref. 15 that if the decoherence-free subalgebra of a uniformly continuous QMS is
atomic, it induces a decomposition of the system into its noiseless and purely dissipative parts, determining the structure of invariant states,
as well as decoherence-free subsystems and subspaces.30 In particular, we provided a full description of invariant states extending known ones
in the finite dimensional case.6

In this paper, we push further the analysis of uniformly continuous QMS with atomic decoherence-free subalgebra and a faithful invariant
state proving a number of new results we briefly list and outline below.

1. Environment induced decoherence (Refs. 8, 10, and 12) holds if and only if N(T ) is atomic. In this case, the decoherence-free subalgebra
is generated by the set of eigenvectors corresponding to modulus one eigenvalues of the completely positive maps Tt , namely, in an
equivalent way, by the eigenvectors with a purely imaginary eigenvalue of the generator (Theorem 11).
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2. The decoherence-free subalgebra and the set of the so-called reversible states, i.e., the linear space generated by eigenvectors correspond-
ing to modulus 1 eigenvalues of predual maps T∗t , are in the natural duality of a von Neumann algebra with its predual (Theorem 15).
Moreover, Theorem 16 explicitly describes the structure of reversible states.

3. We find a spectral characterization of the decomposition of the fixed point algebra (Theorem 19). Moreover, the exact relationship
between F(T ) and N(T ) (Theorems 19 and 21) is established in an explicit and constructive way allowing one to find the structure of
each one of them from the structure of the other.

Loosely speaking, one can say that for QMSs with a faithful invariant state, the same conclusions can be drawn replacing finite
dimensionality of the system Hilbert space by atomicity of the decoherence-free subalgebra.

Counterexamples (Examples 2 and 3) show that, in general, the above conclusions may fail for QMSs without faithful normal invariant
states.

The above results clarify the relationships between the atomicity of the decoherence-free subalgebra, the environmental decoherence, the
ergodic decomposition of the trace class operators, and the structure of fixed points.

In particular, the first result implies that the decomposition induced by decoherence coincides with the Jacobs-de-Leeuw-Glicksberg
(JDG) splitting. Such decomposition was originally introduced for weakly almost periodic semigroups and generalized to QMSs on von
Neumann algebras in Refs. 22 and 25. It is among the most useful tools in the study of the asymptotic behavior of operator semigroups on
Banach spaces or von Neumann algebras. Indeed, it provides a decomposition of the space into the direct sum of the space generated by
eigenvectors of the semigroup associated with modulus 1 eigenvalues and the remaining space, called stable, consisting of all vectors whose
orbits have 0 as a weak cluster point. Here, under suitable conditions, we obtain the convergence to 0 for each vector belonging to the stable
space.

On the other hand, the ergodic decomposition of trace class operators (which is a particular case of the JDG splitting applied to the
predual of T ) allows one, for instance, to determine reversible subsystems by spectral calculus. The identification of reversible states, in
particular, is an important task in the study of irreversible (Markovian) dynamics because they retain their quantum features that are exploited
in quantum computation (see Refs. 3 and 30 and the references therein). More precisely, reversible and invariant states of a quantum channel
[acting on Mn(C) for some n > 1] allow one to classify kinds of information that the process can preserve. When the space is finite-dimensional
and there exists a faithful invariant state, the structure of these states can be explicitly found (see, e.g., Lemma 6 and Section V of Ref. 9 and
Theorems 6.12 and 6.16 of Ref. 32) through the decomposition of N(T ) and the algebra of fixed points F(T ) in “block diagonal matrices,”
i.e., in their canonical form given by the structure theorem for matrix algebras (see Theorem 11.2 of Ref. 29). Since a similar decomposition
holds for atomic von Neumann algebras, in this paper, we generalize these results to uniformly continuous QMSs acting on B(h) with h
infinite-dimensional.

The paper is organized as follows. In Sec. II, we collect some notation and known results on the structure of norm-continuous QMS with
atomic decoherence-free subalgebra and the structure of their invariant states. In Sec. III, after recalling some known results from Ref. 12 on
the relationship between environment induced decoherence (EID) and Jacobs-de Leeuw-Glicksberg decomposition, we prove the main result
of this paper: the equivalence between EID and atomicity of the decoherence free subalgebra. The predual algebra of the decoherence-free
subalgebra is characterized in Sec. IV as the set of reversible states. Finally, in Sec. V, we study the structure of the set of fixed points of the
semigroup and its relationships with the decomposition of N(T ) when this algebra is atomic.

II. THE STRUCTURE OF THE DECOHERENCE-FREE ALGEBRA
Let h be a complex separable Hilbert space, and let B(h) be the algebra of all bounded operators on h with unit 1l. A QMS on B(h) is a

semigroup T = (Tt)t≥0 of completely positive, identity preserving normal maps which is also weakly∗ continuous. In this paper, we assume T
is uniformly continuous, i.e.,

lim
t→0+

sup
∥x∥≤1
∥Tt(x) − x∥ = 0,

so that there exists a linear bounded operator L on B(h) such that Tt = etL. The operator L is the generator of T, and it can be represented in
the well-known (see Ref. 27) Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form as

L(x) = i[H, x] −
1
2 ∑ℓ≥1
(L∗ℓ Lℓx − 2L∗ℓ xLℓ + xL∗ℓ Lℓ), (1)

where H = H∗ and (Lℓ)ℓ≥1 are bounded operators onh such that the series∑ℓ≥1 L∗ℓ Lℓ is strongly convergent and [⋅, ⋅] denotes the commutator
[x, y] = xy − yx. The choice of operators H and (Lℓ)ℓ≥1 is not unique, but this will not create any inconvenience in this paper. More precisely,
we have the following characterization (see Proposition 30.14 and Theorem 30.16 of Ref. 27).

Theorem 1. Let L be the generator of a uniformly continuous QMS on B(h). Then, there exist a bounded self-adjoint operator H and a
sequence (Lℓ)ℓ≥1 of elements in B(h) such that
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1. ∑ℓ≥1 L∗ℓ Lℓ is strongly convergent,
2. if ∑ℓ≥0 ∣cℓ∣

2
<∞ and c01l +∑ℓ≥1cℓLℓ = 0 for scalars (cℓ)ℓ≥0, then cℓ = 0 for every ℓ ≥ 0,

3. L(x) = i[H, x] − 1
2 ∑ℓ≥1(L

∗
ℓ Lℓx − 2L∗ℓ xLℓ + xL∗ℓ Lℓ) for all x ∈ B(h).

We recall that for an arbitrary von Neumann algebra M, its predual space M∗ is the space of w∗-continuous functionals on M (also
called normal). It is a well-known fact that for all ω ∈M∗, there exists ρ ∈ I(h), the space of trace-class operators, such that ω(x) = tr (ρx)
for all x ∈M. In particular, if ω is a positive and ||ω|| = 1, it is called state, and ρ is positive with tr (ρ) = 1, i.e., ρ is a density.

If M = B(h), every normal state ω has a unique density ρ. Therefore, in this case, we can identify them. Finally, ρ is faithful if tr (ρx) = 0
for a positive x ∈ B(h) implies x = 0 (see Definition 9.4 of Ref. 29).

Given a w∗-continuous operator S : M→M, we can define its predual map S∗ : M∗ →M∗ as S∗(ω) = ω ○ S.
In particular, for M = B(h), by considering the predual map of every Tt , we obtain the predual semigroup T∗ = (T∗t)t satisfying

tr (T∗t(ρ)x) = tr (ρTt(x)) ∀ ρ ∈ I(h), x ∈ B(h).

The decoherence-free (DF) subalgebra of T is defined by

N(T ) = {x ∈ B(h) : Tt(x∗x) = Tt(x)∗Tt(x), Tt(xx∗) = Tt(x)Tt(x)∗ ∀ t ≥ 0}. (2)

It is a well known fact that N(T ) is the biggest von Neumann subalgebra of B(h) on which every Tt acts as a ∗-homomorphism (see, e.g.,
Theorem 3.1 of Evans18). Moreover, the following facts hold (see Proposition 2.1 of Ref. 16).

Proposition 2. Let T be a QMS on B(h), and let N(T) be the set defined by (2). Then,

1. N(T ) is invariant with respect to every Tt ,
2. N(T ) = {δn

H(Lk), δn
H(L

∗
k ) : n ≥ 0}′, where δH(x) ∶= [H, x],

3. Tt(x) = eitHxe−itH for all x ∈ N(T ), t ≥ 0,
4. if T possesses a faithful normal invariant state, then N(T ) contains the set of fixed points F(T ) = {Lk, L∗k , H : k ≥ 1}′.

In addition, since we suppose that T is uniformly continuous, its action on N(T ) is bijective.

Theorem 3. If T is a uniformly continuous QMS, then N(T ) is the biggest von Neumann subalgebra on which every map Tt acts as a
∗-automorphism.

Proof. The restriction of every Tt to N(T ) is clearly injective thanks to item 3 of Proposition 2. Now, given x ∈ N(T ) and t > 0, we have
to prove that x = Tt(y) for some y ∈ N(T ).

First of all, note that since the QMS is norm continuous, it can be extended to norm continuous group (Tt)−∞<t<+∞ of normal maps on
B(h), and by analyticity in t, T−t(z) ∈ N(T ) for all t > 0 and z ∈ N(T ), and formula T−t(z) = e−itHz eitH holds. ◽

Remark 4. Notice that Theorem 3 has been proved in Lemma 3.4 of Ref. 22 for a weak∗ continuous semigroup of positive unital operators
satisfying the Schwarz inequality, defined on a von Neumann algebra but possessing a faithful normal invariant state.

As we said in the Introduction, we will see how the atomicity of N(T ) affects fundamental properties of uniformly continuous QMSs.
First of all, as shown in Ref. 15, generalizing the canonical decomposition for matrix algebras, the atomic decoherence-free subalgebra

N(T ) (up to an isometric isomorphism) is of the form

N(T ) = ⊕i∈I(B(ki)⊗ 1lmi) (3)

for some countable sequences of separable Hilbert spaces (ki)i∈I and (mi)i∈I such that h = ⊕i∈I(ki ⊗mi) (up to a unitary operator). This
structure gives important information on the whole QMS. Let us recall this result.

Theorem 5. Given N(T ) = ⊕i∈I(B(ki)⊗ 1lmi), the following facts hold:

1. for every GKSL representation of L by means of operators H, (Lℓ)ℓ≥1, we have

Lℓ = ⊕i∈I(1lki ⊗M(i)ℓ )
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for a collection (M(i)ℓ )ℓ≥1 of operators in B(mi) such that the series∑ℓ≥1 M(i)∗ℓ M(i)ℓ is strongly convergent for all i ∈ I and

H = ⊕i∈I(Ki ⊗ 1lmi + 1lki ⊗M(i)0 )

for self-adjoint operators Ki ∈ B(ki) and M(i)0 ∈ B(mi), i ∈ I,
2. defining on B(mi), the GKSL generator Lmi associated with operators {M(i)0 , M(i)ℓ ) : ℓ(i) ≥ 1}, we have

Tt(xi ⊗ yi) = eitKi xie−itKi ⊗ T mi(yi)

for all t ≥ 0, xi ∈ B(ki), and yi ∈ B(mi), where T mi is the QMS generated by Lmi ,
3. if there exists a faithful normal invariant state, then the QMS T mi is irreducible and possesses a unique invariant state τmi which is also

faithful, and we have F(T mi) = N(T mi) = C1lmi . Moreover, for all i ∈ I, K i has a pure point spectrum.

Now, we recall a characterization of an atomic von Neumann algebra in terms of the existence of a normal conditional expectation, i.e.,
a weakly∗-continuous norm one projection (see Theorem 5 of Ref. 31 and Theorem iv.2.2.2 of Ref. 7).

Theorem 6. Let M be a von Neumann algebra acting on the Hilbert space h. Then, M is atomic if and only if M is the image of a normal
conditional expectation E : B(h)→M.

Corollary 7. Let M be an atomic von Neumann algebra acting on h, and let N ⊆ M be a von Neumann subalgebra. If there exists a
normal conditional expectation E : M→ N onto N, then N is atomic.

Proof. By Theorem 6, we know that since M is atomic, it is the image of a normal conditional expectation F : B(h) →M. Therefore,
the map E ○ F : B(h) → N is a normal conditional expectation onto N. Indeed, since N = Ran E is contained in M = RanF, for x ∈ B(h),
we have

(E ○F)(E ○F)x = E2
(F(x)) = (E ○F)(x),

i.e., E ○F is a projection. Therefore, ∥E ○F∥ ≥ 1. On the other hand, since E and F are norm one operators, we clearly obtain ∥E ○F∥ = 1. The
normality of E ○F is evident, and so we can conclude that the algebra N is atomic by Tomiyama theorem. ◽

Remark 8. Theorem 6 is a simplified version of Tomiyama theorem (Theorem 5 of Ref. 31), given in terms of atomicity of the subalgebra
M. Moreover, Corollary 7 generalizes to atomic algebras one implication of the same theorem. In particular, we give easier proofs of these
results.

In the following, we assume the existence of a faithful normal invariant state; note that, in general, this condition is not necessary for the
decoherence-free subalgebra to be atomic. This is always the case for any QMS acting on a finite dimensional algebra. However, we show the
following example that will be useful later.

Example 1. Leth = C3 with the canonical orthonormal basis (ei)i=1,2,3 and B(h) =M3(C). We consider the operator L on M3(C) given
by

L(x) = iω [∣e1⟩⟨e1∣, x] −
1
2
(∣e3⟩⟨e3∣x − 2∣e3⟩⟨e2∣x∣e2⟩⟨e3∣ + x∣e3⟩⟨e3∣)

for all x ∈M3(C), with ω ∈ R, ω ≠ 0. Clearly, L is written in the GKSL form with H = ω|e1⟩⟨e1| and L = |e2⟩⟨e3|, and so it generates a uniformly
continuous QMS T = (Tt)t≥0 on M3(C).

An easy computation shows that any invariant functional has the form

a∣e1⟩⟨e1∣ + b∣e2⟩⟨e2∣

for some a, b ∈ C, and so the semigroup has no faithful invariant states.
Since [H, L] = 0, by item 2 of Proposition 2, we have N(T ) = {L, L∗}′ so that an element x ∈ B(h) belongs to N(T ) if and only if

{
∣xe2⟩⟨e3∣ = ∣e2⟩⟨x∗e3∣,
∣xe3⟩⟨e2∣ = ∣e3⟩⟨x∗e2∣,

i.e.,
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xe2 = x33e2,
xe3 = x22e3,
x31 = x21 = 0.
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Therefore, we get

N(T ) = { x11∣e1⟩⟨e1∣ + x22(∣e2⟩⟨e2∣ + ∣e3⟩⟨e3∣) ∣ x11, x22 ∈ C},

i.e., N(T ) is isometrically isomorphic to the atomic algebra C⊕Cp, where p denotes the identity matrix in M2(C).

III. Atomicity of N(T ) and decoherence
In this section, we explore the relationships between the atomicity of N(T ) and the property of environmental decoherence, assuming

the existence of a faithful normal invariant state ρ. Following Ref. 12, we say that there is environment induced decoherence (EID) on the open
system described by T if there exists a Tt-invariant and ∗-invariant weakly∗ closed subspace M2 of B(h) such that

(EID1) B(h) = N(T )⊕M2 with M2 ≠ {0},
(EID2) w∗ − limt→∞ Tt(x) = 0 for all x ∈M2.

Unfortunately, if EID holds and h is infinite-dimensional, it is not clear if the space M2 is uniquely determined. However, M2 is always
contained in the T-invariant and ∗-invariant closed subspace

M0 = { x ∈ B(h) : w∗ − lim
t→∞Tt(x) = 0}.

In Ref. 15, we showed that if N(T ) is atomic, then EID holds (see Theorem 5.1) and, in particular, N(T ) is the image of a normal conditional
expectation E : B(h)→ N(T ) compatible with the faithful state ρ (i.e., ρ ○ E = ρ) and such that

KerE =M2 = { x ∈ B(h) : tr (ρxy) = 0 ∀ y ∈ N(T ) } (4)

(see Theorem 19 of Ref. 12). More precisely, E is given by

E(x) =∑
i

⎛

⎝
∑

j
mi⟨ fj ∣ (1lki ⊗ τmi)xii ∣ fj⟩mi ⊗ 1lmi

⎞

⎠
, (5)

where xii = pixpi for all x ∈ B(h), τmi is the unique faithful invariant state for T mi , ( fj)j is an orthonormal basis of mi of eigenvectors of τmi ,
and

∣ fj⟩mi
: ki → ki ⊗mi, ∣ fj⟩mi

e = e⊗ fj

with adjoint operators

mi⟨ fj∣ : ki ⊗mi → ki, mi⟨ fj∣u⊗ v = ⟨ fj, v⟩u.

In the following, we will show that if N(T ) is atomic, the decomposition induced by decoherence is unique, i.e., the only way to realize
it is taking M2 given by (4) (see Theorem 11 and Remark 12.2).
Moreover, in this case, we will study the relationships of such a decomposition with another celebrated asymptotic splitting of B(h), called
the Jacobs-de Leeuw-Glicksberg splitting: this comparison is very natural since the decomposition B(h) = N(T )⊕M2 is clearly related to the
asymptotic properties of the semigroup.

We recall that since there exists ρ faithful invariant, the Jacobs-de Leeuw-Glicksberg splitting holds (see, e.g., Corollary 3.3 and
Proposition 3.3 of Ref. 22) and is given by B(h) =Mr ⊕Ms with

Mr ∶= spanw∗
{x ∈ B(h) : Tt(x) = eitλx for some λ ∈ R, ∀ t ≥ 0}, (6)

Ms ∶= {x ∈ B(h) : 0 ∈ {Tt(x)}
w∗

t≥0}. (7)

Moreover, in this case, Mr is a von Neumann algebra and there exists a normal conditional expectation onto Mr compatible with ρ.
The relationship between the decomposition induced by decoherence and the Jacobs-de Leeuw-Glicksberg splitting is given by the

following result (see Proposition 31 of Ref. 12).

Proposition 9. If there exists a faithful normal invariant state ρ, then the following conditions are equivalent:
1. EID holds with M2 =M0, and the induced decomposition coincides with the Jacobs-de Leeuw-Glicksberg splitting,
2. N(T ) ∩Ms = {0},
3. N(T ) =Mr .
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Moreover, if one of the previous conditions holds, then N(T ) is the image of a normal conditional expectation E compatible with ρ and such
that KerE =M0 =Ms.

Proof. The implication 1⇒ 2 is clear since Mr ∩Ms = {0}. Conversely, assume N(T ) ∩Ms = {0} and let x ∈ N(T ). Since JDG holds,
we have x = x1 + x2 with x1 ∈Mr ⊆ N(T ) and x2 ∈Ms. It follows that also x2 belongs to N(T ), and then x2 = 0. Therefore, x = x1 ∈Mr . This
proves the equivalence of statements 1 and 2.

1⇒ 3: Assume Mr = N(T ), and let x ∈Ms. If there exists a weak∗ cluster point x0 ≠ 0 for {Tt(x)}t≥0, then x0 belongs to N(T ) =Mr .
Since Mr ∩Ms = {0}, we obtain x0 = 0. This proves that there exists w∗ − limt Tt(x) = 0, i.e., x belongs to M0 giving the equality Ms =M0.
Therefore, EID holds with M2 =Ms =M0, i.e., the decomposition induced by decoherence coincides with the JDG splitting. The opposite
implication is trivial.

If one of the conditions (1–3) holds, then N(T ) is the image of a normal conditional expectation E compatible with ω. ◽

Clearly, if Mr is not an algebra, it does not make sense to ask oneself if it coincides with N(T ). In particular, this could happen when T
has no faithful invariant states, as the following example shows.

Example 2. Let us consider the uniformly continuous QMS T on M3(C) defined in Example 1. We have already seen that T does not
possess faithful invariant states and

N(T ) = { x11∣e1⟩⟨e1∣ + x22(∣e2⟩⟨e2∣ + ∣e3⟩⟨e3∣) ∣ x11, x22 ∈ C}.

Now, we find the space Mr , generated by eigenvectors of L corresponding to purely imaginary eigenvalues. Easy computations show that we
have L(x) = iλx for some λ ∈ R if and only if

iλ
3

∑
i,j=1

xij∣ei⟩⟨ej∣ = iω
3

∑
j=1
(x1j∣e1⟩⟨ej∣ − xj1∣ej⟩⟨e1∣)

−
1
2
⎛

⎝

3

∑
j=1

x3j∣e3⟩⟨ej∣ − 2x22∣e3⟩⟨e3∣ +
3

∑
i=1

xi3∣ei⟩⟨e3∣
⎞

⎠
,

i.e., in the case when λ = 0, xij = 0 for i ≠ j and x22 = x33, and, in the case λ ≠ 0, if and only if the following identities hold:

x11 = 0, x22 = 0, x12(ω − λ) = 0,
x13(−

1
2 + i(ω − λ)) = 0, x21(ω + λ) = 0, x23(

1
2 + iλ) = 0,

x31(
1
2 + i(ω + λ)) = 0, x32(

1
2 + iλ) = 0, x33(1 + iλ) = x22.

Since ω and λ belong to R, this is equivalent to either x = x12|e1⟩⟨e2| and λ = ω or x = x21|e2⟩⟨e1| and λ = −ω. Therefore, we can conclude that

Mr =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

x11 x12 0
x21 x22 0
0 0 x22

⎞
⎟
⎠

: x11, x22, x12, x21 ∈ C
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

In particular, Mr is strictly bigger than N(T ) and it is not an algebra: indeed, for example,

x =
⎛
⎜
⎝

1 1 0
1 1 0
0 0 1

⎞
⎟
⎠
∈Mr ,

but x2
∉Mr .

Remark 10. 1. Note that if Mr is contained in N(T ), then it is a ∗-algebra.
Indeed, if Mr ⊆ N(T ), taken x, y ∈Mr such that Tt(x) = eiλtx and Tt(y) = eiμty for some λ,μ ∈ R and any t, by property 3 in Proposition

2 we have
Tt(x∗y) = Tt(x)∗Tt(y) = eit(μ−λ)x∗y ∀ t ≥ 0.

As a consequence, x∗y belongs to Mr .
2. If h is finite-dimensional, then also the opposite implication is true.

Indeed, if Mr is a ∗-algebra, given x ∈ B(h) such that Tt(x) = eitλx, λ ∈ R, we have Tt(x∗)Tt(x) = x∗x. Then, by the Schwarz
inequality, Tt(x∗x) ≥ x∗x for all t ≥ 0. Set T r

t ∶= Tt∣Mr
. Since in this case T is a strongly continuous semigroup, by definition of Mr and by
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Corollary 2.9, Chap. V, of Ref. 17, the strong operator closure of {T r
t : t ≥ 0} is a compact topological group of operators in B(Mr). Hence,

(T r
t )
−1 is the limit of some net (T r

tα )α and so (T r
t )
−1 is a positive operator. Since x∗x ∈ Mr , for all α, we have T r

tα (x
∗x) ≥ x∗x, and so

(T r
t )
−1
(x∗x) ≥ x∗x. On the other hand,

(T r
t )
−1
(T r

t (x
∗x)) = x∗x ≥ (T r

t )
−1
(x∗x).

Therefore, (T r
t )
−1
(x∗x) = x∗x and this implies Tt(x∗x) = x∗x = Tt(x)∗Tt(x). Similarly, we can prove the equality Tt(xx∗) = xx∗

= Tt(x)Tt(x)∗, and so x belongs to N(T ).
It is not yet clear what happens when h is infinite dimensional.

Now, we are able to prove one of the central results of this paper.

Theorem 11. Assume that there exists a faithful normal invariant state ρ. Then, N(T ) is atomic if and only if EID holds with N(T ) =Mr
and M2 =M0.

Proof. If N(T ) is atomic, then EID holds by Theorem 5.1 of Ref. 15. It remains to prove that N(T ) =Mr and M2 =M0. The atomicity
implies N(T ) = ⊕i∈I(B(ki)⊗ 1lmi) up to a unitary isomorphism. Let x = ∑i∈I(xi⊗ 1lmi) be in N(T )∩Ms, with xi ∈ B(ki) for every i ∈ I, and
assume w∗ − limα Ttα(x) = 0. Given ui, vi ∈ ki and τi is an arbitrary state on mi, by Theorem 5,

tr ((∣ui⟩⟨vi∣⊗ τi)Ttα(x)) = ⟨vi, eitαKi xie−itαKi ui⟩. (8)

Choosing ui and vi such that K iui = λiui and K ivi = μivi, λi,μi ∈ R, Eq. (8) becomes

tr ((∣ui⟩⟨vi∣⊗ τi)Ttα(x)) = eitα(μi−λi)⟨vi, xiui⟩

so that ⟨vi, xiui⟩ = 0, i.e., xi = 0 because the eigenvectors of K i form an orthonormal basis of ki (see item 3 of Theorem 5). This proves the
equality N(T ) ∩Ms = {0}.

So we can conclude thanks to item 3 of Proposition 9.
Conversely, if EID holds with N(T ) = Mr and M2 = M0, by Proposition 9, there exists a normal conditional expectation

E : B(h)→ N(T ) onto N(T ), compatible to ρ. Therefore, N(T ) is atomic thanks to Theorem 6. ◽

Remarks 12. As a consequence of Theorem 11 and Proposition 9, the following facts hold:

1. N(T ) is atomic if and only if N(T ) ∩ Ms = {0}, if and only if N(T ) =Mr , i.e. N(T ) is generated by eigenvectors of L corresponding
to purely imaginary eigenvalues.

Moreover, in this case, we also have N(T )∩M0 = {0} being M0 ⊆Ms: this means that assuming N(T ) is atomic and the existence
of a faithful invariant state, the situation is similar to the finite-dimensional case, i.e., N(T ) does not contain operators going to 0 under
the action of the semigroup.

2. If N(T ) is atomic and F(T ) = C1l, the semigroup satisfies the following properties given by noncommutative Perron-Frobenius
theorem (see, e.g., Propositions 6.1 and 6.2 of Ref. 5 and Theorem 2.5 of Ref. 4):

● the peripheral point spectrum σp(Tt) ∩ T of each Tt is a subgroup of the circle group T,
● given t ≥ 0, each peripheral eigenvalue α of Tt is simple and we have σp(Tt) ∩ T = α(σp(Tt) ∩ T),
● the restriction of ρ to N(T ) is a trace.

As a consequence, the peripheral point spectrum of each Tt is the cyclic group of all h-roots of unit for some h ∈ N.
3. If N(T ) is atomic, the decomposition induced by decoherence is uniquely determined. This fact follows from Proposition 5 of Ref. 12

since we have N(T ) ∩M0 = {0}.
4. Note that Theorem 11 does not exclude the possibility to have a QMS T displaying decoherence with N(T ), a nonatomic type I algebra.

Clearly, in this case, we will get N(T ) ⊋Mr or M2 ⊊M0.

Remark 13. In Ref. 26, the authors proved that EID holds when the semigroup commutes with the modular group associated with
a faithful normal invariant state. However, our result in Theorem 11 is stronger on B(h) since we find the equivalence between the
EID and the atomicity of N(T ), which is a weaker assumption of the commutation with the modular group. In fact, it can be shown
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(see Sec. 3 of Ref. 28) that commutation with the modular group implies atomicity of N(T ). Moreover, it is not difficult to find an example
of a QMS on B(h) with h finite dimensional which does not commute with the modular group. Its decoherence-free subalgebra, as any finite
dimensional von Neumann algebra, will be atomic.

IV. STRUCTURE OF REVERSIBLE STATES
In this section, assuming N(T ) is atomic and the existence of a faithful invariant state ρ, we study the structure of reversible states, i.e.,

states belonging to the vector space

R(T∗) : = span{σ ∈ I(h) : T∗t(σ) = eitλσ for some λ ∈ R, ∀ t ≥ 0}, (9)
= span{σ ∈ I(h) : L∗(σ) = iλ σ for some λ ∈ R}. (10)

In particular, we will prove that R(T∗) is the predual of the decoherence-free algebra N(T ).
To this end, we recall the following result which is a version of the Jacobs-de Leeuw-Glicksberg theorem for strongly continuous

semigroups (see Propositions 3.1 and 3.2 of Ref. 25 and Theorem 2.8 of Ref. 17).

Theorem 14. If there exists a density ρ ∈ I(h) satisfying

tr (ρ(Tt(x)∗Tt(x))) ≤ tr (x∗x) ∀ x ∈ B(h), t ≥ 0, (11)

then we can decompose I(h) as

I(h) = R(T∗)⊕ {σ ∈ I(h) : 0 ∈ {T∗t(σ)}
w

t≥0}. (12)

Since each faithful invariant state clearly fulfills (11), we obtain the splitting given by Eq. (12).
On the other hand, denoting by A�, the vector space {σ ∈ I(h) : tr (σx) = 0 ∀ x ∈ A} for all subset A of B(h), the atomicity of N(T )

ensures the following facts:

(F1). B(h) = N(T )⊕M0 with N(T ) =Mr = Ran E and M0 =Ms = KerE, where E : B(h)→ N(T ) is a normal conditional expectation
compatible with the faithful state ρ (see Theorem 11 and Proposition 9);

(F2). I(h) = M⊥
0 ⊕ N(T )⊥ with

M⊥
0 = Ran E∗ ≃ N(T )∗, N(T )⊥ = KerE∗ ≃M2∗.

Moreover, each T∗t acts as a surjective isometry on M⊥
0 , and w − limt T∗t(σ) = 0 for all σ ∈ N(T )⊥ (see Theorem 10 of Ref. 12).

As a consequence, every state ω ∈ N(T )∗ is represented by a unique density σ in M⊥
0 , and in this case, we write ω = ωσ to mean that

ω(x) = tr (σx) for all x ∈ N(T ). Therefore, if we denote by S = (St)t≥0, the restriction of T to N(T ), we have

(S∗tωσ)(x) = ωσ(Tt(x)) = tr (σ eitHxe−itH
) = tr (E∗(e−itHσeitH

)x)

for all x = E(x) ∈ N(T ), concluding that S∗tωσ is represented by the density E∗(e−itHσeitH
) ∈ M⊥

0 . In an equivalent way, we have

T∗t(σ) = E∗(e−itHσeitH
) ∀ σ ∈ M⊥

0 . (13)

Theorem 15. If N(T ) is atomic and there exists a faithful invariant state, then

R(T∗) = M⊥
0 = {σ ∈ I(h) : T∗t(σ) = E∗(e−itHσ eitH

) ∀ t ≥ 0} ≃ N(T )∗

for every Hamiltonian H in a GKSL representation of the generator of T.

Proof. The inclusion M⊥
0 ⊆ {σ ∈ I(h) : T∗t(σ) = E∗(e−itHσ eitH

) ∀ t ≥ 0} follows from the previous discussion. On the other hand, if
we have T∗t(σ) = E∗(e−itHσeitH

) for all t ≥ 0, taking t = 0, we get σ = E∗(σ), i.e., σ belongs to M⊥
0 .

Now, given σ ∈ R(T∗) such that T∗t(σ) = eitλσ for all t ≥ 0, λ ∈ R, we have

tr (σx) = lim
t→∞ tr (σx) = lim

t→∞ tr (T∗t(σ)e−itλx) = lim
t

e−itλtr (σTt(x)) = 0

for all x ∈M0 so that σ belongs to M⊥
0 . This proves that R(T∗) is contained in M⊥

0 .
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In order to prove the opposite inclusion, it is enough to show that N(T )⊥ contains {σ ∈ I(h) : 0 ∈ {T∗t(σ)}
w

t≥0} since we have

I(h) = R(T∗)⊕ {σ ∈ I(h) : 0 ∈ {T∗t(σ)}
w

t≥0} = M⊥
0 ⊕ N(T )⊥

by Eq. (12), item (F2), and Theorem 11.
So, let σ ∈ I(h) such that 0 ∈ {T∗t(σ)}

w

t≥0; given (tα) with w − limα T∗tα(σ) = 0 and x ∈Mr be such that Tt(x) = eitλx for some λ ∈ R, we
have

tr (σx) = lim
α

tr (σe−itλTtα(x)) = lim
α

e−itλtr (T∗tα(σ)x) = 0.

This means that σ belongs to N(T )⊥ by Theorem 11. ◽

In general, when there does not exist a faithful invariant state, R(T∗) could be different from N(T )∗, as we can see in Example 3.

Example 3. Let us consider a generic quantum Markov semigroup with C3, more precisely the uniformly continuous QMS generated by

L(x) = G∗x + ∑
j=1,2

L∗3jxL3j + xG,

where

G = (−
γ33

2
+ iκ3)∣e3⟩⟨e3∣, L3j =

√γ3j ∣ej⟩⟨e3∣ for j = 1, 2,

with κ3 ∈ R, γ3j > 0 for j = 1, 2, and γ33 = −γ31 − γ32. We know that the restriction of L to the diagonal matrices is the generator of a continuous
time Markov chain (Xt)t with values in {1, 2, 3}. For more details, see Refs. 1 and 11.

Since 1 and 2 are absorbing states for (Xt)t and 3 is a transient state, by Proposition 2 of Ref. 13, we know that any invariant state of T is
supported on span{e1, e2}. In particular, this implies that there is no faithful invariant state.

Moreover, Theorem 8 of Ref. 13 gives N(T ) = C1l since the absorbing states are accessible from 3. As a consequence, N(T )∗ = C1l.
On the other hand, since 1 is absorbing, the state |e1⟩⟨e1| is invariant, and so it belongs, in particular, to R(T∗). Therefore, we have

R(T∗) ≠ N(T )∗.

We can now give the structure of reversible states when N(T ) is atomic.

Theorem 16. Assume N(T ) is atomic, and suppose there exists a faithful T-invariant state. Let (pi)i∈I , (ki)i∈I , and (mi)i∈I be as in
Theorem 5. A state η belongs to R(T∗) if and only if it can be written in the form

η =∑
i∈I

trmi(piηpi)⊗ τmi ,

where, for every i ∈ I, τmi is the unique T mi -invariant state which is also faithful.

Proof. Let E be the conditional expectation onto N(T ) given in Eq. (5), i.e.,

E(x) =∑
i

⎛

⎝
∑

j
mi⟨ fj ∣ (1lki ⊗ τmi)xii ∣ fj⟩mi ⊗ 1lmi

⎞

⎠

with xii = pixpi for all x ∈ B(h), τmi be the unique faithful invariant state for T mi , and ( fj)j be an orthonormal basis of mi diagonalizing it.
Since E∗ : I(h) → N(T )∗ = R(T∗), we can characterize the reversible states as the image of E∗. In particular, for all η ∈ I(h) and

x ∈ B(h), we have

tr (ηE(x)) =∑
i∈I
∑

j
tr (piηpi(mi⟨ fj ∣ (1lki ⊗ τi)xii ∣ fj⟩mi ⊗ 1lmi))

=∑
i
∑

j
tr (trmi(piηpi) (mi⟨ fj ∣ (1lki ⊗ τi)xii ∣ fj⟩mi)).

Now, an easy computation shows that
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mi⟨ fj ∣ (1lki ⊗ τi)y ∣ fj⟩mi =∑
l
⟨ fj, τifj⟩ ylj

for y = ∑l,k ylk∣fl⟩⟨fj∣ ∈ B(ki ⊗mi) so that

tr (ηE(x)) =∑
i

tr ((trmi(piηpi)⊗ τi)xii).

We can then conclude that E∗(η) = ∑i trmi(piηpi)⊗ τi, and we are done. ◽

We have thus derived the general form of reversible states starting from the structure of the atomic decoherence-free algebra N(T ).
This is a well known fact for a completely positive and unitary map (i.e., a channel) on a finite-dimensional space (see, e.g., Theorem 6.16 of
Ref. 32 and section V of Ref. 9), but the proof of this result is not generalizable to the infinite dimensional case since it is based on a spectral
decomposition of the channel.

V. RELATIONSHIPS WITH THE STRUCTURE OF FIXED POINTS
In this section, we investigate the structure of the set F(T ) of fixed points of the semigroup and its relationships with the decomposition

of N(T ) given in Sec. II.
First of all, we prove the atomicity of F(T ) and relate this algebra with the space of invariant states. The reader can find the proof of

these results in Ref. 19, but we report them here for the sake of completeness.

Proposition 17. If there exists a faithful normal invariant state, then F(T ) is an atomic algebra and F(T )∗ is isomorphic to the space
F(T∗) of linear normal invariant functionals.

Proof. Since there exists a faithful invariant state, by Theorem 2.1 of Ref. 19 and by Ref. 20, F(T ) is the image of a normal conditional
expectation E : B(h)→ F(T ) given by

E(x) = w∗ − lim
λ→0

λ∫
∞

0
e−λtTt(x)dt = w∗ − lim

t→+∞
1
t ∫

t

0
Ts(x)ds. (14)

Hence, F(T ) is atomic by Theorem 6, the range of the predual operator E∗ coincides with KerE⊥, and it is isomorphic to F(T )∗ through the
map

Ran E∗ = KerE⊥ ∋ σ ↦ σ ○ E ∈ F(T )∗.

Moreover, we clearly have Ran E∗ = F(T∗) (see also Corollary 2.2 of Ref. 19). ◽

Therefore, assuming the existence of a faithful invariant state, we can find a countable set J, and two sequences (sj)j∈J and (fj)j∈J of
separable Hilbert spaces such that

h ≃ ⊕j∈J(sj ⊗ fj) (unitary equivalence), (15)

F(T ) ≃ ⊕j∈J(B(sj)⊗ 1lfj) (∗-isomorphism isometric), (16)

where 1lfj denote the identity operator on fj.
Even if the decomposition (16) is given up to an isometric isomorphism, for the sake of simplicity, we will identify h with ⊕j∈J(sj ⊗ fj)

and F(T ) with ⊕j∈J(B(sj)⊗ 1lfj).
Now, we can state for F(T ) a similar result to Theorem 5. Note that it has already been proved for a quantum channel on a matrix

algebra in Lemma 6 of Ref. 9 and in Theorems 6.12 and 6.14 of Ref. 32. Here, we extend this in the infinite-dimensional framework.

Theorem 18. Assume there exists a faithful normal invariant state. Let (sj)j∈J and (fj)j∈J be two countable sequences of Hilbert spaces such
that (15) and (16) hold. Then, we have the following facts:

1. for every GKSL representation (1) of the generator L by means of operators Lℓ, H, we have

Lℓ = ⊕j∈J(1lsj ⊗N(j)ℓ ) ∀ ℓ ≥ 1,

H = ⊕j∈J(λj1lsj ⊗ 1lfj + 1lsj ⊗N(j)0 ),
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where N(j)ℓ are operators on fj such that the series∑ℓ(N
(j)
ℓ )

∗N(j)ℓ are strongly convergent for all j ∈ J, (λj)j∈J is a sequence of real numbers,
and every M(j)0 is a self-adjoint operator on fj;

2. Tt(x⊗y) = x⊗T fj
t (y) for all x ∈ B(sj) and y ∈ B(fj), for j ∈ J, where T fj is the QMS on B(fj) generated by Lfj , whose GKSL representation

is given by {N(j)ℓ , N(j)0 : ℓ ≥ 1};
3. every T fj is irreducible and possesses a unique (faithful) normal invariant state τfj ;
4. every invariant state η has the form η = ∑j∈J σj ⊗ τfj with σj being an arbitrary positive trace-class operator on sj such that ∑j∈J tr (σj) = 1.

Proof. Since (16) holds, like in the Proof of Theorems 3.1 and 3.2 of Ref. 15, there exist operators (N(j)ℓ )ℓ on B(fj) such that
Lℓ = ⊕j∈J(1lsj ⊗N(j)ℓ ) for all ℓ ≥ 1 and j ∈ J.

Now, if pj is the orthogonal projection onto sj ⊗ fj, we have H =∑l ,mplHlmpm with Hlm : hsm ⊗ hfm → hsl ⊗ hfl and H∗lm = Hml for all l,
m ∈ J. Since every x = ⊕j∈J(xj ⊗ 1lfj) ∈ F(T ) commutes with H, we get 0 = [x, H], i.e.,

0 =∑
j

pj[xj ⊗ 1lfj , Hjj]pj +∑
j≠m

pj((xj ⊗ 1lfj)Hjm −Hjm(xm ⊗ 1lfm))pm,

which implies

[xj ⊗ 1lfj , Hjj] = 0 ∀ j ∈ J, (xj ⊗ 1lfj)Hjm = Hjm(xm ⊗ 1lfm) ∀ j ≠ m.

The first condition is equivalent to have Hjj = λj1lsj ⊗ 1lfj + 1lsj ⊗ N(j)0 for some N(j)0 ∈ B(fj) and λj ∈ R; the second one gives Hjm = 0 for all
j ≠m, and so we obtain item 1.

Item 2 trivially follows. The proofs of items 3 and 4 are similar to the ones of Theorems 4.1 and 4.3, respectively, of Ref. 15. ◽

We now want to understand the relationships between decompositions (3) and (16) making use of the notations introduced in Theorems
5 and 18. In particular, in Theorem 19, we find a spectral characterization of the decomposition of the fixed point algebra up to an isometric
isomorphism. Indeed, in this representation, the spaces sj undergoing trivial evolutions are the eigenspaces of suitable Hamiltonians K i
corresponding to their different eigenvalues.

First of all, we introduce the following notation: for every i ∈ I denoted by

σ(Ki) ∶= {κ(i)j : j ∈ Ji} (17)

with κ(i)j ≠ κ
(i)
l for j ≠ l in Ji, the (pure point) spectrum of the Hamiltonian Ki ∈ B(ki) for some at most countable set Ji ⊆ N. Note that if T

has a faithful normal invariant state, then σ(K i) is exactly the spectrum of K i thanks to Theorem 5.
Without loss of generality, we can choose the family {Ji: i ∈ I} such that Jh ∩ J l = 0/ whenever h ≠ l. In this way, set

J ∶= ∪i∈IJi, (18)

for j ∈ J there exists a unique i ∈ I such that j = ji ∈ Ji.

Theorem 19. Assume N(T ) is atomic, and let N(T ) = ⊕i∈I(B(ki)⊗ 1lmi)with (ki)i and (mi)i being two countable sequences of Hilbert
spaces such that h = ⊕i∈I(ki ⊗mi). If there exists a faithful normal invariant state, up to an isometric isomorphism, we have

F(T ) = ⊕j∈J(B(sj)⊗ 1lfj) (19)

with J defined in (18), and

sj = sji ∶= Ker(Ki − κ(i)j 1lki), fj = fji ∶=mi ∀ ji ∈ Ji, i ∈ I. (20)

Proof. By considering the spectral decomposition Ki = ∑j∈Ji
κ(i)j qji with (qji)j∈Ji mutually orthogonal projections such that

qjiki = Ker(Ki − κ(i)j 1lki) =: sji

and∑j∈Ji
qji = 1lmi , we immediately obtain
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ki ⊗mi = (⊕j∈Jisji)⊗mi = ⊕j∈Ji(sji ⊗ fji)

by setting fji ∶=mi for all j ∈ Ji. Therefore, by the definition of J, since every j ∈ J belongs to a unique Ji, we have

h = ⊕i∈I(ki ⊗mi) = ⊕i∈I ⊕j∈Ji (sji ⊗ fji) = ⊕j∈J(sj ⊗ fj).

In order to conclude the proof, we have to show equality (19). Given x ∈ F(T ) ⊆ N(T ) (see item 4 of Proposition 2), we can write
x = ⊕i∈I(xi ⊗ 1lmi) with (xi)i∈I ⊆ B(ki), and so, by Theorem 5, we have

x = ⊕i∈I(xi ⊗ 1lmi) = Tt(⊕i∈I(xi ⊗ 1lmi)) = ⊕i∈I(eitKi xie−itKi ⊗ 1lmi).

Consequently, xi = eitKi xie−itKi for all i ∈ I, i.e., every xi commutes with K i, and then with each projection qji with j ∈ Ji. This means that each
xi = ⊕j∈Ji qjixiqji belongs to the algebra ⊕j∈Ji qjiB(ki)qji = ⊕j∈JiB(qjiki) = ⊕j∈JiB(sj) so that x is in ⊕j∈J(B(sj)⊗ 1lfj).

On the other hand, given i ∈ I and j ∈ Ji, for u, v ∈ sj = Ker(Ki − κ(i)j 1lki), we get

Tt(∣u⟩⟨v∣⊗ 1lmi) = ∣e
itKi u⟩⟨eitKiv∣⊗ 1lmi = ∣u⟩⟨v∣⊗ 1lmi ∀ t ≥ 0,

where u and v are eigenvectors of K i associated with the same eigenvalue κ(i)j . Since Ker(Ki − κ(i)j 1lki) is generated by elements of the form
|u⟩⟨v| and the net (Tt(z))t is uniformly bounded for all z, we obtain the inclusion B(sj)⊗ 1lmi ⊆ F(T ) for all j ∈ Ji and i ∈ I, i.e., B(sj)⊗ 1lfj
⊆ F(T ) for all j ∈ J = ∪i∈IJi. ◽

Theorem below shows how we can derive an “atomic decomposition” of F(T ) from one of N(T ). Moreover, it is also possible to
obtain the decomposition of operators {H, Lℓ}ℓ according to the atomic splitting of fixed point algebra, starting from that one of N(T ), i.e.,
Lℓ = ⊕i∈I(1lki ⊗M(i)ℓ ) and H = ⊕i∈I(Ki ⊗ 1lmi + 1lki ⊗M(i)0 ) with Ki ∈ B(ki) and M(i)0 , M(i)ℓ in B(mi).

More precisely, given i ∈ I, since∑j∈Ii
qji = 1lmi , we have

1lki ⊗M(i)ℓ = (⊕j∈Ii qji)⊗M(i)ℓ = ⊕j∈Ii(qji ⊗M(i)ℓ )

so that

Lℓ = ⊕i∈I(⊕j∈Ii(qji ⊗M(i)ℓ )).

Similarly, recalling the spectral decomposition of K i, Ki = ∑j∈Ji
κ(i)j qji, we can write H as

H = ⊕i∈I(⊕j∈Ii(κ
(i)
j qji ⊗ 1lmi + qji ⊗M(i)0 )).

Finally, since qji is the identity of sj and mi = fj for all j ∈ Ii, we get

H = ⊕i∈I(⊕j∈Ii(κ
(i)
j 1lsj ⊗ 1lfi + 1lsj ⊗M(i)0 )).

We now want to analyze the opposite procedure.
Assuming F(T ) = ⊕j∈J(B(sj)⊗ 1lfj) with (sj)j and (fj)j being two countable sequences of Hilbert spaces such that h = ⊕j∈j(sj ⊗ fj) and

using notations of Theorem 18, we set an equivalence relation on J in the following way:

Definition 20. Given j, k ∈ J, we say that j is in relation with k (and write j ∼ k) if there exist a complex separable Hilbert space m and
unitary isomorphisms

Vj : fj →m, Vk : fk →m (21)

such that operators {VjN(j)l V∗j , VjN(j)0 V∗j : l ≥ 1} and {VkN(k)l V∗k , VkN(k)0 V∗k : l ≥ 1} give the same Lindbladian operator on B(m).

We obtain in this way an equivalence relation which induces a partition of J, J = ∪n∈IIn, for some finite or countable set I ⊆ N, where
each In is an equivalence class with respect to ∼.
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Theorem 21. Assume that there exists a faithful normal invariant state and N(T ) is atomic. Let F(T ) = ⊕j∈J(B(sj)⊗ 1lfj) with (sj)j

and (fj)j being two countable sequences of Hilbert spaces such that h = ⊕j∈j(sj ⊗ f j), and let {In : n ∈ I} be the set of equivalence classes of J with
respect to the relation ∼. Then, N(T ) is isometrically isomorphic to the direct sum ⊕n∈I(B(kn)⊗ 1lmn) with

kn ∶= ⊕j∈Insj, mn ∶= Vjfj ∀ j ∈ In, (22)

where V j’s are the unitary isomorphisms given in (21).

Proof. Given n ∈ I, by definition of mn, we can define a unitary operator by setting

Un : ⊕j∈In(sj ⊗ fj) → (⊕j∈Insj)⊗mn = kn ⊗mn,
⊕j∈In(uj ⊗ zj) ↦ ∑j∈In

(u(j)j ⊗ Vjzl),

where u(j)j in ⊕i∈Inhsi denotes the vector

u(j)j ∶= ⊕i∈Invi, vi ∶= {
0 if i ≠ j,
uj if i = j.

Now, since

h = ⊕j∈j(sj ⊗ fj) = ⊕n∈I(⊕j∈In(sj ⊗ fj))
by the equality J = ∪n∈IIn, by setting U ∶= ⊕n∈IUn, we get a unitary operator U : h→ ⊕n∈I(kn ⊗mn) such that

UF(T )U∗ = ⊕n∈I((⊕j∈InB(sj))⊗ 1lmn).

In order to conclude the proof, we have to show that

UN(T )U∗ = ⊕n∈I(B(⊕j∈Insj)⊗ 1lmn).

To this end, recall that by Theorem 18, the operators (Lℓ)ℓ, H in a GKSL representation of the generator L can be written as

Lℓ = ⊕j∈J(1lsj ⊗N(j)ℓ ) ∀ ℓ ≥ 1, H = ⊕j∈J(λj1lsj ⊗ 1lfj + 1lsj ⊗N(j)0 )

with (N(j)ℓ )ℓ≥1 ⊆ B(sj), N(j)0 = (N(j)0 )
∗
∈ B(fj), and λj ∈ R for all j ∈ J; moreover, by the definition of In, we can choose operators (M(n)l )l

and M(n)0 = (M(n)0 )
∗ in B(mn) such that {M(n)l , M(n)0 : l ≥ 1} is a GKSL representation of the generator Lmn of a QMS T mn on B(mn)

equivalent to {VjN(j)l V∗j , VjN(j)0 V∗j : l ≥ 1} for all j ∈ In. Therefore, the operators

L′ℓ ∶= ⊕n∈I(⊕j∈In(1lsj ⊗ V∗j M(n)ℓ Vj)),

H′ ∶= ⊕n∈I(⊕j∈In(λj1lsj ⊗ 1lfj) +⊕j∈In(1lsj ⊗ V∗j M(n)0 Vj))

clearly give the same GKSL representation of {Lℓ, H: ℓ ≥ 1}. Moreover, we have

UL′ℓU∗ = ⊕n∈IUn(⊕j∈In(1lsj ⊗ V∗j M(n)ℓ Vj))U∗n = ⊕n∈I(1lkn ⊗M(n)ℓ ),

UH′U∗ = ⊕n∈IUn(⊕j∈In(λj1lsj ⊗ 1lfj) +⊕j∈In(1lsj ⊗ V∗j M(n)0 Vj))U∗n

= ⊕n∈I(Kn ⊗ 1lmn + 1lkn ⊗M(n)0 )

with Kn ∶= (⊕j∈Inλj1lsj) = K∗n ∈ B(kn) so that

Uδm
H′(L

′
ℓ)U

∗
= δm

UH′U∗(UL′ℓU∗) = ⊕n∈I(1lkn ⊗ δm
M(n)

0
(M(n)ℓ )),

Uδm
H′(L

′∗
ℓ )U

∗
= δm

UH′U∗(UL′∗ℓ U∗) = ⊕n∈I(1lkn ⊗ δm
M(n)

0
(M(n)∗ℓ ))

for all m ≥ 0. Therefore, since UN(T )U∗ = {Uδm
H′(L

′
ℓ)U

∗, Uδm
H′(L

′∗
ℓ )U

∗ : m ≥ 0}′ by item 2 of Proposition 2, we obtain that an operator
x ∈ B(⊕n∈I(kn ⊗mn)) belongs to UN(T )U∗ if and only if it commutes with
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⊕n∈I(1lkn ⊗ δm
M(n)

0
(M(n)ℓ )), ⊕n∈I(1lkn ⊗ δm

M(n)
0
(M(n)∗ℓ ))

for every m ≥ 0.
Now, let qn ∶= 1lkn ⊗ 1lmn be the orthogonal projection onto kn ⊗mn. We clearly have qn ∈ UF(T )U∗ and ∑n∈I

qn = 1l. Therefore, the
algebra qnB(h)qn = B(kn ⊗mn) is preserved by the action of every map T̃t ∶= UTt(U∗ ⋅U)U∗, and so we can consider the restriction of T̃ to
this algebra, getting a QMS on B(kn ⊗mn) denoted by T (n) and satisfying N(T (n)) = qnUN(T )U∗qn, where N(T (n)) is the decoherence-
free algebra of T (n). Note that since each qn commutes with every ULℓ

′U∗, UL′∗ℓ U∗, and UH′U∗, a GKSL representation of the generator
L(n) of T (n) is given by operators

qnUH′U∗qn = Kn ⊗ 1lmn + 1lkn ⊗M(n)0 , qnUL′ℓU∗qn = 1lkn ⊗M(n)ℓ

so that

T̃t(x⊗ y) = eitKn xe−itKn ⊗ T mn
t (y) ∀ x ∈ B(kn), y ∈ B(mn)

and

N(T (n)) = {1lkn ⊗ δm
M(n)

0
(M(n)ℓ ), 1lkn ⊗ δm

M(n)
0
(M(n)∗ℓ ) : ℓ ≥ 1, m ≥ 0}′

= B(kn)⊗N(T mn). (23)

Since

UN(T )U∗ = ⊕
n,m∈I

qnUN(T )U∗qm

and Eq. (23) holds, to conclude the proof, we have to show that

qnUN(T )U∗qm = {0} ∀n ≠ m and N(T mn) = C1lmn .

So, let x ∈ UN(T )U∗ and consider n, m ∈ I with n ≠ m. Since the net (Tt(qnxqm))t≥0 is bound in the norm and the unit ball is weakly∗

compact, there exists a weak∗ cluster point y such that y = w∗− limα Ttα(qnxqm). Therefore, for σ ∈ R(T∗)with T∗t(σ) = eitλσ for some λ ∈ R,
we have

tr (σy) = lim
α

tr (σTtα(qnxqm)) = lim
α

eitαλtr (σqnxqm).

Now, if λ ≠ 0, this implies tr (σqnxqm) = 0 = tr (σy); otherwise, since σ is an invariant state, we automatically have qmσqn = 0 for n ≠ m by
Theorem 18 so that tr (σy) is 0 again. Consequently, tr (σy) = 0 for all σ ∈ R(T∗). On the other hand, taking η such that 0 ∈ {T∗t(η)}

w

t≥0, up
to passing to generalized subsequences, we have

tr (ηy) = lim
α

tr (ηTtα(qnxqm)) = lim
α

tr (T∗tα(η)qnxqm) = 0.

We can then conclude that tr (σy) = 0 for all σ ∈ I(⊕n(kn ⊗mn)) by virtue of Eq. (12), and so y = 0. This means that qnxqm belongs to
N(T ) ∩Ms and this intersection is {0} by Corollary 11 (N(T ) is atomic). Therefore, qnxqm = 0 for n ≠m and so

UN(T )U∗ = ⊕n∈IqnN(T )qn = ⊕n∈IN(T (n)).

Moreover, since N(T ) is atomic by Corollary 11, the general theory of von Neumann algebras (see, e.g., Ref. 29) says that each algebra
N(T (n)) = B(kn) ⊗N(T mn) is atomic too, and consequently, N(T mn) is atomic. Finally, recalling that by construction, T mn

t = T fj
t for all

j ∈ In with T fj
t being an irreducible QMS having a faithful invariant state (see Theorem 18), we get N(T mn) = C1lmn thanks to Proposition 4.3

of Ref. 15. ◽

Remark 22. Theorem 21 provides, in particular, a way to go from the decomposition of GKSL operators H, (Ll)l of L according to
the splitting of h = ⊕j∈j(sj ⊗ fj) associated with the atomic algebra F(T ), to the other one decomposition with respect to the splitting
h = ⊕n∈I(kn ⊗mn) associated with N(T ).

More precisely, if F(T ) = ⊕j∈J(B(sj)⊗ 1lfj) and

Lℓ = ⊕j∈J(1lsj ⊗N(j)ℓ ) ∀ ℓ ≥ 1, H = ⊕j∈J(λj1lsj ⊗ 1lfj + 1lsj ⊗N(j)0 )
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with (N(j)ℓ )ℓ≥1 ⊆ B(sj), N(j)0 ∈ B(fj), and λj ∈ R for all j ∈ J, then we can decompose H, (Lℓ)ℓ with respect to the splitting h = ⊕n∈I(kn ⊗mn)

given by (22) as follows:

Lℓ = ⊕n∈I(1lkn ⊗M(n)ℓ ), H = ⊕n∈I(Kn ⊗ 1lmn + 1lkn ⊗M(n)0 ),

where (M(n)ℓ )ℓ≥1, M(n)0 =M(n)∗0 are operators in B(mn) giving the same GKSL representation of (N(j)l )ℓ≥1, N(j)0 for all j ∈ In and every Kn is
the self-adjoint operator on B(kn) having (λj)j∈In as eigenvalues and (sj)j∈In as corresponding eigenspaces.
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