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Abstract— This paper addresses finite horizon optimal con-
trol of linear dynamical systems affected by an additive
bounded disturbance and subject to polyhedral state and input
constraints. The goal is to design a static state feedback
control law that minimizes a quadratic nominal cost while
robustly satisfying the state/input constraints. We propose a
novel set-based reachability approach and compare it against
two alternative set-based approaches that were proposed for
robust model predictive control (MPC) a few years back. All the
three approaches offer a computational procedure to the design
of a control policy, which is expressed as the sum of a state
feedback term and an open loop term. While in the robust MPC
methods the feedback term is a-priori fixed and only the open
loop term is optimized, in the proposed method both of them
are design parameters that are jointly optimally tuned. This is
achieved by adopting a zonotopic parametrization of the control
law that makes constraints and cost function respectively linear
and quadratic in the parameters. As a result, the set-based
reachability method provides a feasible solution for tighter
constraints than the two alternative set-based methods.

I. INTRODUCTION

We consider a constrained control problem for a dis-
crete time linear system affected by an additive bounded
disturbance. Our goal is to design a static state feedback
controller that minimizes the system deviation from a desired
operating condition through the minimization of a quadratic
cost function, while robustly enforcing given polyhedral state
and input constraints.

We propose a novel solution that is inspired by the set-
based reachability approach to control design recently intro-
duced in [1]. The underlying idea behind set-based reachabil-
ity analysis is to compute the sets of states that the system
can reach during its evolution (reach sets) by propagating
the set of initial states through the system dynamics, which
can be affected by disturbances. The effectiveness of a set-
based reachability approach in terms of both computability
and conservativeness of the result depends on the adopted
representation of the reach sets, jointly with the system
dynamics through which reach sets evolve. In [1], the reach
sets are represented through zonotopes, a special class of
convex polytopes that are parameterized by a center and a
finite set of generator vectors. They are closed under affine
transformations and Minkowski sum, so that if the system
dynamics is linear and the initial state and the system inputs
take values in zonotopes, then, reach sets are zonotopes

R. Desimini and M. Prandini are with the Dipartimento di
Elettronica Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy, email
{riccardo.desimini,maria.prandini}@polimi.it

as well and easily computable, even in the case of high
dimensional systems, [2].

Inspired by [1], we adopt a parametrization of the state
feedback control law in the form of a zonotope, which allows
to compute exactly all (zonotopic) reach sets and to formulate
the polyhedral state and input constraints as linear constraints
in the design parameters. Differently from [1], center and
generators of the zonotopic control policy are taken as design
parameters and, in particular, generators providing the state
feedback component of the control law are not constrained to
be a linear combination of the generators of the (zonotopic)
set representing the input constraints, but they are optimized.

From a computational perspective, our robust control de-
sign problem reduces to a finite convex optimization program
with quadratic cost and linear constraints, which is easy to
solve. We are thus able to overcome the key issue of lack
of convexity that arises when optimizing over state feedback
policies in robust constrained control (see e.g. [3]), which
is often solved by optimizing only the open loop term and
fixing a-priori a sensible value for the feedback term, [4]
and [5]. Differently from [3], where convexity is recovered
by using a control policy that depends affinely on all the past
values of the state, we have a static state feedback control
policy where the control input to be applied at a certain time
instant depends on the state value at the same time instant.

Alternative parameterizations of the (static) state feedback
law have been proposed in [6] and [7], where the vertices of a
polytope are adopted in place of the center and generators of
a zonotope. However, these parameterizations are less com-
putationally convenient since, while the number of generators
of a zonotope scales linearly with the space dimension, the
number of vertices of a polytope grows exponentially with
the space dimension, [1].

Similarly to [8], we compare the set-based computational
approaches introduced in [4] and [5] with the proposed set-
based reachability method. While the former two methods
are feasible only with loose constraints due to the con-
servatism introduced to obtain computationally affordable
procedures, our method does not introduce any conservatism
when the disturbance takes value in a zonotope, and thus an
effective solution can be obtained even when constraints are
tight and other approaches turn out to be infeasible.

Admittedly, all the mentioned methods including the one
proposed here compute a sub-optimal solution since they
restrict the state feedback control law to a class of pa-
rameterized policies. Interestingly, this is not the case for
the robust min-max approach proposed in [9], where the
optimal piecewise affine state feedback policy is determined



via dynamic programming. Computationally, the approach
in [9] involves the solution of a set of multi-parametric
linear programs and the resulting control law is defined
on a polyhedral partition of the state space, which can be
complicated, even for low dimensional systems.

Basic notions and notations

A (convex) polyhedron P ⊂ Rh is defined as the inter-
section of q half-spaces (H-representation [10]), and can
be expressed through PA ∈ Rq×h and pB ∈ Rq as P =
{z ∈ Rh|PAz ≤ pB} or P = (PA, pB) for ease of notation.
A polytope is a (convex) bounded polyhedron. Zonotopes
are centrally symmetric convex polytopes. More precisely, a
convex polytope in Rh is called a zonotope if it can be written
as Z = {z∈Rh|z = c+∑

r
i=1 βigi,βi ∈ [−1,1]}, where c∈Rh

is the center and gi ∈ Rh, i = 1, . . . ,r, are the generators.
We shall then use 〈c,G〉 as a more concise notation of Z ,
where G ∈ Rh×r is the generator matrix, which contains the
generators as its columns. A singleton {c} with c∈Rh can be
represented as 〈c,G〉 with G∈Rh×0 that is the empty matrix.
Given a generator matrix G, G[k] denotes its k-th column and
G[k,l] denotes the submatrix composed by the generators of
G from column k to column l, l ≥ k.

II. PROBLEM FORMULATION

Consider a discrete time linear system with state x ∈ Rn

evolving according to

xt+1 = Axt +But +wt , (1)

starting from x0 = x̂0 at time t = 0, subject to the control
input u ∈ Rm and to the disturbance w taking values in a
zonotope W = 〈cw,Gw〉 with cw = 0 and Gw ∈ Rn×pw .1

Our goal is designing a static state feedback control law
µ = (µ0, . . . ,µM−1), where µt : Rn → Rm, t = 0, . . . ,M− 1,
so that the closed-loop system{

xt+1 = Axt +But +wt

ut = µt(xt)
t = 0, . . . ,M−1,

initialized at x0 = x̂0, satisfies the state and input constraints
xt ∈X and ut−1 ∈ U , t = 1, . . . ,M, with X ⊂ Rn that is
a polyhedron, U ⊂ Rm that is a polytope and both the two
sets interiors contain the origin.

Among all feasible control laws, we select an optimal one
according to the quadratic cost

Jµ =
M−1

∑
t=0

(
x̄T

t+1Qx̄t+1 + ūT
t Rūt

)
,

associated with the nominal system{
x̄t+1 = Ax̄t +Būt

ūt = µt(x̄t)
t = 0, . . . ,M−1, (2)

representing the system behaviour when the disturbance w is
set equal to the center of the zonotope W . Matrices Q and
R are symmetric and positive semidefinite.

1If the disturbance w takes values in a polytope, a zonotopic outer-
approximation can be computed, [11], and its center can be shifted to the
origin by a suitable change of coordinates.

The control design problem consists then in the following
constrained optimization program:

min
ut = µt (xt ),

t = 0, . . . ,M−1

Jµ (3)

subject to:{
xt ∈X , t = 1, . . . ,M
ut ∈U , t = 0, . . . ,M−1,

which is semi-infinite since the constraints are meant to
hold robustly with respect to the disturbance wt ∈ W , t =
0, . . . ,M−1, entering the system dynamics (1).

III. SET-BASED REACHABILITY CONTROL DESIGN

In this section, we describe a novel set-based reachability
method to solve (3), using a convenient parametrization
of the state feedback control law. The proposed controller
structure rests on the following result.

Proposition 1: Consider the control system{
xt+1 = Axt +But +wt

ut = cu,t +Gu,tαt
(4)

initialized at time t = 0 with x̂0, where the disturbance wt
belongs to 〈0,Gw〉 with Gw ∈ Rn×pw and the control input
ut is defined through vector cu,t ∈ Rm, matrix Gu,t ∈ Rm×pt

with pt = t pw, and vector αt ∈ Rpt satisfying ‖αt‖∞ ≤ 1.
Then, it holds that x1 ∈ 〈cx,1,Gx,1〉 and for all t ≥ 1 there
exists αt that depends on xt , such that xt+1 ∈ 〈cx,t+1,Gx,t+1〉,
where cx,k and Gx,k, k ≥ 1, are given by:

cx,k = Akx̂0 +
k−1

∑
j=0

Ak−1− jBcu, j (5)

Gx,k =

[
Ak−1Gw +

k−2

∑
j=0

Ak−2− jBG[1,p1]
u, j+1

Ak−2Gw +
k−3

∑
j=0

Ak−3− jBG[p1+1,p2]
u, j+2 . . . Gw

]
,

(6)

with the understanding that summations ranging from h1 to
h2 with h1 > h2 give no contribution.
Moreover, a possible choice for αt , t ≥ 1, is:

α
∗
t = arg min

αt∈{βt∈Rpt :xt=cx,t+Gx,t βt , ‖βt‖∞≤1}
‖αt‖2

2 (7)

Proof: Since w0 ∈ 〈0,Gw〉 and u0 = cu,0 (note that Gu,0
is empty), the state of (4) at time t = 1 is given by:

x1 = Ax̂0 +Bcu,0 +Gwαw,0, ‖αw,0‖∞ ≤ 1

so that x1 ∈ 〈cx,1,Gx,1〉, where cx,1 = Ax̂0 +Bcu,0 and Gx,1 =
Gw are given in (5) and (6) with k = 1.

We prove the statement by induction on t, starting from
t = 1. Since x1 ∈ 〈cx,1,Gx,1〉, we can choose α1 such that

x1 = cx,1 +Gx,1α1, ‖α1‖∞ ≤ 1 (8)

Note that we can set α1 to be an arbitrary value satisfying (8)
and hence we can set it equal to the value in (7) with t = 1.



Now, by applying u1 = cu,1+Gu,1α∗1 , since w1 ∈ 〈0,Gw〉, we
obtain:

x2 = Ax1 +Bu1 +w1 = Acx,1 +Bcu,1+

+
[
AGx,1 +BGu,1 Gw

][ α∗1
αw,1

]
,

∥∥∥∥ α∗1
αw,1

∥∥∥∥
∞

≤ 1

that is, x2 ∈ 〈cx,2,Gx,2〉 where cx,2 = Acx,1+Bcu,1 and Gx,2 =[
AGx,1 +BGu,1 Gw

]
are given in (5) and (6) with k = 2.

Now we prove that if the statement holds for t−1, then it
holds also for t. By the induction hypothesis xt ∈ 〈cx,t ,Gx,t〉,
where the expressions of cx,t and Gx,t are given in (5) and (6)
by posing k = t. Now, by applying ut = cu,t +Gu,tα

∗
t , where

α∗t is given in (7), we obtain:

xt+1 = Axt +But +wt = Acx,t +Bcu,t+

+
[
AGx,t +BGu,t Gw

][ α∗t
αw,t

]
,

∥∥∥∥ α∗t
αw,t

∥∥∥∥
∞

≤ 1

that is, xt+1 ∈ 〈cx,t+1,Gx,t+1〉 with cx,t+1 = Acx,t +Bcu,t and
Gx,t+1 =

[
AGx,t +BGu,t Gw

]
. By substituting cx,t and Gx,t

with their expressions obtained by applying the induction
hypothesis, we finally obtain (5) and (6) for k = t +1.

Note that (7) works as a tie break rule and uniquely defines
vector αt , with ‖αt‖∞ ≤ 1, such that state xt ∈ 〈cx,t ,Gx,t〉 is
given by xt = cx,t +Gx,tαt .

By exploiting Proposition 1, we can parametrize the static
state feedback control law µ = (µ0, . . . ,µM−1) as follows:{

µ0(x) = cu,0

µt(x) = cu,t +Gu,tα
∗
t (x), t = 1, . . . ,M−1

(9)

where

α
∗
t (x) = arg min

α∈{β∈Rpt :x=cx,t+Gx,t β , ‖β‖∞≤1}
‖α‖2

2

and cx,t and Gx,t are given by (5) and (6) with k = t.
From the expressions in (9), it is clear that the proposed

control law is composed by an open-loop term cu,t and a
static state-feedback term Gu,tα

∗
t (x), which will be jointly

optimized compatibly with the constraints on state and input
appearing in (3). Also, the control input ut belongs to the
zonotope 〈cu,t ,Gu,t〉 which is optimized according to (3) and
not structured as the constraint (zonotopic) set for the input
as in [1].

In our set-up, the dynamics in (2) assumes the form

cx,t+1 = Acx,t +Bcu,t

with cx,0 = x̂0 and thus the cost in (3) can be rewritten as

Jµ =
M−1

∑
t=0

(
cT

x,t+1Qcx,t+1 + cT
u,tRcu,t

)
(10)

Note that since cx,t+1, t = 0, . . . ,M−1, is linear as a function
of the design variables cu,k, k = 0, . . . , t (see (5)), cost (10)
is convex and quadratic in the optimization variables.

Our aim now is to show that the infinite number of con-
straints in (3) reduces to a finite number of linear inequalities
in the control law parameters.

In order to enforce the state constraints at each time
instant t = 1, . . . ,M, we exploit the polytopic structure of
the constraints set X and the fact that xt ∈ 〈cx,t ,Gx,t〉 for all
t = 1, . . . ,M, as stated in Proposition 1. Let (Xa,xb) be an
H-representation of X . Since xt ∈ 〈cx,t ,Gx.t〉, we have that
the constraint xt ∈X can be expressed as

Xacx,t + max
α∈[−1,1]t pw

XaGx,tα ≤ xb,

where the max(·) operator has to be applied elementwise,
which is equivalent to the following constraint:

Xacx,t + |XaGx,t |1t pw ≤ xb (11)

where the operator | · | is meant to be applied elementwise
and 1d denotes the d-dimensional column vector with unitary
components. At time t = 1, constraint (11) is simply

Xacx,1 + |XaGw|1pw ≤ xb

and by using equation (5) it is readily obtained a linear
inequality in the decision variable cu,0. At time t = 2, . . . ,M,
constraint (11) can be efficiently expressed as a set of
linear inequalities in cx,t and Gx,t by introducing suitable
auxiliary variables, each one upper bounding an element of
the absolute value matrix |XaGx,t |, and then plugging in these
variables in (11). More precisely, we introduce the vectors
hxt j ∈ Rqx , j = 1, . . . , pt−1 as:

Xacx,t +∑
pt−1
j=1 hxt j + |XaGw|1pw ≤ xb

−hxt j ≤ XaG[ j]
x,t ≤ hxt j, j = 1, . . . , pt−1

(12)

Constraints (12) can be made explicit in terms of the de-
cision variables cu,0, cu,k and Gu,k, k = 1, . . . , t−1 by using
equations (5) and (6). A similar procedure applies also to the
polytopic constraints on the control input, since the proposed
control law has a zonotopic structure.

Summarizing, the resulting optimization problem is:

min
cu,0,cu,t ,Gu,t ,

t = 1, . . . ,M−1

M−1

∑
t=0

(
cT

x,t+1Qcx,t+1 + cT
u,tRcu,t

)
(13)

subject to:
Xacx,t + |XaGx,t |1t pw ≤ xb, t = 1, . . . ,M
Uacu,0 ≤ ub

Uacu,t + |UaGu,t |1t pw ≤ ub, t = 1, . . . ,M−1,

where we omitted the auxiliary variables for ease of reading.

IV. SET-BASED CONTROL DESIGN FOR ROBUST MPC

A. Approach based on invariant set

We next briefly describe the approach based on the com-
putation of a disturbance invariant set to bound the uncertain
dynamics of (1) that was originally introduced in [4].
The control law has the following structure:

ut = K(xt − x̃t)+ ct , (14)

where K is an a-priori fixed stabilizing gain (e.g., the
optimal gain of the infinite horizon unconstrained LQ control



problem), while the open loop term ct is the actual decision
variable. As for x̃t appearing in (14), it is governed by

x̃t+1 = Ax̃t +Bct , (15)

and its initialization x̃0 is a decision variable too. By plugging
(14) into (1), the system dynamics becomes

xt+1 = (A+BK)xt −BKx̃t +Bct +wt .

If we now consider the difference e between the actual
dynamics and the one in (15), i.e., e = x− x̃, it satisfies the
equation

et+1 = (A+BK)et +wt . (16)

Now, denote by Z a disturbance invariant set for system
(16), that is a set that satisfies the property that if et ∈ Z ,
then et+1 must belong to Z for every realization of the
disturbance wt with support W . Based on the properties of
invariant sets, it is immediately verified that if x̂0 ∈ x̃0⊕Z ,
then xt+1 ∈ x̃t+1⊕Z and ut ∈ ct +KZ (note that KZ =
{Kz, z ∈ Z }), t = 0, . . . ,M− 1. In other words, Z can be
used to bound the uncertain dynamics of (1).
The robust constraints in (3) can then be enforced by select-
ing x̃0 and c0, . . . ,cM−1 so that x̂0 ∈ x̃0⊕Z , x̃t ⊕Z ⊆X ,
t = 1, . . . ,M and ct ⊕KZ ⊆U , t = 0, . . . ,M−1. This leads
to the following optimization problem:

min
x̃0,ct ,t=0,...,M−1

M−1

∑
t=0

(
x̃T

t+1Qx̃t+1 + cT
t Rct

)
(17)

subject to:
x̂0 ∈ x̃0⊕Z

x̃t ⊕Z ⊆X , t = 1, . . . ,M
ct ⊕KZ ⊆U , t = 0, . . . ,M−1.

If the invariant set Z is a polytope, then problem (17) can
be solved at relatively low computational cost, since the
constraints can be enforced for the vertices of Z and KZ
only. The invariant set Z should be as small as possible so
as to achieve the widest feasibility for (17). The minimal
invariant set, however, may not be a polytope, [4], and it is
also difficult to compute. Usually an invariant polytopic outer
approximation of the minimal invariant set is used, [12].

B. Tube-based approach

The tube-based approach developed in [5] for the case of
multiplicative uncertainty is here formulated for the case of
additive uncertainty by following the same approach of [8].
Specifically, the control law is selected as:

ut = Kx̄t +L(xt − x̄t)+ ct , (18)

where the decision variable is the open loop term ct . The state
x is split into the sum of a nominal term, represented by x̄,
and an error term, represented by e = x− x̄. The dynamics
of x̄ and e are described by the equations

x̄t+1 = (A+BK)x̄t +Bct , x̄0 = x̂0

et+1 = (A+BL)et +wt , e0 = 0.

Note that the first equation is obtained from (2) by setting
µt(x̄t) = Kx̄t + ct , which is (18) when xt = x̄t .

The matrices K and L in (18) are some a-priori fixed
gains used to stabilize the nominal and the error dynamics
respectively. The idea is to find at each time step t in the
control horizon a polytope Pt that includes any possible
value of et when wt−1 ranges over W . The evolution of
x is then guaranteed to be contained in x̄t ⊕Pt , while
ut takes values in Kx̄t + ct ⊕ LPt . The satisfaction of the
robust constraints in (3) is guaranteed by requiring that these
polytopes are subsets of X and U , respectively. The final
optimization problem is:

min
ct ,t=0,...,M−1

M−1

∑
t=0

(
x̄T

t+1Qx̄t+1 +(Kx̄t + ct)
T R(Kx̄t + ct)

)
(19)

subject to:{
x̄t ⊕Pt ⊆X , t = 1, . . . ,M
Kx̄t + ct ⊕LPt ⊆U , t = 0, . . . ,M−1.

Since Pt is a polytope, constraints in (19) can be enforced
for the vertices of Pt and LPt only, and problem (19) can
be solved through standard convex optimization techniques.

As for the computation of Pt , t = 0, . . . ,M, they are
selected in the form Pt = {et : Vet ≤ γt}, where inequality
is understood componentwise. The matrix V has to be a-
priori fixed, which causes the facets of Pt to have always
the same orientation for every t = 0, . . . ,M. Vector γt defines
the distance between the facets at time t so as to bound the
possible values for et .

Since W is a polytope, one can determine P0, . . . ,PM
as follows: first, it is selected P0 = {0}, which implies
γ0 = 0. Then, the matrix H with all positive elements that
satisfies HV =V (A+BL) while minimizing the trace of HHT

is computed and finally γ1, . . . ,γM are determined so as to
satisfy Hγt ≤ γt+1 −V vw j for all t = 0, . . . ,M− 1 and for
all j = 1, . . . ,nvw, with vw j denoting the j-th vertex of W .
Further details are reported in [8].

V. NUMERICAL EXAMPLES

In this section, we make a comparative analysis of the
approaches in Sections III and IV, in terms of their capability
of providing an effective solution to the optimal constrained
control problem described in Section II as the state and input
constraints become tighter and tighter. To this purpose, we
revisit the two numerical examples in [8]: a second order
system, first, and, then, a fourth order spring-mass system.

A. Second order system

We consider a second order system described by:

xt+1 =

[
0.5 −0.5
0.5 0.5

]
xt +

[
1
0

]
ut +wt (20)

where w is an additive disturbance with support W =
[−0.2,0.2]2.



The finite horizon problem to be solved takes the form:

min
ut = µt (xt ),

t = 0, . . . ,M−1

M−1

∑
t=0

(
x̄T

t+1Qx̄t+1 + ūT
t Rūt

)
(21)

subject to:{
‖ut‖∞ ≤ ulim t = 0, . . . ,M−1
‖Cxt‖∞ ≤ ylim t = 1, . . . ,M ,

where we set M = 9, Q = I2, R = 0.1, C = I2. As for the a-
priori fixed quantities entering the solution of (21) according
to the approaches of Section IV:
• the feedback gains K in (14) and K, L in (18) are set

equal to the optimal LQ gain KLQ;
• the shaping matrix V of the tube-based approach is

V =

[
1 0 −1 0 1 1 −1 −1
0 1 0 −1 1 −1 1 −1

]T

.

We set x0 = x̂0 = 0 and assess the possible conservativeness
of the three approaches by evaluating the threshold values
ythr and uthr for ylim and ulim in (21) leading to infeasibility
of the optimization problems (13), (17) and (19). Results are
shown in Table I.

TABLE I
ESTIMATE OF THE THRESHOLD VALUES ythr AND uthr FOR ylim AND ulim

BEFORE INCURRING IN INFEASIBILITY.

ythr uthr

Tube-based approach 0.60 0.39

Approach based on invariant set 0.53 0.36

Set-based reachability approach 0.40 0.40

Note that, when the initial state is zero, the optimization
problem (17) in the approach of Section IV-A is feasible if
and only if the invariant set Z and its projection KZ on
the input space through the feedback gain K are respectively
contained in the constraints sets X and U . Hence, the
thresholds ythr and uthr can be obtained based on Z and
KZ . Likewise, when the initial state is zero, problem (19)
in the approach of Section IV-B is feasible if only if the
tube sections Pt and LPt are contained in the state and
input constraints sets for every t. Since Pt and LPt are
increasing with t, ythr and uthr are obtained based on the
tube sections PM and LPM−1.

Since the reach sets shape is not a-priori defined, but
is optimized when designing the control law, the values
reported in Table I for the set-based reachability method
are obtained by first monitoring the feasibility of problem
(21) when progressively reducing ylim while taking a fixed
high value of ulim, and then, once the threshold value for
ylim has been detected, by progressively decrease ulim until
problem (21) becomes infeasible. In this way, we first assess
the capability of the controller to keep the reach sets inside
the state constraints set when it can apply arbitrarily large
control actions, and then, by keeping fixed the computed
lower bound for ylim, we assess the controller performance
by progressively reducing its actuation capabilities.

Note that if ylim in (21) is set equal to the threshold
values 0.60 and 0.53 reported in Table I for the tube-based
approach and the approach based on invariant set, ulim can
be decreased up to uthr = 0.11 and uthr = 0.17, respectively,
before problem (21) becomes infeasible for the set-based
reachability method. Both these threshold values for ulim are
much lower than those of the other two methods.

As it appears, the set-based reachability approach provides
tighter constraints thresholds with respect to the other ap-
proaches. This is due to the fact that it is computing exactly
the reach sets while also tuning the state feedback term,
which results in a less conservative approach. In Figure 1
are shown the computed sets when feasibility is achieved
only with the set-based reachability method: here, the shape
of the reach sets is adapted by the controller in such a way
to fit the tight state constraints, while the sets Z and Pt ,
since have fixed structure, cannot be included into the state
constraints box in the considered time horizon.
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Fig. 1. Invariant set Z (red), sections of the tube (yellow) and reach sets
obtained with the proposed method (cyan) when ylim = ulim = 0.4.

Note that the feasibility of problems (17) and (19) depends
on the choice of the feedback gains K in (14) and K, L in
(18). It may be that choices other than KLQ lead to smaller
thresholds than those reported in Table I. However, K in
(17) and K, L in (19) have to be fixed in advance, otherwise
computational difficulties arise, and it is usually difficult to
guess what is the best choice.

B. Spring-mass system

We next present the simulation results obtained by apply-
ing the three approaches to the mechanical system composed
of two masses and two springs shown in Figure 2.

The 4-dimensional state of the system is given by mass
displacements with respect to an equilibrium point and their
derivatives, whereas the control input is given by two forces
acting on the masses. The system is discretized with standard
techniques assuming constant input between consecutive
time steps. All stiffnesses and masses have been chosen
unitary. The disturbance added to the discrete time state has



m1 m2

u2 u2

k2k1
u1

d1 d2

Fig. 2. Scheme of the mechanical system.

support W = [−1,1]4. The finite horizon control problem
takes the form (21) with the following parameter settings:

M = 5, Q =

[
I2 0
0 0

]
, R = I2, C =

[
1 0 0 0
−1 1 0 0

]
.

In particular, C appearing in the state constraints is chosen
so that ylim in (21) represents some bound posed on the
deformation of both springs. The shape of the tube sections
used in the approach of Section IV-B is a 4-dimensional
hyper-rectangle: V =

[
I4 −I4

]T .
As in the previous example, we first determine how much
we can tighten the constraints before reaching infeasibility
for the three approaches. Also in this case the set-based
reachability approach provides tighter constraints than the
other two approaches (see Table II).

TABLE II
ESTIMATE OF THE THRESHOLD VALUES ythr AND uthr FOR ylim AND ulim

BEFORE INCURRING IN INFEASIBILITY.

ythr uthr

Tube-based approach 22.52 12.65

Approach based on invariant set 5.94 4.57

Set-based reachability approach 2.00 9.93

The tube-based approach turns out to be much more
conservative than the one based on invariant set and the set-
based reachability method.

Note that if ylim in (21) is set equal to the threshold
value 5.94 reported in Table II for the approach based
on invariant set, ulim can be decreased up to uthr = 0.85
before problem (21) becomes infeasible for the set-based
reachability method.

The performances obtained with tight constraints (ylim = 2
and ulim = 9.93) are depicted in Figure 3, where the sets
computed with the three approaches are represented in the
output space.

VI. CONCLUSIONS

In this paper we addressed optimal quadratic constrained
control for a linear system subject to a bounded additive
disturbance. We proposed a novel computational approach
and compared our method with two alternative set-based
approaches that have been proposed in the literature on robust
MPC some years back, showing by means of two examples
taken from [8] that our method is better performing when
state constraints are tight. This enhances the use of set-
based reachability control within robust MPC, and opens
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Fig. 3. Output space projections through matrix C of the invariant set Z
(red), of the sections of the tube (yellow) and of the reach sets obtained
with the proposed method (cyan) when ylim = 2 and ulim = 9.93.

new interesting research directions related to the study of
its recursive feasibility properties.
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