Impact of Interaction Strength and Surface Heterogeneity on the

Dynamics of Adsorbed Polymers
Guido Raos* and Julien 1dé"

Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy

Corresponding Author
*E-mail: guido.raos@polimi.it. Phone: +39-02-2399-3051. Fax:
+39-02-2399-3180.

Present Address
"Julien Ide, Laboratory for Chemistry of Novel Materials,

University of Mons, Place du Parc 20, BE-7000 Mons, Belgium.

n the closing remarks of a recent review article, Kumar et al!

have identified some priority areas for research on polymer
nanocomposites. The first topic on their list is the study of the
relationship between miscibility, mechanical reinforcement, and
polymer glass transition. These are indeed interrelated, as
surface functionalizations of the nanoparticles which enhance
their compatibility with the polymer matrix often produce a
substantial increase of its elastic modulus and fracture
toughness™ and, at the same time, a sizable (usually upward)
shift of the glass transition, either of the nanocomposite as a
whole or of a fraction of material within a few nanometers from
the nanoparticles” surface (in the context of filled elastomers,
this is the so-called bound rubber or glassy shell*~®). Similar
effects have also been observed in very thin polymer films on
different substrates.””” Nonetheless, the same authors' pointed
out that these correlations are not universal, and there can be
situations where an increase in polymer—particle compatibility
is accompanied by a downward shift of the glass transition
temperature, or vice versa."’ The aim of this letter is to present
the results of molecular dynamics (MD) simulations on a
simple model system, which point to surface heterogeneity as a
key feature which might explain these and other, apparently
contradictory, observations.

Molecular simulation methods have been applied, among
other many things, to study the behavior of supercooled
polymers under confinement,'! polymer nanocomposites,a’12
polymer—nanoparticle self-assembly,13 rubber reinforce-
ment,'>'* and the recognition (through a selective, first-order
adsorption transition) between patterned surfaces and copoly-
mers with specified sequences."*™"” To quote a few more
specific examples, we mention some early MD'® and Monte
Carlo"? simulations demonstrating a dramatic slowdown of the
polymer dynamics and the formation of a mechanically hard

shell around attractive nanoparticles. Similar effects were seen
also in simulations of polymers confined between planar
surfaces,”® which actually showed significant differences
between the behavior on an ideally smooth surface and one
with small atomic-scale corrugations. We also mention our own
mesoscale simulations,! providing a direct demonstration of
the effect of slowed-down interfacial dynamics (modeled
phenomenologically by bistable polymer—filler bonds) on the
nonlinear dynamical-mechanical response of particle-filled
rubbers (the so-called Payne effect?*). The mechanical
deformation and rupture of the glassy polymer bridges between
two closely spaced surfaces has also been investigated by
nonequilibrium MD simulations.>*

The simulations mentioned in the previous paragraph
assumed relatively smooth, chemically homogeneous surfaces
or nanoparticles. Several aspects of the associated phenomena,
especially equilibrium ones (e.g, polymer absorption, con-
formation, and density profiles), have also been thoroughly
investigated by a variety of theoretical approaches.”*** The
situation becomes much richer and challenging, also from a
theoretical and computational point of view, once we introduce
some heterogeneity or randomness in the surface, the polymer,
or both.'>™'7?%2° Here we are specifically interested in the
effect of surface heterogeneity on the diffusion and conforma-
tional relaxation of adsorbed homopolymer chains. This
problem has been studied theoretically by Vilgis and co-
workers,””*® who described a localization transition of the
chains at a critical value of a certain “disorder parameter”. The
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Figure 1. Close-up views of the polymer chains (white strings) on two surfaces with different compositions (f = 0.25 or 0.75) at two different
temperatures (T*# = 1.2 and 0.4). The surface’s W atoms are red, and the S atoms are blue. These images were produced with the VMD program.*

polymer dynamics in this localized state is also characterized by
an incomplete (i.e., nonergodic), nonexponential relaxation of
the chains’ conformation, as described by its Rouse normal
modes.”” There are some strong analogies between this
disorder-induced trapping of the polymer chains and the
conventional glass transition in supercooled liquids.>® Roughly
speaking, this effect can be expected to be “on top” of the
density-induced vitrification, which can occur also in a polymer
melt next to a perfectly smooth, attractive surface.>" Substantial
differences in single-chain (or single-particle) diffusive dynam-
ics on clean, ordered surfaces and heterogeneous ones have
been seen also experimentally, by atomic force microscopy and
fluorescence techniques.>* >

We have simulated a series of model systems consisting of
several flexible polymer chains, deposited on topographically
homogeneous but chemically heterogeneous, energetically
disordered surfaces (see Figure 1). Here we only provide a
concise description of our approach, as further details can be
found in an earlier publication.*® The polymers are made up of
N =16 “P” beads connected by harmonic springs. The surfaces
are perfectly rigid, and they consist of a single layer of atoms
arranged on a square planar lattice, at z = 0.0. These atoms can
be of two types, henceforth denoted as “W” for weakly and “S”
for strongly interacting. Surfaces with different compositions
were generated by randomly assigning the type to the surface
atoms, with probability f for the S atoms and 1 — f for the W
ones. Specifically, we ran simulations on surfaces with f = 0.00,

0.12, 0.25, 0.50, 0.75, 0.88, and 1.00. In our model, all
nonbonded interactions are described by truncated and shifted
Lennard-Jones (LJ) potentials.’”*® All atoms (P, W, and S)
have the same mass m = 1 and hard-core diameter ¢ = 1 (in
reduced LJ units®”**). The L] well depths are as follows (the
subscripts denote the involved atom pair): epp = eyw = Eg5 =
&pw = Ews = 1, while &pg = 2. Most LJ interactions are truncated
at a cutoff distance of 2.5, except for the PP interactions which
are truncated at 2'/¢ & 1.122 to produce a purely repulsive
potential. With this choice, at low surface coverages the chains
adopt two-dimensional self-avoiding walk conformations
whereby their average end-to-end distance and radius of
gyration scale as N*'*3%%° Periodic boundary conditions were
adopted in the directions parallel to the surface (x and y). A
constant force of —0.1 (in LJ units) was applied to all the P
beads along the orthogonal direction, gently pressing them
against the underlying surface to prevent any chain detachment
(a possibility which we decided to avoid, to simplify the analysis
of the MD trajectories). For each system, MD simulations have
been conducted at reduced temperatures T* = kzT/epp = 1.20,
1.10, 1.00, 0.90, 0.80, 0.70, 0.60, 0.55, 0.50, 0.45, and 0.40. The
MD equations of motions were integrated with a time step At =
0.01 (again, in reduced LJ units), and the MD production runs
typically lasted 107 time steps. The simulations were carried out
with the COGNAC code.*

In our previous paper,*® we studied the polymers’ statistical
and dynamical properties (including their response to a pulling
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force) as a function of chain length (from N = 16 to 256).
Those simulations were conducted at very low coverages, on a
single disordered surface with f = 0.06. Here, with 450 chains of
length N = 16 on surfaces consisting of 100 X 100 atoms, we
have a fairly dense, near-monolayer coverage (see again Figure
1; note that these images show only a portion of the systems).
These simulation conditions allow us to collect good statistics
on the polymer dynamics, without having to deal with the
complications of discriminating the behavior of chains or
segments at different distances from the surfaces, which would
arise in simulations of thicker films or confined polymer
melts."!

The energetic disorder of a surface can be quantified by the
histogram of the interaction energies between a single polymer
bead and the surface itself. Qualitatively similar histograms can
be obtained experimentally by gas adsorption studies, and they
have been shown to be useful for characterizing the reinforcing
ability of different fillers.*' One such histogram is given in the
top panel of Figure 2, while the remaining ones are in the
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Figure 2. Representative histogram of the interaction energies
between a polymer bead and a heterogeneous surface with f = 0.75
(top) and plot summarizing the interaction statistics for all the surfaces
(bottom). The vertical bars indicate one standard deviation of the
interaction energies.

Supporting Information (SI). It has been constructed by
scanning the surface with a P-type L] bead at a height z =
0.8717, placing it above the centers of the squares formed by
four neighboring sites.*® It reveals a broad and somewhat
asymmetric distribution of energies, corresponding to different
adsorption environments. The lower panel of Figure 2
summarizes the results for all the surfaces by giving the
mean, the median, the standard deviation, the minimum, and
the maximum values of these distributions. As expected, the

average interaction energy depends linearly on the surface
composition. The width of the distribution is maximal at f =
0.50, but it is still quite large for f = 0.25 and 0.75. The
distributions are narrower but markedly asymmetric for f= 0.12
and 0.88, as revealed by the difference between the mean and
the median. In general, it would be interesting to characterize
also the spatial correlation of this energetic disorder, i.e., the
correlations in the bead—surface interaction energies at
neighboring sites. In the present model, however, these
correlations are very short-ranged (at most of the order of
the nonbonded cutoff distance of 2.5) as the types of surface
atoms (W or S) are assigned in a completely random fashion.
Instead, these correlations would be much more important in
the case of “patchy” surfaces.

As a prelude to the characterization of the chains’ dynamical
properties, we have computed the polymer segment density in
the direction orthogonal to the surface and the distributions of
their end-to-end distances. Several plots are given in the SL
These demonstrate that the chains are strongly adsorbed on the
surface, except for the highest temperatures where they can
make appreciable excursions away from it up to a couple
monomer diameters. The average (root-mean-square) end-to-
end distances are always in a fairly narrow range between 5.75
and 5.93. Thus, for all systems and temperatures, the chains
adopt an essentially two-dimensional random coil conforma-
tion, as they neither desorb nor crystallize on the surfaces.

The chain diffusion coeflicients D can be extracted by fitting
the time dependence of the mean-square displacements
(MSDs) of their centers of mass®*™>*

([Rem(t + ty) — RCM(tO)]2> =4Dt + b (1)

As discussed in the SI, which contains also some representative
plots of the MSDs, inclusion of a nonzero intercept b in the fits
minimizes the effect of short-time subdiffusive behavior, which
can be significant at T* < 0.50 for f > 0.50. The resulting
diffusion coefficients are given in Table 1 and plotted in the
upper panel of Figure 3, showing that their temperature
dependence roughly follows the Arrhenius behavior

In(D) = In(D,) — E,/T* )

The resulting activation energies are plotted in the lower panel
of Figure 3, showing that they tend to increase with the f
fraction of S atoms, but above all, they are maximal when f =
0.75. This nonmonotonic dependence of the activation energy
is the central result of this paper, as it illustrates a situation
where the system with the most hindered polymer chain
dynamics is not the one with the strongest average interactions.
Notice also that, besides having that largest activation energy,
the systems with f = 0.75 have also the largest uncertainty on it
(dashed lines in the plot). This uncertainty is not so large to
invalidate our conclusions, but it is nonetheless interesting as it
shows that this system has small but appreciable deviations
from the Arrhenius behavior (note that, even in this “bad” case,
the adjusted R” is 0.994). There is clearly an analogy with the
behavior of “fragile” supercooled liquids, whose viscosities
follow the V0§el—Fu1cher—Tamman law rather than the
Arrhenius one.’

Analogous conclusions apply to the chains’ conformational
relaxation, monitored through the autocorrelation functions of
the Rouse normal modes [C,(t), where g = 1,2,3, ... is the mode
index].***® The upper panel shows some representative decay
curves for the most collective and therefore slowest modes,
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Table 1. Polymer Diffusion Coefficients for Each Reduced Temperature (T*) and Surface Composition (f)*

T*/f 0.00 0.12 025
0.40 1.0 X 107™* 19 x 107° 48 x 107¢
0.45 24 %1074 58 X 107° 1.5 x 107°
0.50 4.4 x 107* 14 x 107* 43 x107°
0.55 7.1 x 1074 29 x 1074 1.1 x 107
0.60 0.0012 47 x 107 1.9 x 107
0.70 0.0021 0.0012 63 x 107*
0.80 0.0041 0.0024 0.0012
0.90 0.0057 0.0035 0.0024
1.00 0.0085 0.0058 0.0041
1.10 0.013 0.0085 0.0058
1.20 0.016 0.011 0.0087

E, 3.00 + 0.05 3.78 + 0.03 4.51 + 0.04

“The last row gives the activation energies and their standard errors.
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Figure 3. Arrhenius plots of the chain diffusion coefficients (top) and
plot illustrating the surface dependence of the activation energies
(bottom). The dashed lines indicate the standard errors, as obtained
from the least-squares fits of the Arrhenius plots.

plotted in semilog form to highlight a near-exponential decay,
as predicted by the Rouse model

Cq(t) = exp{—t/Tp} (3)

where the most collective modes (small p) are expected to
decay more slowly®

T, ~ N*/p* (p < N) (4)

At high temperatures, these modes do decay as predicted by eq
3. However, conformational relaxation becomes dramatically

0.50 0.75 0.88 1.00
9.0 X 1077 43 x 1077 3.9 x 1077 3.9 x 1077
2.8 X 107¢ 9.9 x 1077 9.0 X 1077 1.3 X 107°
7.9 x 107¢ 32 %107 3.1 %107 3.8 x107°
2.0 % 107° 84 % 107° 7.7 x 1076 9.6 X 107¢
47 x 1075 22 X% 107° 2.0 % 107° 2.0 %1075
1.7 x 107 7.6 X 107° 6.8 X 107° 7.2 % 1073
49 x 1074 24 x 1074 20x 1074 1.8 x 107*
0.0010 51 x 107* 44 x 107* 42 x 1074
0.0020 0.0011 88 x 107* 7.5 % 1074
0.0033 0.0018 0.0014 0.0013
0.0045 0.0029 0.0022 0.0019
529 + 0.08 5.52 + 0.14 5.40 + 0.12 5.18 + 0.07

slower at lower temperatures or higher disorder, to the point

that it might be better described by the more general law””**
B
t
C,(t) = expq — = + r(q)
! ()

where 0 < f# < 1 is a “stretching exponent” and 0 < r(q) < 1 a
“nonergodicity parameter”. Looking at the plots for T* = 0.4
and 0.5, a nonexponential relaxation seems indeed quite likely,
but for simplicity in the data analysis and their interpretation,
even in these cases we have fitted the initial decay of the Rouse
correlation functions using eq 3. The resulting relaxation rates
(inverse of the relaxation times) also have a near-Arrhenius
temperature dependence. The activation energies for the first
three normal modes are plotted in the lower part of Figure 4.
Their surface dependence closely resembles that for transla-
tional diffusion, reaching a maximum for the surface with f =
0.75.

Finally, one may speculate about the origin of the observed
nonmonotonic variation in the polymer dynamics. Looking
back at Figure 2, we see that the surface with f = 0.75 combines
near-maximum polymer—surface attraction with near-maximum
surface heterogeneity (the maxima of these individual proper-
ties are clearly at f = 1.0 and f = 0.5, respectively). At a coarse-
grained level, a chain which is already absorbed in a very
favorable configuration will have an energetic incentive to
diffuse along its own path, so it might be gossible to interpret
its dynamics in terms of a reptation model.*”** However, at the
local scale—i.e.,, the scale which determines the activation
energies—diffusion of a strongly absorbed polymer must
involve conformational transitions of its segments, jumping
from one to another adsorption site (see Figure S). Sometimes,
“unlocking” a particularly favorable situation may require a
jump from a strongly to a weakly adsorbing site. These local
transitions may involve more energy than those on a strongly
interacting but homogeneous surface and therefore will tend to
raise the overall activation energy for diffusion of the chains. In
fact, it seems quite reasonable that the measured activation
energies should depend on the whole distribution of
polymer—surface interaction energies and not just on its
average value.

To sum up, we have presented some MD simulations on a
simple model system, which show that the polymer dynamics
next to a solid surface can have a nonmonotonic dependence
on their “affinity” (f, in our model). Our main conclusion,
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Figure 4. Semilog plots of the autocorrelation functions of the first
two Rouse normal modes (RNM1 and RNM2), for the chains on a
surface with f = 0.5 at selected temperatures (top). Plots illustrating
the surface dependence of the activation energies, extracted from
Arrhenius fits of the Rouse relaxation times (bottom).
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Figure S. Simplified picture of a conformational transition of a
polymer on a heterogeneous surface (S atoms in blue, W atoms in
red). One monomer jumps from a more to a less energetically
favorable site.

which might be relevant for polymer adhesion and friction on
solid surfaces, is that reducing their affinity might actually slow
down the polymer relaxation (i.e., increase the activation energy
for diffusion), possibly shifting its glass transition temperature
upward, when this reduction is achieved through an increase of
the surface heterogeneity. We are now planning to investigate
composites containing heterogeneous nanoparticles, to check
its validity also in situations where there is a bulk polymer
(instead of a monolayer) in contact with curved or more
irregular surfaces. Hopefully, these studies will contribute to the
development of better polymer-based materials, combining
more facile processing with improved mechanical properties.

Bl ASSOCIATED CONTENT

Supporting Information
Histograms of the interaction energies for all the surfaces,

characterization of the static equilibrium properties of the
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