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This paper investigates the continuation of solutions to the modified coupled two-component Camassa-Holm system after wave
breaking. The underlying problem is rather challenging due to the mutual coupling effect between two components in the system.
By introducing a novel transformation that makes use of a skillfully defined characteristic and a set of newly defined variables, the
original system is converted into a Lagrangian equivalent system, from which the global conservative solution is obtained, which
further allows for the establishment of themultipeakon conservative solution of the system.The results obtained herein are deemed
useful for understanding the inevitable phenomenon near wave breaking.

1. Introduction

We consider here the following modified coupled two-
component Camassa-Holm system with peakons [1]:

𝑚
𝑡
+ 2𝑚𝑢

𝑥
+ 𝑚

𝑥
𝑢 + (𝑚V)

𝑥
+ 𝑛V

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑛
𝑡
+ 2𝑛V

𝑥
+ 𝑛

𝑥
V + (𝑛𝑢)

𝑥
+ 𝑚𝑢

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑚 = 𝑢 − 𝑢
𝑥𝑥
, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑛 = V − V
𝑥𝑥
, 𝑡 > 0, 𝑥 ∈ 𝑅.

(1)

System (1) is a modified version of the new coupled two-
component Camassa-Holm system in the following equation;
namely,

𝑚
𝑡
= 2𝑚𝑢

𝑥
+ 𝑚

𝑥
𝑢 + (𝑚V)

𝑥
+ 𝑛V

𝑥
, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑛
𝑡
= 2𝑛V

𝑥
+ 𝑛

𝑥
V + (𝑛𝑢)

𝑥
+ 𝑚𝑢

𝑥
, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑚 = 𝑢 − 𝑢
𝑥𝑥
, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑛 = V − V
𝑥𝑥
, 𝑡 > 0, 𝑥 ∈ 𝑅,

(2)

which, as an extension of the Camassa-Holm (CH) equation,
has been established by Fu and Qu to allow for peakon

solitons in the form of a superposition of multipeakons. By
parameterizing 𝑡̃ = −𝑡 for system (2), it then takes the form
of (1), which can be rewritten as a Hamiltonian system

𝜕

𝜕𝑡

(

𝑚

𝑛
) = −(

𝜕𝑚 + 𝑚𝜕 𝜕𝑚 + 𝑛𝜕

𝜕𝑛 + 𝑚𝜕 𝜕𝑛 + 𝑛𝜕
)(

𝛿𝐻

𝛿𝑚

= 𝑢

𝛿𝐻

𝛿𝑛

= V
) (3)

with theHamiltonian𝐻 = (1/2) ∫(𝑚𝐺∗𝑚+𝑛𝐺∗𝑛)𝑑𝑥, where
𝐺 ∗ 𝑚 = 𝑢, 𝐺 ∗ 𝑛 = V, and 𝐺 = (1/2)𝑒

−|𝑥|.Particularly, when
𝑢 = 0 (or V = 0), the degenerated (1) has the same peakon
solitons as the CH equation.We are interested in such system
because it exhibits the following conserved quantities, as can
be easily verified:

𝐸
1
(𝑢) = ∫

𝑅

𝑢𝑑𝑥, 𝐸
2
(V) = ∫

𝑅

V𝑑𝑥,

𝐸
3
(𝑢) = ∫

𝑅

𝑚𝑑𝑥, 𝐸
4
(𝑢) = ∫

𝑅

𝑛𝑑𝑥,

𝐸
5
(𝑢, V) = ∫

𝑅

(𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
) 𝑑𝑥.

(4)
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Note that, when 𝑢 = V, system (1) is reduced to the scalar
Camassa-Holm equation as follows:

𝑚
𝑡
+ 4𝑚𝑢

𝑥
+ 2𝑚

𝑥
𝑢 = 0. (5)

The CH equation, which models the unidirectional propa-
gation of shallow water waves over a flat bottom, has a bi-
Hamiltonian structure [3] and is completely integrable [4–6].
TheCHequation has attracted considerable attention because
it has peaked solitons [4, 7] and experiences wave breaking
[4, 8].The presence of breakingwavesmeans that the solution
remains bounded while its slope becomes unbounded in
finite time [8, 9]. After wave breaking, the solutions of the
CH equation can be continued uniquely as either global
conservative [10–13] or global dissipative solutions [14].

As one of the integrable multicomponent generalizations
of the CH equation, system (1) has been shown to be
locally well posed with global strong solutions which blow
up in finite time [1, 2]. Moreover, the existence issue for a
class of local weak solutions for the modified coupled CH2
system was also addressed in [1]. It has been known that
the continuation of solutions for the system beyond wave
breaking has been a challenging problem. In our recent work
[15], the problem of continuation beyond wave breaking for
themodified coupled CH2 systemwas studied by applying an
approach that reformulates the system (1) into a semilinear
system of O.D.E. taking values in a Banach space. Such
treatment makes it possible to investigate the continuity of
the solutions beyond collision time, leading to the uniquely
global solutions of this system. Also the global dissipative
and multipeakon dissipative solutions of this system have
been established in [16, 17], while, as far as the authors’
concern, there is no effort made in the literature on the
study of the global conservative as well as multipeakon
conservative solutions of such system, another important
feature associated with the system. Motivated by our recent
work [15–17], in this paper we develop a new approach to
establish a global and stable solution for themodified coupled
CH2 system, which is conservative and further allows for the
construction of the multipeakon conservative solution. The
approach utilized in this paper makes use of a novel system
transformation, which is different from [15] and is based on a
skillfully defined characteristic and a set of newly introduced
variables, where the associated energy is introduced as an
additional variable so as to obtain a well-posed initial-value
problem, facilitating the study on the behavior of wave
breaking. It should be stressed that both global stable solution
and multipeakon solution are important aspects related to
the solutions near wave breaking, while there is no effort
made in the literature on the study of multipeakon property
of system (1), which is another motivation of this work.
Our inspiration of investing the underlying issue mainly also
stems from the early work [10, 11] in the study of the global
conservative solution of the CH equation and [13] where the
multipeakon solution is obtained for the CH equation. In
this work a coupled system is dealt with where the mutual
effect between two components makes the analysis more
complicated than a single one as considered in [10, 11, 13].
By utilizing the novel transformation method, the inherent

difficulty is circumvented and then the global conservative
solutions of (1) are obtained, which then allows for the
establishment of the multipeakon conservative solution of
system (1).

The remainder of this paper is organized as follows.
Section 2 presents the basic equations. In Section 3, by
introducing a set of Lagrangian variables, we transform the
original system into an equivalent semilinear system and
derive the global solutions of the equivalent system. We
obtain a global continuous semigroup of weak conservative
solutions for the original system in Section 4 and the
multipeakon conservative solution in Section 5.

2. The Original System

We first introduce an operator Λ = (1 − 𝜕
2

𝑥
)

−1, which can be
expressed by its associated Green’s function 𝐺 = (1/2)𝑒

−|𝑥|

such as Λ𝑓(𝑥) = 𝐺 ∗ 𝑓(𝑥) = (1/2) ∫
𝑅
𝑒
−|𝑥−𝑥

󸀠
|
𝑓(𝑥

󸀠
)𝑑𝑥

󸀠, for all
𝑓 ∈ 𝐿

2
(𝑅), where ∗ denotes the spatial convolution. Thus we

can rewrite (1) as a form of a quasilinear evolution equation:

𝑢
𝑡
+ (𝑢 + V) 𝑢

𝑥
+ 𝐺 ∗ (𝑢V

𝑥
) + 𝜕

𝑥
𝐺

∗ (𝑢
2
+

1

2

𝑢
2

𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

V2 −
1

2

V2
𝑥
) = 0, 𝑡 > 0, 𝑥 ∈ 𝑅,

V
𝑡
+ (𝑢 + V) V

𝑥
+ 𝐺 ∗ (𝑢

𝑥
V) + 𝜕

𝑥
𝐺

∗ (V2 +
1

2

V2
𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

𝑢
2
−

1

2

𝑢
2

𝑥
) = 0, 𝑡 > 0, 𝑥 ∈ 𝑅.

(6)

Let us define 𝑃
1
, 𝑃

2
, 𝑃

3
, and 𝑃

4
as

𝑃
1
(𝑡, 𝑥) = 𝐺 ∗ (𝑢V

𝑥
) =

1

2

∫

𝑅

𝑒
−|𝑥−𝑥

󸀠
|
(𝑢V

𝑥
) (𝑡, 𝑥

󸀠
) 𝑑𝑥

󸀠
,

𝑃
2
(𝑡, 𝑥) = 𝐺 ∗ (𝑢

2
+

1

2

𝑢
2

𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

V2 −
1

2

V2
𝑥
)

=

1

2

∫

𝑅

𝑒
−|𝑥−𝑥

󸀠
|
(𝑢

2
+

1

2

𝑢
2

𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

V2 −
1

2

V2
𝑥
)

× (𝑡, 𝑥
󸀠
) 𝑑𝑥

󸀠
,

𝑃
3
(𝑡, 𝑥) = 𝐺 ∗ (V𝑢

𝑥
) =

1

2

∫

𝑅

𝑒
−|𝑥−𝑥

󸀠
|
(V𝑢

𝑥
) (𝑡, 𝑥

󸀠
) 𝑑𝑥

󸀠
,

𝑃
4
(𝑡, 𝑥) = 𝐺 ∗ (V2 +

1

2

V2
𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

𝑢
2
−

1

2

𝑢
2

𝑥
)

=

1

2

∫

𝑅

𝑒
−|𝑥−𝑥

󸀠
|
(V2 +

1

2

V2
𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

𝑢
2
−

1

2

𝑢
2

𝑥
)

× (𝑡, 𝑥
󸀠
) 𝑑𝑥

󸀠
.

(7)

Then (1) can be rewritten as

𝑢
𝑡
+ (𝑢 + V) 𝑢

𝑥
+ 𝑃

1
+ 𝑃

2,𝑥
= 0, 𝑡 > 0, 𝑥 ∈ 𝑅,

V
𝑡
+ (𝑢 + V) V

𝑥
+ 𝑃

3
+ 𝑃

4,𝑥
= 0, 𝑡 > 0, 𝑥 ∈ 𝑅.

(8)
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For regular solutions, we get that the total energy

𝐸 (𝑡) = ∫

𝑅

𝑢
2
(𝑡, 𝑥) + 𝑢

2

𝑥
(𝑡, 𝑥) + V2 (𝑡, 𝑥) + V2

𝑥
(𝑡, 𝑥) 𝑑𝑥 (9)

is constant in time. Thus (8) possesses the 𝐻1-norm conser-
vation law defined as

‖𝑧‖
𝐻
1 = ‖𝑢‖

𝐻
1 + ‖V‖

𝐻
1 = (∫

𝑅

[𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
] 𝑑𝑥)

1/2

,

(10)

where 𝑧(𝑡, 𝑥) = (𝑢, V)(𝑡, 𝑥) denotes the solution of system (8).
Note that 𝑧 = (𝑢, V) ∈ 𝐻

1
× 𝐻

1, and so Young’s inequality
ensures that 𝑃

1
, 𝑃

2
, 𝑃

3
, 𝑃

4
∈ 𝐻

1.

3. Global Solutions of the Lagrangian
Equivalent System

We reformulate system (8) as follows. For a given initial data
𝑦(0, 𝜉), we define the corresponding characteristic 𝑦(𝑡, 𝜉) as
the solution of

𝑦
𝑡
(𝑡, 𝜉) = (𝑢 + V) (𝑡, 𝑦 (𝑡, 𝜉)) , (11)

and we define the Lagrangian cumulative energy distribution
𝐻 as

𝐻(𝑡, 𝜉) = ∫

𝑦(𝑡,𝜉)

−∞

(𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
) (𝑡, 𝑥) 𝑑𝑥. (12)

It is not hard to check that

(𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
)
𝑡
+ ((𝑢 + V) (𝑢2 + 𝑢2

𝑥
+ V2 + V2

𝑥
))

𝑥

= (𝑢
3
− 2𝑢𝑃

2
+ V3 − 2V𝑃

4
)
𝑥
.

(13)

Then it follows from (11) and (13) that

𝑑𝐻

𝑑𝑡

= [(𝑢
3
− 2𝑢𝑃

2
+ V3 − 2V𝑃

4
) (𝑡, 𝑦 (𝑡, 𝜉))]

𝜉

−∞
. (14)

Throughout the following, we use the notation

𝑈 (𝑡, 𝜉) = 𝑢 (𝑡, 𝑦 (𝑡, 𝜉)) , 𝑉 (𝑡, 𝜉) = V (𝑡, 𝑦 (𝑡, 𝜉)) ,

𝑀 (𝑡, 𝜉) = 𝑢
𝑥
(𝑡, 𝑦 (𝑡, 𝜉)) , 𝑁 (𝑡, 𝜉) = V

𝑥
(𝑡, 𝑦 (𝑡, 𝜉)) .

(15)

In the following, we drop the variable 𝑡 for simplification.
Here, we take 𝑦 as an increasing function for any fixed time 𝑡
for granted (later onwewill prove this).Then after the change

of variables 𝑥 = 𝑦(𝑡, 𝜉) and 𝑥󸀠 = 𝑦(𝑡, 𝜉
󸀠
), we obtain the follow-

ing expressions for 𝑃
𝑖
and 𝑃

𝑖,𝑥
(𝑖 = 1, 2, 3, 4); namely,

𝑃
1
(𝑡, 𝜉) = 𝑃

1
(𝑡, 𝑦 (𝑡, 𝜉))

=

1

2

∫

𝑅

𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|
[(𝑈𝑁) 𝑦

𝜉
] (𝜉

󸀠
) 𝑑𝜉

󸀠
,

(16)

𝑃
1,𝑥

(𝑡, 𝜉) = 𝑃
1,𝑥

(𝑡, 𝑦 (𝑡, 𝜉))

= −

1

2

∫

𝑅

sgn (𝜉 − 𝜉󸀠) 𝑒−|𝑦(𝜉)−𝑦(𝜉
󸀠
)|
[(𝑈𝑁) 𝑦

𝜉
]

× (𝜉
󸀠
) 𝑑𝜉

󸀠
,

(17)

𝑃
2
(𝑡, 𝜉) = 𝑃

2
(𝑡, 𝑦 (𝑡, 𝜉))

=

1

2

∫

𝑅

𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|

× [(𝑈
2
+

1

2

𝑀
2
+𝑀𝑁 +

1

2

𝑉
2
−

1

2

𝑁
2
)𝑦

𝜉
]

× (𝜉
󸀠
) 𝑑𝜉

󸀠
,

𝑃
2,𝑥

(𝑡, 𝜉) = 𝑃
2,𝑥

(𝑡, 𝑦 (𝑡, 𝜉))

= −

1

2

∫

𝑅

sgn (𝜉 − 𝜉󸀠) 𝑒−|𝑦(𝜉)−𝑦(𝜉
󸀠
)|

⋅ [(𝑈
2
+

1

2

𝑀
2
+𝑀𝑁 +

1

2

𝑉
2
−

1

2

𝑁
2
)𝑦

𝜉
]

× (𝜉
󸀠
) 𝑑𝜉

󸀠
,

𝑃
3
(𝑡, 𝜉) = 𝑃

3
(𝑡, 𝑦 (𝑡, 𝜉))

=

1

2

∫

𝑅

𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|
[(𝑉𝑀)𝑦

𝜉
] (𝜉

󸀠
) 𝑑𝜉

󸀠
,

𝑃
3,𝑥

(𝑡, 𝜉) = 𝑃
3,𝑥

(𝑡, 𝑦 (𝑡, 𝜉))

= −

1

2

∫

𝑅

sgn (𝜉 − 𝜉󸀠) 𝑒−|𝑦(𝜉)−𝑦(𝜉
󸀠
)|
[(𝑉𝑀)𝑦

𝜉
]

× (𝜉
󸀠
) 𝑑𝜉

󸀠
,

𝑃
4
(𝑡, 𝜉) = 𝑃

4
(𝑡, 𝑦 (𝑡, 𝜉))

=

1

2

∫

𝑅

𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|

× [(𝑉
2
+

1

2

𝑁
2
+𝑀𝑁 +

1

2

𝑈
2
−

1

2

𝑀
2
)𝑦

𝜉
]

× (𝜉
󸀠
) 𝑑𝜉

󸀠
,

𝑃
4,𝑥

(𝑡, 𝜉) = 𝑃
4,𝑥

(𝑡, 𝑦 (𝑡, 𝜉))

= −

1

2

∫

𝑅

sgn (𝜉 − 𝜉󸀠) 𝑒−|𝑦(𝜉)−𝑦(𝜉
󸀠
)|

⋅ [(𝑉
2
+

1

2

𝑁
2
+𝑀𝑁 +

1

2

𝑈
2
−

1

2

𝑀
2
)𝑦

𝜉
]

× (𝜉
󸀠
) 𝑑𝜉

󸀠
.

(18)
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Since𝐻
𝜉
= (𝑢

2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
) ∘ 𝑦𝑦

𝜉
, then 𝑃

2
, 𝑃

2,𝑥
, 𝑃

4
, and 𝑃

4,𝑥

can be rewritten as

𝑃
2
(𝑡, 𝜉) = 𝑃

2
(𝑡, 𝑦 (𝜉))

=

1

4

∫

𝑅

𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|
[𝐻

𝜉
+ (𝑈

2
+ 2𝑀𝑁 −𝑁

2
) 𝑦

𝜉
]

× (𝜉
󸀠
) 𝑑𝜉

󸀠
,

𝑃
2,𝑥

(𝑡, 𝜉) = 𝑃
2,𝑥

(𝑡, 𝑦 (𝜉))

= −

1

4

∫

𝑅

sgn (𝜉 − 𝜉󸀠) 𝑒−|𝑦(𝜉)−𝑦(𝜉
󸀠
)|

× [𝐻
𝜉
+ (𝑈

2
+ 2𝑀𝑁 −𝑁

2
) 𝑦

𝜉
]

× (𝜉
󸀠
) 𝑑𝜉

󸀠
,

𝑃
4
(𝑡, 𝜉) = 𝑃

4
(𝑡, 𝑦 (𝜉))

=

1

4

∫

𝑅

𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|
[𝐻

𝜉
+ (𝑉

2
+ 2𝑀𝑁 −𝑀

2
) 𝑦

𝜉
]

× (𝜉
󸀠
) 𝑑𝜉

󸀠
,

𝑃
4,𝑥

(𝑡, 𝜉) = 𝑃
4,𝑥

(𝑡, 𝑦 (𝜉))

= −

1

4

∫

𝑅

sgn (𝜉 − 𝜉󸀠) 𝑒−|𝑦(𝜉)−𝑦(𝜉
󸀠
)|

× [𝐻
𝜉
+ (𝑉

2
+ 2𝑀𝑁 −𝑀

2
) 𝑦

𝜉
] × (𝜉

󸀠
) 𝑑𝜉

󸀠
.

(19)

From the definition of the characteristic, it is not hard to
check that

𝑈
𝑡
(𝑡, 𝜉) = 𝑢

𝑡
(𝑡, 𝑦) + 𝑢

𝑥
(𝑡, 𝑦) 𝑦

𝑡
(𝑡, 𝜉)

= (−𝑃
1
− 𝑃

2,𝑥
) ∘ 𝑦 (𝑡, 𝜉) ,

𝑉
𝑡
(𝑡, 𝜉) = V

𝑡
(𝑡, 𝑦) + V

𝑥
(𝑡, 𝑦) 𝑦

𝑡
(𝑡, 𝜉)

= (−𝑃
3
− 𝑃

4,𝑥
) ∘ 𝑦 (𝑡, 𝜉) ,

𝑀
𝑡
(𝑡, 𝜉) = 𝑢

𝑥𝑡
(𝑡, 𝑦) + 𝑢

𝑥𝑥
(𝑡, 𝑦) 𝑦

𝑡
(𝑡, 𝜉)

= (−

1

2

𝑀
2
−

1

2

𝑁
2
+ 𝑈

2
+

1

2

𝑉
2
− 𝑃

1,𝑥
− 𝑃

2
)

∘ 𝑦 (𝑡, 𝜉) ,

𝑁
𝑡
(𝑡, 𝜉) = V

𝑥𝑡
(𝑡, 𝑦) + V

𝑥𝑥
(𝑡, 𝑦) 𝑦

𝑡
(𝑡, 𝜉)

= (−

1

2

𝑁
2
−

1

2

𝑀
2
+ 𝑉

2
+

1

2

𝑈
2
− 𝑃

3,𝑥
− 𝑃

4
)

∘ 𝑦 (𝑡, 𝜉) .

(20)

We introduce another variable 𝜍(𝑡, 𝜉)with 𝜍(𝑡, 𝜉) = 𝑦(𝑡, 𝜉)−𝜉.
It will turn out that 𝜍 ∈ 𝐿∞(𝑅). With these new variables, we
now derive an equivalent system of (8) as follows:

𝜍
𝑡
= 𝑈 + 𝑉,

𝑈
𝑡
= −𝑃

1
− 𝑃

2,𝑥
,

𝑉
𝑡
= −𝑃

3
− 𝑃

4,𝑥
,

𝑀
𝑡
= (−

1

2

𝑀
2
−

1

2

𝑁
2
+ 𝑈

2
+

1

2

𝑉
2
− 𝑃

1,𝑥
− 𝑃

2
) ,

𝑁
𝑡
= (−

1

2

𝑁
2
−

1

2

𝑀
2
+ 𝑉

2
+

1

2

𝑈
2
− 𝑃

3,𝑥
− 𝑃

4
) ,

𝐻
𝑡
= 𝑈

3
− 2𝑈𝑃

2
+ 𝑉

3
− 2𝑉𝑃

4
,

(21)

where 𝑃
1
and 𝑃

3
are given in (18), while 𝑃

2
, 𝑃

2,𝑥
, 𝑃

4
, and 𝑃

4,𝑥

are given in (19).We regard system (21) as a systemof ordinary
differential equations in the Banach space

𝐸 = 𝑊 ×𝐻
1
× 𝐻

1
× 𝐿

2
× 𝐿

2
×𝑊 (22)

endowed with the norm

‖𝑋‖
𝐸
= ‖𝜍‖

𝑊
+ ‖𝑈‖

𝐻
1 + ‖𝑉‖

𝐻
1 + ‖𝑀‖

𝐿
2 + ‖𝑁‖

𝐿
2 + ‖𝐻‖

𝑊
,

(23)

for any 𝑋 = (𝜍, 𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ 𝐸. Here𝑊 = {𝑓 ∈ 𝐶(𝑅) ∩

𝐿
∞
(𝑅) | 𝑓

𝜉
∈ 𝐿

2
(𝑅)} is a Banach space with the norm given

by ‖𝑓‖
𝑊
= ‖𝑓‖

𝐿
∞
(𝑅)

+ ‖𝑓
𝜉
‖
𝐿
2
(𝑅)
. Note that𝐻1

(𝑅) ⊂ 𝑊.
Differentiating (21) with respect to the variable 𝜉 yields

𝜍
𝜉𝑡
= 𝑈

𝜉
+ 𝑉

𝜉
,

𝑈
𝜉𝑡
=

1

2

𝐻
𝜉
+ (

1

2

𝑈
2
+𝑀𝑁 −𝑁

2
− 𝑃

2
− 𝑃

1,𝑥
)𝑦

𝜉
,

𝑉
𝜉𝑡
=

1

2

𝐻
𝜉
+ (

1

2

𝑉
2
+𝑀𝑁 −𝑀

2
− 𝑃

4
− 𝑃

3,𝑥
)𝑦

𝜉
,

𝐻
𝜉𝑡
= (3𝑈

2
− 2𝑃

2
)𝑈

𝜉
− 2𝑈𝑃

2,𝑥
𝑦
𝜉

+ (3𝑉
2
− 2𝑃

4
)𝑉

𝜉
− 2𝑉𝑃

4,𝑥
𝑦
𝜉
,

(24)

which are semilinear with respect to the variables 𝑦
𝜉
, 𝑈

𝜉
, 𝑉

𝜉
,

and𝐻
𝜉
.

To obtain the uniqueness of solutions, one proceeds as
follows. By proving that all functions on the right-hand side
of (21) are locally Lipschitz continuous, the local existence of
solutions will follow from the standard theory of ordinary
differential equations in Banach spaces. In a second step,
we will then prove that this local solution can be extended
globally in time. Note that global solutions of (21) may not
exist for all initial data in 𝐸. However they exist when the
initial data𝑋 = (𝜍, 𝑈, 𝑉,𝑀,𝑁,𝐻) belongs to the set Γ which
is defined as follows.

Definition 1. The set Γ is composed of all 𝑋 = (𝜍, 𝑈, 𝑉,𝑀,𝑁,

𝐻) ∈ 𝐸 such that
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(i)

(𝜍, 𝑈, 𝑉,𝐻) ∈ [𝑊
1,∞

(𝑅)]

4

, (25)

(ii)

𝑦
𝜉
≥ 0,𝐻

𝜉
≥ 0, 𝑦

𝜉
+ 𝐻

𝜉
> 0 a.e.,

lim
𝜉→−∞

𝐻(𝜉) = 0,

(26)

(iii)

𝑦
𝜉
𝐻

𝜉
= 𝑦

2

𝜉
𝑈

2
+ 𝑈

2

𝜉
+ 𝑦

2

𝜉
𝑉
2
+ 𝑉

2

𝜉
a.e., (27)

where 𝑊1,∞
(𝑅) = {𝑓 ∈ 𝐶(𝑅) ∩ 𝐿

∞
(𝑅) | 𝑓

𝜉
∈ 𝐿

∞
(𝑅)} and

𝑦(𝜉) = 𝜍(𝜉) + 𝜉.

Lemma 2. Let R
1
: 𝐸 → 𝑊 and let R

2
: 𝐸 → 𝐻

1, or let
R

2
: 𝐸 → 𝑊 be two locally Lipschitz maps. Then, the product

𝑋 → R
1
(𝑋)R

2
(𝑋) is also a locally Lipschitz map from 𝐸 to

𝐻
1 or from 𝐸 to𝑊.

Theorem 3. Given initial data 𝑋 = (𝜍, 𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ 𝐸,
there exists a time 𝑇 depending only on ‖𝑋‖

𝐸
such that the

system (21) admits a unique solution in 𝐶1
([0, 𝑇], 𝐸).

Proof. To obtain the local existence of solutions, it suffices to
show that 𝐹(𝑋), given by

𝐹 (𝑋) = (𝑈 + 𝑉, −𝑃
1
− 𝑃

2,𝑥
, −𝑃

3
− 𝑃

4,𝑥
, −

1

2

𝑀
2
−

1

2

𝑁
2
+ 𝑈

2

+

1

2

𝑉
2
− 𝑃

1,𝑥
− 𝑃

2
, −

1

2

𝑁
2
−

1

2

𝑀
2
+ 𝑉

2
+

1

2

𝑈
2

−𝑃
3,𝑥

− 𝑃
4
, 𝑈

3
− 2𝑈𝑃

2
+ 𝑉

3
− 2𝑉𝑃

4
)

(28)

with 𝑋 = (𝜍, 𝑈, 𝑉,𝑀,𝑁,𝐻), is a Lipchitz function on any
bounded set of 𝐸 which is a Banach space.

Our main task is to prove the Lipschitz continuity of 𝑃
𝑖

and 𝑃
𝑖,𝑥

(𝑖 = 1, 2, 3, 4) given by (18) and (19) from 𝐸 to
𝐻

1
(𝑅).We first prove that𝑃

2,𝑥
given in (19) is locally Lipschitz

continuous from𝐸 to𝐻1
(𝑅) and the others follow in the same

way. Let us write

𝑃
2,𝑥

(𝜉)

= −

𝑒
−𝜍(𝜉)

4

∫

𝑅

𝜒
{𝜉
󸀠
<𝜉}
𝑒
−|𝜉−𝜉

󸀠
|
𝑒
𝜍(𝜉
󸀠
)

× [𝐻
𝜉
+ (𝑈

2
+2𝑀𝑁 −𝑁

2
) (1 + 𝜍

𝜉
)] (𝜉

󸀠
) 𝑑𝜉

󸀠

+

𝑒
𝜍(𝜉)

4

∫

𝑅

𝜒
{𝜉
󸀠
>𝜉}
𝑒
−|𝜉−𝜉

󸀠
|
𝑒
−𝜍(𝜉
󸀠
)

× [𝐻
𝜉
+ (𝑈

2
+2𝑀𝑁 −𝑁

2
) (1 + 𝜍

𝜉
)] (𝜉

󸀠
) 𝑑𝜉

󸀠
,

(29)

where 𝜒
Ω
denotes the indicator function of a given setΩ. Let

𝑃
1

2,𝑥
(𝜉)

= −

𝑒
−𝜍(𝜉)

4

∫

𝑅

𝜒
{𝜉
󸀠
<𝜉}
𝑒
−|𝜉−𝜉

󸀠
|
𝑒
𝜍(𝜉
󸀠
)

× [𝐻
𝜉
+ (𝑈

2
+2𝑀𝑁 −𝑁

2
) (1 + 𝜍

𝜉
)] (𝜉

󸀠
) 𝑑𝜉

󸀠
,

𝑃
2

2,𝑥
(𝜉)

=

𝑒
𝜍(𝜉)

4

∫

𝑅

𝜒
{𝜉
󸀠
>𝜉}
𝑒
−|𝜉−𝜉

󸀠
|
𝑒
−𝜍(𝜉
󸀠
)

× [𝐻
𝜉
+ (𝑈

2
+2𝑀𝑁 −𝑁

2
) (1 + 𝜍

𝜉
)] (𝜉

󸀠
) 𝑑𝜉

󸀠
.

(30)

We rewrite 𝑃1

2,𝑥
(𝜉) as

𝑃
1

2,𝑥
(𝜉) = −

𝑒
−𝜍(𝜉)

2

Λ ∘ 𝑅 (𝑋) (𝜉) , (31)

where 𝑅 is the operator from 𝐸 to 𝐿2(𝑅) given as

𝑅 (𝑋) (𝜉) = 𝜒
{𝜉
󸀠
<𝜉}
𝑒
𝜍
[𝐻

𝜉
+ (𝑈

2
+ 2𝑀𝑁 −𝑁

2
) (1 + 𝜍

𝜉
)] .

(32)

Since the operator Λ (given in Section 2) is linear and
continuous from𝐻

−1
(𝑅) to𝐻1

(𝑅) and 𝐿2(𝑅) is continuously
embedded in𝐻−1

(𝑅), we haveΛ∘𝑅(𝑋) ∈ 𝐻1. It is not hard to
check that 𝑅 is locally Lipschitz continuous from 𝐸 to 𝐿2(𝑅)
and therefore from𝐸 to𝐻−1

(𝑅).ThusΛ∘𝑅 is locally Lipschitz
continuous from 𝐸 to𝐻1

(𝑅). Since the mapping𝑋 → 𝑒
−𝜍 is

locally Lipschitz continuous from 𝐸 to 𝑊, by Lemma 2, we
deduce that 𝑃1

2,𝑥
(𝜉) is locally Lipschitz continuous from 𝐸 to

𝐻
1
(𝑅). Similarly, 𝑃2

2,𝑥
(𝜉) is also locally Lipschitz continuous

and therefore 𝑃
2,𝑥
(𝜉) is locally Lipschitz continuous. One

proceeds in the same way and proves that 𝑃
1
, 𝑃

1,𝑥
, 𝑃

3
, and

𝑃
3,𝑥

defined by (18) and 𝑃
2
, 𝑃

4
, and 𝑃

4,𝑥
defined by (19) are

locally Lipschitz continuous from 𝐸 to𝐻1
(𝑅). We rewrite the

solutions of (21) as

𝑋(𝑡) = 𝑋 + ∫

𝑡

0

𝐹 (𝑋 (𝜏)) 𝑑𝜏. (33)

Thus the theorem follows from the standard contraction
argument of ordinary differential equations.

It remains to prove the existence of global solutions of
(21).Theorem 3 gives us the existence of local solutions of (21)
for initial data in 𝐸. In the following, we will only consider
initial data that belongs to 𝐸 given by 𝐸 = 𝐸 ∩ [(𝑊

1,∞
(𝑅))

3

∩

(𝐿
2
)

2

∩𝑊
1,∞

(𝑅)]. To obtain that the solution of (21) belongs
to 𝐸, we have to specify the initial condition for (24). Let

Ω = {𝜉 ∈ 𝑅 |

󵄨
󵄨
󵄨
󵄨
󵄨
𝜍
𝜉
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝜍
𝜉

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈

𝜉
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈

𝜉

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉
𝜉
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉
𝜉

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐻

𝜉
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻

𝜉

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
} .

(34)
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We have meas(Ω𝑐
) = 0. For 𝜉 ∈ Ω

𝑐, (𝜍
𝜉
, 𝑈

𝜉
, 𝑉

𝜉
, 𝐻

𝜉
)(0, 𝜉)

is taken as (0, 0, 0, 0), and (𝜍
𝜉
, 𝑈

𝜉
, 𝑉

𝜉
, 𝐻

𝜉
)(0, 𝜉) is given as

(𝜍
𝜉
, 𝑈

𝜉
, 𝑉

𝜉
, 𝐻

𝜉
)(𝜉), for 𝜉 ∈ Ω.

The global existence of the solution for initial data in Γ

relies essentially on the fact that the set Γ is preserved by the
flow as the next lemma shows.

Lemma 4. Given initial data 𝑋 = (𝜍, 𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ Γ,
one considers the local solution 𝑋(𝑡) = (𝜍, 𝑈, 𝑉,𝑀,𝑁,𝐻)(𝑡) ∈

𝐶([0, 𝑇], 𝐸) of (21) with initial data 𝑋 for some 𝑇 > 0. One
then gets that 𝑋(𝑡) ∈ Γ for all 𝑡 ∈ [0, 𝑇]. Moreover, for a.e.
𝑡 ∈ [0, 𝑇], 𝑦

𝜉
(𝑡, 𝜉) > 0, for a.e. 𝜉 ∈ 𝑅, and lim

𝜉→±∞
𝐻(𝑡, 𝜉)

exists and is independent of time for all 𝑡 ∈ [0, 𝑇].

Proof. We first show that 𝑋(𝑡) ∈ Γ for all 𝑡 ∈ [0, 𝑇]. For
any given initial data 𝑋 ∈ 𝐸, we get that the local solution
(𝜍, 𝑈, 𝑉,𝐻)(𝑡) of (21) belongs to [𝑊1,∞

(𝑅)]

4, which satisfies
(25) for all 𝑡 ∈ [0, 𝑇]. We now show that (27) holds for any
𝜉 ∈ Ω and therefore a,e.. Consider a fixed 𝜉 ∈ Ω and drop it
in the notation if there is no ambiguity. On the one hand, it
follows from (24) that

(𝑦
𝜉
𝐻

𝜉
)
𝑡

= 𝑦
𝜉𝑡
𝐻

𝜉
+ 𝑦

𝜉
𝐻

𝜉𝑡

= (𝑈
𝜉
+ 𝑉

𝜉
)𝐻

𝜉
+ 𝑦

𝜉
[(3𝑈

2
− 2𝑃

2
)𝑈

𝜉
+ (3𝑉

2
− 2𝑃

4
)𝑉

𝜉

−2𝑈𝑃
2,𝑥
𝑦
𝜉
− 2𝑉𝑃

4,𝑥
𝑦
𝜉
]

= 𝑈
𝜉
𝐻

𝜉
+ 𝑉

𝜉
𝐻

𝜉
+ 3𝑈

2
𝑈
𝜉
𝑦
𝜉
− 2𝑃

2
𝑈
𝜉
𝑦
𝜉
+ 3𝑉

2
𝑉
𝜉
𝑦
𝜉

− 2𝑃
4
𝑉
𝜉
𝑦
𝜉
− 2𝑈𝑃

2,𝑥
𝑦
2

𝜉
− 2𝑉𝑃

4,𝑥
𝑦
2

𝜉
,

(35)

and, on the other hand,

(𝑦
2

𝜉
𝑈

2
+ 𝑈

2

𝜉
+ 𝑦

2

𝜉
𝑉
2
+ 𝑉

2

𝜉
)
𝑡

= 2𝑦
𝜉
𝑦
𝜉𝑡
𝑈

2
+ 2𝑦

2

𝜉
𝑈𝑈

𝑡
+ 2𝑈

𝜉
𝑈
𝜉𝑡
+ 2𝑦

𝜉
𝑦
𝜉𝑡
𝑉
2

+ 2𝑦
2

𝜉
𝑉𝑉

𝑡
+ 2𝑉

𝜉
𝑉
𝜉𝑡

= 𝑈
𝜉
𝐻

𝜉
+ 𝑉

𝜉
𝐻

𝜉
+ 3𝑈

2
𝑈
𝜉
𝑦
𝜉
+ 3𝑉

2
𝑉
𝜉
𝑦
𝜉
− 2𝑃

2
𝑈
𝜉
𝑦
𝜉

− 2𝑃
4
𝑉
𝜉
𝑦
𝜉
− 2𝑈𝑃

2,𝑥
𝑦
2

𝜉
− 2𝑉𝑃

4,𝑥
𝑦
2

𝜉
.

(36)

Hence, (𝑦
𝜉
𝐻

𝜉
)
𝑡
= (𝑦

2

𝜉
𝑈

2
+ 𝑈

2

𝜉
+ 𝑦

2

𝜉
𝑉
2
+ 𝑉

2

𝜉
)
𝑡
. Notice that

𝑦
𝜉
𝐻

𝜉
(0) = (𝑦

2

𝜉
𝑈

2
+ 𝑈

2

𝜉
+ 𝑦

2

𝜉
𝑉
2
+ 𝑉

2

𝜉
)(0); then 𝑦

𝜉
𝐻

𝜉
(𝑡) =

(𝑦
2

𝜉
𝑈

2
+ 𝑈

2

𝜉
+ 𝑦

2

𝜉
𝑉
2
+ 𝑉

2

𝜉
)(𝑡) for all 𝑡 ∈ [0, 𝑇] and (27)

has been proved. We now prove the inequalities in (26). Set
𝑡
∗
= sup{𝑡 ∈ [0, 𝑇]|𝑦

𝜉
(𝑡
󸀠
) ≥ 0 for all 𝑡󸀠 ∈ [0, 𝑡]}. Assume that

𝑡
∗
< 𝑇. Since 𝑦

𝜉
(𝑡) is continuous with respect to 𝑡, we have

𝑦
𝜉
(𝑡
∗
) = 0. It follows from (27) that 𝑈

𝜉
(𝑡
∗
) = 𝑉

𝜉
(𝑡
∗
) = 0.

Furthermore, (24) implies that 𝑦
𝜉𝑡
(𝑡
∗
) = 𝑈

𝜉
(𝑡
∗
) + 𝑉

𝜉
(𝑡
∗
) =

0 and 𝑦
𝜉𝑡𝑡
(𝑡
∗
) = (𝑈

𝜉𝑡
+ 𝑉

𝜉𝑡
)(𝑡

∗
) = 𝐻

𝜉
(𝑡
∗
). If 𝐻

𝜉
(𝑡
∗
) =

0, then (𝑦
𝜉
, 𝑈

𝜉
, 𝑉

𝜉
, 𝐻

𝜉
)(𝑡

∗
) = (0, 0, 0, 0) which implies that

(𝑦
𝜉
, 𝑈

𝜉
, 𝑉

𝜉
, 𝐻

𝜉
)(𝑡) = 0 for all 𝑡 ∈ [0, 𝑇] by the uniqueness

of the solution of system (24). This contradicts the fact that
𝑦
𝜉
(0)+𝐻

𝜉
(0) > 0 for all 𝜉 ∈ Ω. If𝐻

𝜉
(𝑡
∗
) < 0, then𝑦

𝜉𝑡𝑡
(𝑡
∗
) < 0.

Since 𝑦
𝜉
(𝑡
∗
) = 𝑦

𝜉𝑡
(𝑡
∗
) = 0, there exists a neighborhood 𝜛 of

𝑡
∗ such that 𝑦

𝜉
(𝑡) < 0 for all 𝑡 ∈ 𝜛/{𝑡

∗
}. This contradicts the

definition of 𝑡∗. Hence,𝐻
𝜉
(𝑡
∗
) > 0. We now have 𝑦

𝜉𝑡𝑡
(𝑡
∗
) > 0,

which conversely implies that 𝑦
𝜉
(𝑡) > 0 for all 𝑡 ∈ 𝜛/{𝑡

∗
},

which contradicts the fact that 𝑡∗ < 𝑇. Thus we have proved
𝑦
𝜉
(𝑡) ≥ 0 for all 𝑡 ∈ [0, 𝑇]. We now prove that 𝐻

𝜉
≥ 0

for all 𝑡 ∈ [0, 𝑇]. This follows from (27) when 𝑦
𝜉
(𝑡) > 0. If

𝑦
𝜉
(𝑡) = 0, then 𝑈

𝜉
(𝑡) = 𝑉

𝜉
(𝑡) = 0 from (27). As we have

seen, 𝐻
𝜉
< 0 would imply that 𝑦

𝜉
(𝑡
󸀠
) < 0 for some 𝑡󸀠 in

a punctured neighborhood of 𝑡, which is impossible. Hence,
𝐻

𝜉
≥ 0 for all 𝑡 ∈ [0, 𝑇]. Now we get that 𝑦

𝜉
(𝑡) + 𝐻

𝜉
(𝑡) ≥ 0

for all 𝑡 ∈ [0, 𝑇]. If 𝑦
𝜉
(𝑡
󸀠
) + 𝐻

𝜉
(𝑡
󸀠
) = 0 for some 𝑡

󸀠, it
then follows that (𝑦

𝜉
, 𝑈

𝜉
, 𝑉

𝜉
, 𝐻

𝜉
)(𝑡

󸀠
) = 0 which implies that

(𝑦
𝜉
, 𝑈

𝜉
, 𝑉

𝜉
, 𝐻

𝜉
)(𝑡) = 0 for all 𝑡 ∈ [0, 𝑇], which contradicts

the fact that 𝑦
𝜉
(0) + 𝐻

𝜉
(0) > 0 for all 𝜉 ∈ Ω. Hence,

𝑦
𝜉
(𝑡) + 𝐻

𝜉
(𝑡) > 0. This completes the proof that 𝑋(𝑡) ∈ Γ

for all 𝑡 ∈ [0, 𝑇].
We now prove that 𝑦

𝜉
(𝑡, 𝜉) > 0 for almost all 𝑡. Define the

set Θ = {(𝑡, 𝜉) ∈ [0, 𝑇] × 𝑅 | 𝑦
𝜉
(𝑡, 𝜉) = 0}. It follows from

Fubini’s theorem that

meas (Θ) = ∫

𝑅

meas (Θ
𝜉
) 𝑑𝜉 = ∫

[0,𝑇]

meas (Θ
𝑡
) 𝑑𝑡, (37)

where Θ
𝜉
= {𝑡 ∈ [0, 𝑇] | 𝑦

𝜉
(𝑡, 𝜉) = 0} and Θ

𝑡
= {𝜉 ∈ 𝑅 |

𝑦
𝜉
(𝑡, 𝜉) = 0}. From the above proof, we know that, for all

𝜉 ∈ Ω, Θ
𝜉
consists of isolated points that are countable. This

means that meas(Θ
𝜉
) = 0. Sincemeas(Ω𝑐

) = 0, it thus follows
from (37) that meas(Θ

𝑡
) = 0 for almost every 𝑡 ∈ [0, 𝑇]. This

implies that 𝑦
𝜉
(𝑡, 𝜉) > 0 for almost all 𝑡 and therefore 𝑦(𝑡, 𝜉)

is strictly increasing and invertible with respect to 𝜉.
For any given 𝑡 ∈ [0, 𝑇], since 𝐻

𝜉
(𝑡) ≥ 0 and 𝐻(𝑡, 𝜉) ∈

𝐿
∞
(𝑅), we know that𝐻(𝑡, ±∞) exist. We have the following:

𝐻(𝑡, 𝜉) = 𝐻 (0, 𝜉) + ∫

𝑡

0

(𝑈
3
− 2𝑃

2
𝑈 + 𝑉

3
− 2𝑃

4
𝑉) (𝜏, 𝜉) 𝑑𝜏.

(38)

Let 𝜉 → ±∞. Since 𝑈, 𝑉, 𝑃
2
, 𝑃

4
are bounded in 𝐿∞([0, 𝑇] ×

𝑅) and lim
𝜉→±∞

𝑈(𝑡, 𝜉) = lim
𝜉→±∞

𝑉(𝑡, 𝜉) = 0 as 𝑈(𝑡, ⋅),
𝑉(𝑡, ⋅) ∈ 𝐻

1
(𝑅) for all 𝑡 ∈ [0, 𝑇], (38) implies that𝐻(𝑡, ±∞) =

𝐻(0, ±∞) for all 𝑡 ∈ [0, 𝑇]. Since 𝑋 ∈ Γ, it follows that
𝐻(0, ±∞) = 0 for all 𝑡 ∈ [0, 𝑇].

Theorem 5. For any initial data 𝑋 = (𝑦,𝑈, 𝑉,𝑀,𝑁,𝐻) ∈

Γ, there exists a unique global solution 𝑋(𝑡) = (𝑦, 𝑈, 𝑉,𝑀,𝑁,

𝐻)(𝑡) ∈ 𝐶
1
(𝑅

+
, 𝐸) for the system (21). Moreover, for all 𝑡 ∈ 𝑅+,

we have𝑋(𝑡) ∈ Γ, which constructs a continuous semigroup.

Proof. To ensure that the local solution 𝑋 = (𝜍, 𝑈, 𝑉,𝑀,𝑁,

𝐻) ∈ 𝐶([0, 𝑇], 𝐸) of system (21) can be extended to a global
solution, it suffices to show that

sup
𝑡∈[0,𝑇)

‖𝜍 (𝑡, ⋅) , 𝑈 (𝑡, ⋅) , 𝑉 (𝑡, ⋅) ,𝑀 (𝑡, ⋅) , 𝑁 (𝑡, ⋅) , 𝐻 (𝑡, ⋅)‖
𝐸
<∞.

(39)
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Since 𝐻(𝑡, 𝜉) is an increasing function with respect to 𝜉

for all 𝑡 and lim
𝜉→∞

𝐻(𝑡, 𝜉) = lim
𝜉→∞

𝐻(0, 𝜉), we have
sup

𝑡∈[0,𝑇)
‖𝐻(𝑡, ⋅)‖

𝐿
∞
(𝑅)

= ‖𝐻‖
𝐿
∞
(𝑅)

< ∞. We now consider
a fixed 𝑡 ∈ [0, 𝑇) and drop it for simplification. Since 𝑈

𝜉
(𝜉) =

𝑉
𝜉
(𝜉) = 0 when 𝑦

𝜉
(𝜉) = 0 and 𝑦

𝜉
(𝜉) > 0, for a. e. 𝜉, it follows

from (27) that

𝑈
2
(𝜉) = 2∫

𝜉

−∞

𝑈(𝜉
󸀠
)𝑈

𝜉
(𝜉

󸀠
) 𝑑𝜉

󸀠

= 2∫

{𝜉
󸀠
<𝜉|𝑦
𝜉
(𝜉
󸀠
)>0}

𝑈(𝜉
󸀠
)𝑈

𝜉
(𝜉

󸀠
) 𝑑𝜉

󸀠

≤ ∫

{𝜉
󸀠
<𝜉|𝑦
𝜉
(𝜉
󸀠
)>0}

(𝑦
𝜉
𝑈

2
+

𝑈
2

𝜉

𝑦
𝜉

)(𝜉
󸀠
) 𝑑𝜉

󸀠

≤ ∫

𝑅

𝐻
𝜉
(𝜉

󸀠
) 𝑑𝜉

󸀠
= 𝐻 (𝜉) ,

(40)

which implies that

sup
𝑡∈[0,𝑇)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈

2
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
≤ sup

𝑡∈[0,𝑇)

‖𝐻 (𝑡, ⋅)‖
𝐿
∞
(𝑅)

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑅)

< ∞,

(41)

and therefore
sup
𝑡∈[0,𝑇)

‖𝑈 (𝑡, ⋅)‖
𝐿
∞ < ∞. (42)

Similarly,

sup
𝑡∈[0,𝑇)

‖𝑉 (𝑡, ⋅)‖
𝐿
∞ < ∞. (43)

We can obtain from the governing equation (21) that
󵄨
󵄨
󵄨
󵄨
𝜍 (𝑡, 𝜉)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝜍 (0, 𝜉)

󵄨
󵄨
󵄨
󵄨
+ sup

𝑡∈[0,𝑇)

(‖𝑈 (𝑡, ⋅)‖
𝐿
∞ + ‖𝑉 (𝑡, ⋅)‖

𝐿
∞) 𝑇,

(44)

and then sup
𝑡∈[0,𝑇)

‖𝜍(𝑡, ⋅)‖
𝐿
∞ < ∞. We can also get from the

governing equation (21) that

sup
𝑡∈[0,𝑇)

‖𝑀 (𝑡, ⋅)‖
𝐿
∞ < ∞, sup

𝑡∈[0,𝑇)

‖𝑁 (𝑡, ⋅)‖
𝐿
∞ < ∞. (45)

From the identity𝐻
𝜉
= (𝑈

2
+𝑀

2
+𝑉

2
+𝑁

2
)𝑦

𝜉
, we can deduce

that
󵄨
󵄨
󵄨
󵄨
󵄨
(𝑈

2
+ 2𝑀𝑁 −𝑁

2
) 𝑦

𝜉

󵄨
󵄨
󵄨
󵄨
󵄨
≤ (𝑈

2
+𝑀

2
+ 𝑁

2
+ 𝑁

2
) 𝑦

𝜉
≤ 2𝐻

𝜉
,

(46)

which implies that
󵄨
󵄨
󵄨
󵄨
𝑃
2,𝑥

󵄨
󵄨
󵄨
󵄨

≤

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑅

𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|
[𝐻

𝜉
+ (𝑈

2
+2𝑀𝑁 −𝑁

2
) 𝑦

𝜉
] (𝜉

󸀠
) 𝑑𝜉

󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑅

𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|
3𝐻

𝜉
(𝜉

󸀠
) 𝑑𝜉

󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶 sup
𝑡∈[0,𝑇)

‖𝐻 (𝑡, ⋅)‖
𝐿
∞
(𝑅)

< ∞.

(47)

Therefore, ‖𝑃
2,𝑥
‖
𝐿
∞ < ∞. It is not hard to know that ‖𝑃

2,𝑥
‖
𝐿
2 ≤

𝐶‖𝑒
−𝑦(𝜉)

‖
𝐿
2 ⋅ sup

𝑡∈[0,𝑇)
‖𝐻(𝑡, ⋅)‖

𝐿
∞
(𝑅)

< ∞. Similarly, one can
obtain that the bounds hold for 𝑃

1
, 𝑃

1,𝑥
, 𝑃

2
, 𝑃

3
, 𝑃

3,𝑥
, 𝑃

4
, and

𝑃
4,𝑥
. Let

𝑍 (𝑡) = ‖𝑈 (𝑡, ⋅)‖
𝐿
2 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈
𝜉
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
+ ‖𝑉 (𝑡, ⋅)‖

𝐿
2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉
𝜉
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜍
𝜉
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻

𝜉
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
.

(48)

Using the integrated version of (21) and (24), after taking the
𝐿
2-norms on both sides, we obtain

𝑍 (𝑡) ≤ 𝑍 (0) + 𝐶∫

𝑡

0

𝑍 (𝜏) 𝑑𝜏. (49)

It follows from Gronwall’s inequality that sup
𝑡∈[0,𝑇)

𝑍(𝑡) < ∞.
Hence, we infer that the map 𝑆

𝑡
: Γ → Γ × 𝑅

+ defined as

𝑆
𝑡
(𝑋) = 𝑋 (𝑡) (50)

generates a continuous semigroup from the standard theory
of ordinary differential equations.

4. Global Conservative Solutions of the
Original System

We show that the global solution of the equivalent system (21)
yields a global conservative solution of the original system
(8), which constructs a continuous semigroup in this section.

To obtain the global conservative solution of the original
system, we have to establish the correspondence between the
Lagrangian equivalent system and the original system.

Let us first introduce the subsets 𝐹 and 𝐹
𝛼
of Γ given by

𝐹 = {𝑋 = (𝑦, 𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ Γ | 𝑦 + 𝐻 ∈ 𝐺} ,

𝐹
𝛼
= {𝑋 = (𝑦, 𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ Γ | 𝑦 + 𝐻 ∈ 𝐺

𝛼
} ,

(51)

where 𝐺 is defined as

𝐺 = {𝑓 is invertible | 𝑓 − 𝐼𝑑,

𝑓
−1
− 𝐼𝑑 both belong to 𝑊

1,∞
(𝑅)} .

(52)

And, for any 𝛼 > 1, the subsets 𝐺
𝛼
of 𝐺 are given by

𝐺
𝛼
= {𝑓 ∈ 𝐺 |

󵄩
󵄩
󵄩
󵄩
𝑓 − 𝐼𝑑

󵄩
󵄩
󵄩
󵄩𝑊
1,∞

(𝑅)
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
−1
− 𝐼𝑑

󵄩
󵄩
󵄩
󵄩
󵄩𝑊
1,∞

(𝑅)
≤ 𝛼} ,

(53)

with a useful characterization. If 𝑓 ∈ 𝐺
𝛼
(𝛼 ≥ 0), then 1/(1 +

𝛼) ≤ 𝑓
𝜉
≤ 1 + 𝛼 a.e. Conversely, if 𝑓 is absolutely continuous,

𝑓 − 𝐼𝑑 ∈ 𝐿
∞
(𝑅) and there exists 𝑐 ≥ 1 such that 1/𝑐 ≤ 𝑓

𝜉
≤ 𝑐

a.e., and then 𝑓 ∈ 𝐺
𝛼
for some 𝛼 depending only on 𝑐 and

‖𝑓 − 𝐼𝑑‖
𝐿
∞
(𝑅)
.With this useful characterization of𝐺

𝛼
, it is not

hard to prove that the space 𝐹 is preserved by the governing
equation (21). Notice that the map (𝑓,𝑋) → 𝑋 ∘ 𝑓 defines a
group action of𝐺 on𝐹; we consider the quotient space𝐹/𝐺 of
𝐹 with respect to the group action. The equivalence relation
on 𝐹 is defined as follows: for any 𝑋,𝑋󸀠

∈ 𝐹, if there exists
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𝑓 ∈ 𝐺 such that 𝑋󸀠
= 𝑋 ∘ 𝑓, we claim that 𝑋 and 𝑋

󸀠 are
equivalent.

We denote the projection Π : 𝐹 → 𝐹/𝐺 by Π(𝑋) =

[𝑋]. For any 𝑋 = (𝑦,𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ 𝐹, we introduce the
mapping Υ : 𝐹 → 𝐹

0
given by Υ(𝑋) = 𝑋 ∘ (𝑦 + 𝐻)

−1.
It is not hard to prove that Υ(𝑋) = 𝑋 when 𝑋 ∈ 𝐹

0
and

Υ(𝑋 ∘ 𝑓) = Υ(𝑋) for any 𝑋 ∈ 𝐹 and 𝑓 ∈ 𝐺. Hence, we
can define the map Υ̃ : 𝐹/𝐺 → 𝐹

0
as Υ̃([𝑋]) = Υ(𝑋), for

any representative [𝑋] ∈ 𝐹/𝐺 of 𝑋 ∈ 𝐹. For any 𝑋 ∈ 𝐹
0
, we

have Υ̃ ∘ Π(𝑋) = Υ(𝑋) = 𝑋. Hence, Υ̃ ∘ Π
|𝐹
0

= 𝐼𝑑
|𝐹
0

and
any topology defined on 𝐹

0
is naturally transported into 𝐹/𝐺

by this isomorphism. That is, if we equip 𝐹
0
with the metric

induced by the 𝐸-norm; that is, 𝑑
𝐹
0

(𝑋,𝑋
󸀠
) = ‖𝑋 − 𝑋

󸀠
‖
𝐸
, for

all 𝑋,𝑋󸀠
∈ 𝐹

0
, which is complete, then the topology on 𝐹/𝐺

is defined by a complete metric given by 𝑑
𝐹/𝐺

([𝑋], [𝑋
󸀠
]) =

‖Υ(𝑋) − Υ(𝑋
󸀠
)‖

𝐸
for any [𝑋], [𝑋󸀠

] ∈ 𝐹/𝐺. Let us denote by
𝑆 : 𝐹 × 𝑅

+
→ 𝐹 the continuous semigroup which to any

initial data 𝑋 ∈ 𝐹 associates the solution 𝑋(𝑡) of (21). The
system (8) is invariant with respect to relabeling. That is, for
any 𝑡 > 0, 𝑆

𝑡
(𝑋 ∘ 𝑓) = 𝑆

𝑡
(𝑋) ∘ 𝑓, for an 𝑋 ∈ 𝐹 and 𝑓 ∈ 𝐺.

Thus the map 𝑆
𝑡
: 𝐹/𝐺 → 𝐹/𝐺 given by 𝑆

𝑡
([𝑋]) = [𝑆

𝑡
𝑋] is

well-defined, which generates a continuous semigroup.
To obtain a semigroup of solution for (8), we have to

consider the space𝐷, which characterizes the solutions in the
original system:

𝐷 = {(𝑧, 𝜇) | 𝑧 ∈ 𝐻
1
(𝑅) × 𝐻

1
(𝑅) ,

𝜇ac = (𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
) 𝑑𝑥} ,

(54)

where 𝑧 = (𝑢, V) and 𝜇 is a positive finite Radonmeasure with
𝜇ac as its absolute continuous part.

We now establish a bijection between𝐹/𝐺 and𝐷 to trans-
port the continuous semigroup obtained in the Lagrangian
equivalent system (functions in 𝐹/𝐺) into the original system
(functions in𝐷).

We first introduce the mapping 𝐿 : 𝐷 → 𝐹/𝐺, which
transforms the original system into the Lagrangian equivalent
system defined as follows.

Definition 6. For any (𝑧, 𝜇) ∈ 𝐷, let

𝑦 (𝜉) = sup {𝑦 | 𝜇 (−∞, 𝑦) + 𝑦 < 𝜉} , (55)

𝑈 (𝜉) = 𝑢 ∘ 𝑦 (𝜉) , 𝑉 (𝜉) = V ∘ 𝑦 (𝜉) ,

𝑀 (𝜉) = 𝑢
𝑥
∘ 𝑦 (𝜉) , 𝑁 (𝜉) = V

𝑥
∘ 𝑦 (𝜉) ,

(56)

𝐻(𝜉) = 𝜉 − 𝑦 (𝜉) , (57)

with 𝑧 = (𝑢, V). We define 𝐿(𝑧, 𝜇) ∈ 𝐹/𝐺 as the equivalence
class of (𝑦, 𝑈, 𝑉,𝑀,𝑁,𝐻).

Remark 7. From the definition of 𝑦, 𝑈, 𝑉,𝑀, 𝑁, 𝐻 in (55)–
(57), we can check that 𝑋 = (𝑦,𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ 𝐸, which
also satisfies (25). Moreover, we have 𝑦 + 𝐻 = 𝐼𝑑 from
(57), which implies that 𝑋 = (𝑦,𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ 𝐹

0
.

Furthermore, if 𝜇 is absolutely continuous, then 𝜇 = (𝑢
2
+

𝑢
2

𝑥
+ V2 + V2

𝑥
)𝑑𝑥 and

∫

𝑦(𝜉)

−∞

(𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
) 𝑑𝑥 + 𝑦 (𝜉) = 𝜉, (58)

for all 𝜉 ∈ 𝑅.
We are led to the mapping𝑀, which corresponds to the

transformation from the Lagrangian equivalent system into
the original system. In the other direction, we obtain the
energy density 𝜇 in the original system, by pushing forward
by 𝑦 the energy density 𝐻

𝜉
𝑑𝜉 in the Lagrangian equivalent

system, where the push-forward 𝑓#] of a measure ] by a
measurable function 𝑓 is defined as

𝑓#] (𝐵) = ] (𝑓−1
(𝐵)) , (59)

for all the Borel set 𝐵. Give any element [𝑋] ∈ 𝐹/𝐺, and let
(𝑧, 𝜇) be defined as

𝑧 (𝑥) = 𝑍 (𝜉) for any 𝜉 such that 𝑥 = 𝑦 (𝜉) , (60)

𝜇 = 𝑦# (𝐻𝜉
𝑑𝜉) , (61)

where 𝑧(𝑥) = (𝑢, V)(𝑥) and 𝑍(𝜉) = (𝑈, 𝑉)(𝜉). We get that
(𝑧, 𝜇) ∈ 𝐷, which does not depend on the representative
𝑋 = (𝑦, 𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ 𝐹 of [𝑋] that we choose. We
denote by 𝑀 : 𝐹/𝐺 → 𝐷 the map to any [𝑋] ∈ 𝐹/𝐺 and
(𝑧, 𝜇) ∈ 𝐷 given by (60)-(61), which conversely transforms
the Lagrangian equivalent system into the original system.

We claim that the transformation from the original
system into the Lagrangian equivalent system is a bijection.

Theorem8. Themaps𝑀 and𝐿 arewell-defined and𝐿−1 = 𝑀.
That is,

𝐿 ∘ 𝑀 = 𝐼𝑑
𝐹/𝐺

, 𝑀 ∘ 𝐿 = 𝐼𝑑
𝐷
. (62)

Proof. Let [𝑋] in 𝐹/𝐺 be given. We consider𝑋 = (𝑦, 𝑈, 𝑉,𝑀,

𝑁,𝐻) = Υ̃([𝑋]) as a representative of [𝑋] and (𝑧, 𝜇) given by
(60)-(61) for this particular 𝑋. From the definition of Υ̃, we
have𝑋 ∈ 𝐹

0
. Let𝑋 = (𝑦,𝑈, 𝑉,𝑀,𝑁,𝐻) be the representative

of 𝐿(𝑧, 𝜇) in 𝐹
0
given by Definition 6. We have to prove that

𝑋 = 𝑋 and therefore 𝐿 ∘ 𝑀 = 𝐼𝑑
𝐹/𝐺

. Let

𝑔 (𝑥) = sup {𝜉 ∈ 𝑅 | 𝑦 (𝜉) < 𝑥} . (63)

Using the fact that 𝑦 is increasing and continuous, it follows
that

𝑦 (𝑔 (𝑥)) = 𝑥 (64)

and 𝑦
−1
((−∞, 𝑥)) = (−∞, 𝑔(𝑥)). From (61) and since

𝐻(−∞) = 0, for any 𝑥 ∈ 𝑅, we get the following:

𝜇 ((−∞, 𝑥)) = ∫

𝑦
−1
((−∞,𝑥))

𝐻
𝜉
𝑑𝜉 = ∫

𝑔(𝑥)

−∞

𝐻
𝜉
𝑑𝜉 = 𝐻 (𝑔 (𝑥)) .

(65)
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Since𝑋 ∈ 𝐹
0
and 𝑦 + 𝐻 = 𝐼𝑑, we have

𝜇 ((−∞, 𝑥)) + 𝑥 = 𝑔 (𝑥) . (66)

From the definition of 𝑦, it follows that

𝑦 (𝜉) = sup {𝑥 ∈ 𝑅 | 𝑔 (𝑥) < 𝜉} . (67)

For any given 𝜉 ∈ 𝑅, using the fact that 𝑦 is increasing
and (64), it follows that 𝑦(𝜉) ≤ 𝑦(𝜉). If 𝑦(𝜉) < 𝑦(𝜉), there
then exists 𝑥 such that 𝑦(𝜉) < 𝑥 < 𝑦(𝜉) and (67) implies
that 𝑔(𝑥) ≥ 𝜉. Conversely, since 𝑦 is increasing, then 𝑥 =

𝑦(𝑔(𝑥)) < 𝑦(𝜉) implies that 𝑔(𝑥) < 𝜉, which gives us a
contradiction. Hence, we have 𝑦 = 𝑦. Since 𝑦 + 𝐻 = 𝐼𝑑, it
follows directly from the definitions that𝐻 = 𝐻,𝑈 = 𝑈,𝑉 =

𝑉,𝑀 = 𝑀, and𝑁 = 𝑁. We thus proved that 𝐿 ∘ 𝑀 = 𝐼𝑑
𝐹/𝐺

.
Given (𝑧, 𝜇) in 𝐷, we denote by (𝑦, 𝑈, 𝑉,𝑀,𝑁,𝐻) the

representative of 𝐿(𝑧, 𝜇) in 𝐹
0
given by Definition 6. Let

(𝑧, 𝜇) = 𝑀 ∘ 𝐿(𝑧, 𝜇) and 𝑔 be defined as before by (63). The
same computation that leads to (66) now gives

𝜇 ((−∞, 𝑥)) + 𝑥 = 𝑔 (𝑥) . (68)

Given 𝜉 ∈ 𝑅, we consider an increasing sequence 𝑥
𝑖

converging to 𝑦(𝜉) which is guaranteed by (55) such that
𝜇((−∞, 𝑥

𝑖
)) + 𝑥

𝑖
< 𝜉. Let 𝑖 tend to infinity. Since

𝐹(𝑥) = 𝜇((−∞, 𝑥)) is lower semi-continuous, we have
𝜇((−∞, 𝑦(𝜉))) + 𝑦(𝜉) ≤ 𝜉. Take 𝜉 = 𝑔(𝑥) and then we get

𝜇 ((−∞, 𝑥)) + 𝑥 ≤ 𝑔 (𝑥) . (69)

By the definition of 𝑔, there exists an increasing sequence 𝜉
𝑖

converging to 𝑔(𝑥) such that 𝑦(𝜉
𝑖
) < 𝑥. It follows from the

definition of 𝑦 in (55) that 𝜇((−∞, 𝑥))+𝑥 ≥ 𝜉
𝑖
. Passing to the

limit, we obtain 𝜇((−∞, 𝑥)) + 𝑥 ≥ 𝑔(𝑥) which, together with
(69), yields

𝜇 ((−∞, 𝑥)) + 𝑥 = 𝑔 (𝑥) . (70)

We obtain that 𝜇 = 𝜇 by comparing (70) and (68). It is clear
from the definitions that 𝑧 = 𝑧. Hence, (𝑧, 𝜇) = (𝑧, 𝜇) and
𝑀 ∘ 𝐿 = 𝐼𝑑

𝐷
.

The topology defined in 𝐹/𝐺 can be transported into 𝐷,
which is guaranteed by the fact that we have established a
bijection between the two equivalent systems. We define the
metric 𝑑

𝐷
on𝐷 as

𝑑
𝐷
((𝑧, 𝜇) , (𝑧, 𝜇)) = 𝑑

𝐹/𝐺
(𝐿 (𝑧, 𝜇) , 𝐿 (𝑧, 𝜇)) , (71)

which makes the bijection 𝐿 between 𝐷 and 𝐹/𝐺 into an
isometry. Since 𝐹/𝐺 equipped with 𝑑

𝐹/𝐺
is a complete metric

space, 𝐷 equipped with the metric 𝑑
𝐷

is also a complete
metric space. For each 𝑡 ∈ 𝑅, we define the mapping 𝑇

𝑡
:

𝐷 → 𝐷 as

𝑇
𝑡
= 𝑀𝑆

𝑡
𝐿. (72)

Then a continuous semigroup of conservative weak solutions
for the original system is obtained as the following theorem
shows.

Theorem 9. Let (𝑧, 𝜇) ∈ 𝐷 be given. If one denotes by 𝑡 →

(𝑧(𝑡), 𝜇(𝑡)) = 𝑇
𝑡
(𝑧, 𝜇) the corresponding trajectory, then 𝑧 =

(𝑢, V) is aweak solution of themodified coupled two-component
Camassa-Holm equation (8), which constructs a continuous
semigroup. Moreover, 𝜇 is a weak solution of the following
transport equation for the energy density:

𝜇
𝑡
+ [(𝑢 + V) 𝜇]

𝑥
= (𝑢

3
− 2𝑃

2
𝑢 + V3 − 2𝑃

4
V)

𝑥
. (73)

Furthermore, for all 𝑡, it holds that

𝜇 (𝑡) (𝑅) = 𝜇 (0) (𝑅) (74)

and, for almost all 𝑡,

𝜇 (𝑡) (𝑅) = 𝜇ac (𝑡) (𝑅) = ‖𝑧 (𝑡)‖
2

𝐻
1

= ‖𝑢 (𝑡)‖
2

𝐻
1 + ‖V (𝑡)‖2

𝐻
1 = 𝜇 (0) (𝑅) .

(75)

Thus the unique solution described here is a conservative weak
solution of the system (8).

Proof. To prove that 𝑧 = (𝑢, V) is a weak solution of the
original system (8), it suffices to show that, for all 𝜙 ∈

𝐶
∞
(𝑅

+
× 𝑅) with compact support,

∫

𝑅
+
×𝑅

[−𝑢𝜙
𝑡
+ (𝑢 + V) 𝑢

𝑥
𝜙] (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

= −∫

𝑅
+
×𝑅

[(𝑃
1
+ 𝑃

2,𝑥
) 𝜙] (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡,

∫

𝑅
+
×𝑅

[−V𝜙
𝑡
+ (𝑢 + V) V

𝑥
𝜙] (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

= −∫

𝑅
+
×𝑅

[(𝑃
3
+ 𝑃

4,𝑥
) 𝜙] (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡,

(76)

where 𝑃
1
, 𝑃

2,𝑥
, 𝑃

3
, and 𝑃

4,𝑥
are given by (8). Let the

solution (𝑦, 𝑈, 𝑉,𝑀,𝑁,𝐻)(𝑡) of (21) be a representative of
𝐿(𝑧(𝑡), 𝜇(𝑡)). On the one hand, since 𝑦(𝑡, 𝜉) is Lipschitz
continuous and invertible with respect to 𝜉, for almost all 𝑡,
we then can use the change of variables 𝑥 = 𝑦(𝑡, 𝜉) and obtain

∫

𝑅
+
×𝑅

[−𝑢𝜙
𝑡
+ (𝑢 + V) 𝑢

𝑥
𝜙] (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

= ∫

𝑅
+
×𝑅

[− (𝑈𝑦
𝜉
) (𝑡, 𝜉) 𝜙

𝑡
(𝑡, 𝑦 (𝑡, 𝜉))

+ ((𝑈 + 𝑉)𝑈
𝜉
) (𝑡, 𝜉) 𝜙 (𝑡, 𝑦 (𝑡, 𝜉))] 𝑑𝜉 𝑑𝑡.

(77)

By using the identities 𝑦
𝑡
= 𝑈 + 𝑉 and 𝑦

𝜉𝑡
= 𝑈

𝜉
+ 𝑉

𝜉
, it then

follows from (21) that

∫

𝑅
+
×𝑅

[−𝑈𝑦
𝜉
𝜙
𝑡
(𝑡, 𝑦) + (𝑈 + 𝑉)𝑈

𝜉
𝜙 (𝑡, 𝑦)] 𝑑𝜉 𝑑𝑡

=

1

2

∫

𝑅
+
×𝑅
2

{−𝑈𝑁𝑦
𝜉
+

1

2

sgn (𝜉 − 𝜉󸀠)

× [𝐻
𝜉
+ (𝑈

2
+ 2𝑀𝑁 −𝑁

2
) 𝑦

𝜉
] } (𝜉

󸀠
)

⋅ 𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|
𝜙 (𝑡, 𝑦 (𝜉)) 𝑦

𝜉
(𝜉) 𝑑𝜉

󸀠
𝑑𝜉 𝑑𝑡.

(78)
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On the other hand, using the change of variables 𝑥 = 𝑦(𝑡, 𝜉)

and 𝑥󸀠 = 𝑦(𝑡, 𝜉
󸀠
) and since 𝑦 is increasing with respect to 𝜉,

we have the following:

− ∫

𝑅
+
×𝑅

[(𝑃
1
+ 𝑃

2,𝑥
) 𝜙] (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

=

1

2

∫

𝑅
+
×𝑅
2

[−𝑢V
𝑥
+ sgn (𝜉 − 𝜉󸀠)

× (𝑢
2
+

1

2

𝑢
2

𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

V2 −
1

2

V2
𝑥
)]

× (𝑡, 𝑦 (𝜉
󸀠
)) ⋅ 𝑒

−|𝑦(𝜉)−𝑦(𝜉
󸀠
)|

× 𝜙 (𝑡, 𝑦 (𝜉)) 𝑦
𝜉
(𝜉

󸀠
) 𝑦

𝜉
(𝜉) 𝑑𝜉

󸀠
𝑑𝜉 𝑑𝑡.

(79)

We obtain from (27) that

− ∫

𝑅
+
×𝑅

[(𝑃
1
+ 𝑃

2,𝑥
) 𝜙] (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

=

1

2

∫

𝑅
+
×𝑅
2

{−𝑈𝑁𝑦
𝜉
+

1

2

sgn (𝜉 − 𝜉󸀠)

× [𝐻
𝜉
+ (𝑈

2
+ 2𝑀𝑁 −𝑁

2
) 𝑦

𝜉
] } (𝜉

󸀠
)

⋅ 𝑒
−|𝑦(𝜉)−𝑦(𝜉

󸀠
)|
𝜙 (𝑡, 𝑦 (𝜉)) 𝑦

𝜉
(𝜉) 𝑑𝜉

󸀠
𝑑𝜉 𝑑𝑡.

(80)

By comparing (78) and (80), we know that

∫

𝑅
+
×𝑅

[−𝑈𝑦
𝜉
𝜙
𝑡
(𝑡, 𝑦) + (𝑈 + 𝑉)𝑈

𝜉
𝜙 (𝑡, 𝑦)] 𝑑𝜉 𝑑𝑡

= −∫

𝑅
+
×𝑅

[(𝑃
1
+ 𝑃

2,𝑥
) 𝜙] (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡.

(81)

Hence, the first identity in (76) holds. The second identity in
(76) follows in the same way. One can easily check that 𝜇(𝑡) is
solution of (73). From the definition 𝜇 in (61), we get

𝜇 (𝑡) (𝑅) = ∫

𝑅

𝐻
𝜉
𝑑𝜉 = 𝐻 (𝑡,∞) , (82)

which is constant in time from Lemma 2. Thus, we have
proved (74).

Since 𝑦
𝜉
(𝑡, 𝜉) > 0 a.e., for almost every 𝜉 ∈ 𝑅, it then

follows from (27) that

𝜇 (𝑡) (𝐵) = ∫

𝑦
−1
(𝐵)

𝐻
𝜉
𝑑𝜉

= ∫

𝑦
−1
(𝐵)

(𝑈
2
+

𝑈
2

𝜉

𝑦
2

𝜉

+ 𝑉
2
+

𝑉
2

𝜉

𝑦
2

𝜉

)𝑦
𝜉
𝑑𝜉,

(83)

for any Borel set 𝐵. Since 𝑦 is one-to-one and 𝑢
𝑥
∘ 𝑦𝑦

𝜉
= 𝑈

𝜉
,

V
𝑥
∘ 𝑦𝑦

𝜉
= 𝑉

𝜉
a.e. and then (83) implies that

𝜇 (𝑡) (𝐵) = ∫

𝐵

(𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
) (𝑡, 𝑥) 𝑑𝑥. (84)

Hence, (75) is proved (and the solution is conservative),
which completes the proof.

5. Multipeakon Conservative Solutions of
the Original System

In this section, we will derive a new system of ordinary
differential equations for the multipeakon solutions which
is well posed even when collisions occur, and the variables
(𝑦, 𝑈, 𝑉,𝑀,𝑁,𝐻) will be used to characterize multipeakons
in a way that avoids the problems related to blowing up.

Solutions of the modified coupled two-component
Camassa-Holm system may experience wave breaking in
the sense that the solution develops singularities in finite
time, while keeping the𝐻1-norm finite. Continuation of the
solution beyond wave breaking imposes significant challenge
as can be illustrated in the case of multipeakons, which are
special solutions of the modified coupled two-component
Camassa-Holm system of the following form:

𝑢 (𝑡, 𝑥) =

𝑛

∑

𝑖=1

𝑝
𝑖
(𝑡) 𝑒

−|𝑥−𝑞
𝑖
(𝑡)|
,

V (𝑡, 𝑥) =
𝑛

∑

𝑖=1

𝑟
𝑖
(𝑡) 𝑒

−|𝑥−𝑞
𝑖
(𝑡)|
,

(85)

where (𝑝
𝑖
(𝑡), 𝑟

𝑖
(𝑡), 𝑞

𝑖
(𝑡)) satisfy the explicit system of ordinary

differential equations:

𝑝̇
𝑖
=

𝑛

∑

𝑗=1,𝑖 ̸= 𝑗

(𝑝
𝑖
𝑝
𝑗
+ 𝑟

𝑖
𝑟
𝑗
) sgn (𝑞

𝑗
− 𝑞

𝑖
) 𝑒

−|𝑞
𝑖
−𝑞
𝑗
|
,

̇𝑟
𝑖
=

𝑛

∑

𝑗=1,𝑖 ̸= 𝑗

(𝑝
𝑖
𝑝
𝑗
+ 𝑟

𝑖
𝑟
𝑗
) sgn (𝑞

𝑗
− 𝑞

𝑖
) 𝑒

−|𝑞
𝑖
−𝑞
𝑗
|
,

̇𝑞
𝑖
= −

𝑛

∑

𝑗=1

(𝑝
𝑗
+ 𝑟

𝑗
) 𝑒

−|𝑞
𝑖
−𝑞
𝑗
|
.

(86)

Peakons interact in a way similar to that of solitons of the
CH equation, and wave breaking may appear when at least
two of the 𝑞

𝑖
coincide. Clearly, if the 𝑞

𝑖
remain distinct, the

system (86) allows for a global smooth solution. It is not hard
to see that 𝑧 = (𝑢, V) is a global weak solution of system (8) by
inserting that solution into (85). In the case where 𝑝

𝑖
(0) and

𝑟
𝑖
(0) have the same sign for all 𝑖 = 1, 2, . . . , 𝑛, (86) admits a

unique global solution, where the 𝑞
𝑖
(𝑡) remain distinct and

the peakons are traveling in the same direction. However,
when two peakons have opposite signs, collisions may occur,
and, if so, the system (86) blows up.

Let us consider initial data 𝑧 = (𝑢, V) given by

𝑢 (𝑥) =

𝑛

∑

𝑖=1

𝑝
𝑖
𝑒
−|𝑥−𝜉

𝑖
|
,

V (𝑥) =
𝑛

∑

𝑖=1

𝑟
𝑖
𝑒
−|𝑥−𝜉

𝑖
|
.

(87)

Without loss of generality, we assume that the 𝑝
𝑖
and 𝑟

𝑖

are all nonzero and that the 𝜉
𝑖
are all distinct. The aim is

to characterize the unique and global weak solution from
Theorem 9 with initial data (87) explicitly. Since the variables
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𝑝
𝑖
and 𝑟

𝑖
blow up at collisions, they are not appropriate to

define amultipeakon in the form of (85).We consider the fol-
lowing characterization of multipeakons given as continuous
solutions 𝑧 = (𝑢, V), which are defined on intervals [𝑦

𝑖
, 𝑦

𝑖+1
]

as the solutions of the Dirichlet problem

𝑧 − 𝑧
𝑥𝑥

= 0, (88)

with boundary conditions 𝑧(𝑡, 𝑦
𝑖
(𝑡)) = 𝑧

𝑖
(𝑡) and 𝑧(𝑡, 𝑦

𝑖+1

(𝑡)) = 𝑧
𝑖+1
(𝑡). The variables 𝑦

𝑖
denote the position of the

peaks, and the variables 𝑧
𝑖
denote the values of 𝑧 at the peaks.

In the following we will show that this property persists for
conservative solutions.

Let us set 𝐴 = 𝑅 \ {𝜉
1
, . . . , 𝜉

𝑛
}. The next lemma gives us

the functions 𝑈, 𝑉, and𝐻 which belong to 𝐶2
(𝐴) (they even

belong to 𝐶∞
(𝐴)).

Lemma 10. Let 𝑋 = (𝑦,𝑈, 𝑉,𝑀,𝑁,𝐻) ∈ 𝐹 such that (𝑦, 𝑈,
𝑉,𝐻) ∈ [𝐶

2
(𝐴)]

4 is given, and then the solution (𝑦, 𝑈, 𝑉,𝐻)

of (21) with initial data𝑋 belongs to 𝐶1
(𝑅

+
, [𝐶

2
(𝐴)]

4

).

Proof. To prove this Lemma, one proceeds as in Theorem 3
by using the contraction argument and replacing 𝐸 by

𝐸 = 𝐸 ∩ [(𝐶
2
(𝐴))

3

∩ (𝐿
2
)

2

∩ 𝐶
2
(𝐴)] , (89)

endowed with the norm

‖𝑋‖
𝐸
= ‖𝑋‖

𝐸
+
󵄩
󵄩
󵄩
󵄩
𝑦 − 𝐼𝑑

󵄩
󵄩
󵄩
󵄩𝑊
2,∞

(𝐴)
+ ‖𝑈‖

𝑊
2,∞

(𝐴)

+ ‖𝑉‖
𝑊
2,∞

(𝐴)
+ ‖𝐻‖

𝑊
2,∞

(𝐴)
.

(90)

Our main task is to prove the Lipschitz continuity of 𝑃
𝑖

and 𝑃
𝑖,𝑥
(𝑖 = 1, 2, 3, 4) from 𝐸 to𝐻1

(𝑅)∩𝐶
2
(𝐴). We first show

that 𝑃
2,𝑥

is Lipschitz continuous from 𝐸 to 𝐻
1
(𝑅) ∩ 𝐶

2
(𝐴)

and the others follow in the same way. Given a bounded set
𝐵 = {𝑋 ∈ 𝐸 | ‖𝑋‖

𝐸
≤ 𝐶

𝐵
} where 𝐶

𝐵
is a positive constant,

fromTheorem 3, we get that
󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
2,𝑥

(𝑋) − 𝑃
2,𝑥

(𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑅)

≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩𝐸

≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

󵄩
󵄩
󵄩
󵄩
󵄩𝐸

(91)

for a constant 𝐶 depending only on 𝐶
𝐵
. We can compute the

derivative of 𝑃
2,𝑥

given as

𝑃
2,𝑥𝜉

= −

1

2

𝐻
𝜉
+ (𝑃

2
−

1

2

𝑈
2
−𝑀𝑁 +𝑁

2
) (1 + 𝜍

𝜉
) . (92)

From Lemma 2, 𝑃
2,𝑥𝜉

is Lipschitz continuous from 𝐸 to 𝐶(𝐴)
and therefore 𝑃

2,𝑥
is Lipschitz continuous from 𝐸 to 𝐶1

(𝐴).
Similarly, we obtain the same results for 𝑃

1
, 𝑃

2
, 𝑃

3
, and 𝑃

4
and

𝑃
1,𝑥
, 𝑃

3,𝑥
, 𝑃

4,𝑥
. We can also compute the derivative of 𝑃

2,𝑥𝜉
on

𝐴 as follows:

𝑃
2,𝑥𝜉𝜉

= −

1

2

𝐻
𝜉𝜉
+ (𝑃

2,𝑥
𝑦
𝜉
− 𝑈𝑈

𝜉
−𝑀

𝜉
𝑁 −𝑀𝑁

𝜉
+ 2𝑁𝑁

𝜉
) 𝑦

𝜉

+ (𝑃
2
−

1

2

𝑈
2
−𝑀𝑁 +𝑁

2
)𝑦

𝜉𝜉
.

(93)

Since 𝑃
2,𝑥𝜉𝜉

is locally Lipschitz maps from 𝐸 to 𝐶(𝐴), we
then get that 𝑃

2,𝑥
is locally Lipschitz continuous from 𝐸 to

𝐶
2
(𝐴). The same results can be obtained for the other 𝑃

𝑖

and 𝑃
𝑖,𝑥

(𝑖 = 1, 2, 3, 4) by the same way. From the standard
contraction argument, the local existence of solutions of (21)
can be proved in 𝐸. As far as global existence is concerned,
‖𝑋‖

𝑊
1,∞

(𝑅)
does not blow up for initial data in𝑊1,∞

(𝑅). For
the second derivative, for any 𝜉 ∈ 𝐴, we get that

𝑦
𝜉𝜉𝑡

= 𝑈
𝜉𝜉
+ 𝑉

𝜉𝜉
,

𝑈
𝜉𝜉𝑡

=

1

2

𝐻
𝜉𝜉
+ (

1

2

𝑈
2
+𝑀𝑁 −𝑁

2
− 𝑃

2
− 𝑃

1,𝑥
)𝑦

𝜉𝜉

+ (𝑈𝑈
𝜉
+𝑀

𝜉
𝑁 +𝑀𝑁

𝜉
− 2𝑁𝑁

𝜉
) 𝑦

𝜉

− (𝑃
2,𝑥

+ 𝑃
1
− 𝑈𝑁)𝑦

2

𝜉
,

𝑉
𝜉𝜉𝑡

=

1

2

𝐻
𝜉𝜉
+ (

1

2

𝑉
2
+𝑀𝑁 −𝑀

2
− 𝑃

4
− 𝑃

3,𝑥
)𝑦

𝜉𝜉

+ (𝑉𝑉
𝜉
+ 𝑁

𝜉
𝑀+𝑁𝑀

𝜉
− 2𝑀𝑁

𝜉
) 𝑦

𝜉

− (𝑃
4,𝑥

+ 𝑃
3
− 𝑉𝑀)𝑦

2

𝜉
,

𝐻
𝜉𝜉𝑡

= − (2𝑈𝑃
2,𝑥

+ 2𝑉𝑃
4,𝑥
) 𝑦

𝜉𝜉
+ (3𝑈

2
− 2𝑃

2
)𝑈

𝜉𝜉

+ (3𝑉
2
− 2𝑃

4
)𝑉

𝜉𝜉
+ 6𝑈𝑈

2

𝜉
− 4𝑃

2,𝑥
𝑈
𝜉
𝑦
𝜉

+ 6𝑉𝑉
2

𝜉
− 4𝑃

4,𝑥
𝑉
𝜉
𝑦
𝜉
− 2𝑈𝑃

2
𝑦
2

𝜉
+ 𝑈

3
𝑦
2

𝜉

+ 2𝑈𝑀𝑁𝑦
2

𝜉
− 2𝑈𝑁

2
𝑦
2

𝜉
+ 𝑈𝐻

𝜉
𝑦
𝜉
− 2𝑉𝑃

4
𝑦
2

𝜉

+ 𝑉
3
𝑦
2

𝜉
+ 2𝑉𝑀𝑁𝑦

2

𝜉
− 2𝑉𝑀

2
𝑦
2

𝜉
+ 𝑉𝐻

𝜉
𝑦
𝜉
.

(94)

The system (94) is affine with respect to 𝑦
𝜉𝜉
,𝑈

𝜉𝜉
,𝑉

𝜉𝜉
,𝐻

𝜉𝜉
.

Thus, we get that
󵄩
󵄩
󵄩
󵄩
󵄩
𝑋

𝜉𝜉
(𝑡, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝐴)

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋

𝜉𝜉
(0, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝐴)

+ 𝐶 + 𝐶∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋

𝜉𝜉
(𝜏, ⋅)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝐴)
𝑑𝜏,

(95)

where 𝐶 is a constant depending only on sup
𝑡∈[0,𝑇)

‖𝑋‖
𝑊
1,∞

(𝑅)

which is bounded on any time interval [0, 𝑇). It follows from
Gronwall’s lemma that ‖𝑋‖

𝑊
2,∞

(𝐴)
does not blow up and

therefore the solution is globally defined in 𝐸.

We now prove that 𝑋 = (𝑦,𝑈, 𝑉,𝑀,𝑁,𝐻) is a repre-
sentative of 𝑧 = (𝑢, V) in the Lagrangian system; that is,
[𝑋] = 𝐿(𝑧, 𝜇), where𝑋 = (𝑦,𝑈, 𝑉,𝑀,𝑁,𝐻) is given by

𝑦 (𝜉) = 𝜉, (96a)

𝑈 (𝜉) = 𝑢 (𝜉) , 𝑉 (𝜉) = V (𝜉) ,

𝑀 (𝜉) = 𝑢
𝑥
(𝜉) , 𝑁 (𝜉) = V

𝑥
(𝜉) ,

(96b)

𝐻(𝜉) = ∫

𝜉

−∞

(𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
) 𝑑𝑥. (96c)
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We first check that 𝑋 ∈ 𝐹. Since 𝑧 = (𝑢, V) is a multipeakon,
we get that 𝑧 = (𝑢, V) ∈ 𝑊

1,∞
(𝑅) ∩ 𝐻

1
(𝑅) from (87). Hence,

𝑈, 𝑉, and𝐻 all belong to𝑊1,∞
(𝑅) while 𝑦 − 𝐼𝑑 is identically

zero. Due to the exponential decay of (𝑢, V) and (𝑢
𝑥
, V

𝑥
) and

𝐻
𝜉
∈ 𝐿

∞
(𝑅), we get that 𝐻

𝜉
∈ 𝐿

2
(𝑅). The properties (25)–

(27) are straightforward to check. It is not hard to check that
𝑀([𝑋]) = (𝑧, (𝑢

2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
)𝑑𝑥) and, therefore, since

𝐿 ∘ 𝑀 = 𝐼𝑑, we get that [𝑋] = 𝐿(𝑧, (𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
)𝑑𝑥).

Theorem 11. Let initial data be given in (87). The solution
given by Theorem 9 satisfies 𝑧 − 𝑧

𝑥𝑥
= 0 between the peaks.

Proof. Let us first prove that 𝑢 − 𝑢
𝑥𝑥

= 0. Assuming that
𝑦
𝜉
(𝑡, 𝜉) ̸= 0, we get that

𝑢
𝑥
∘ 𝑦 = 𝑀, 𝑢

𝑥𝑥
∘ 𝑦 =

𝑀
𝜉

𝑦
𝜉

=

(𝑈
𝜉𝜉
𝑦
𝜉
− 𝑦

𝜉𝜉
𝑈
𝜉
)

𝑦
3

𝜉

, (97)

and therefore

(𝑢 − 𝑢
𝑥𝑥
) ∘ 𝑦 =

(𝑈𝑦
3

𝜉
− 𝑈

𝜉𝜉
𝑦
𝜉
+ 𝑦

𝜉𝜉
𝑈
𝜉
)

𝑦
3

𝜉

. (98)

We set

𝑅 = 𝑈𝑦
3

𝜉
− 𝑈

𝜉𝜉
𝑦
𝜉
+ 𝑦

𝜉𝜉
𝑈
𝜉
. (99)

For a given 𝜉 ∈ 𝐴, differentiating (99) with respect to 𝑡 and
after using (21), (24), and (94), we obtain
𝑑𝑅

𝑑𝑡

= 3𝑈𝑦
2

𝜉
𝑦
𝜉𝑡
+ 𝑈

𝑡
𝑦
3

𝜉
− 𝑈

𝜉𝜉𝑡
𝑦
𝜉
− 𝑈

𝜉𝜉
𝑦
𝜉𝑡
+ 𝑦

𝜉𝜉𝑡
𝑈
𝜉
+ 𝑦

𝜉𝜉
𝑈
𝜉𝑡

= 2𝑈𝑈
𝜉
𝑦
2

𝜉
+ 2𝑈𝑉

𝜉
𝑦
2

𝜉
−

𝐻
𝜉𝜉
𝑦
𝜉

2

− (𝑀
𝜉
𝑁 +𝑁

𝜉
𝑀− 2𝑁𝑁

𝜉
) 𝑦

2

𝜉
− 𝑈

𝜉𝜉
𝑉
𝜉

+ 𝑉
𝜉𝜉
𝑈
𝜉
+

𝐻
𝜉
𝑦
𝜉𝜉

2

= 2𝑈 (𝑈
𝜉
+ 𝑉

𝜉
) 𝑦

2

𝜉
− 2𝑁(𝑀

𝜉
− 𝑁

𝜉
) 𝑦

2

𝜉

−

𝐻
𝜉𝜉
𝑦
𝜉

2

+

𝐻
𝜉
𝑦
𝜉𝜉

2

.

(100)

Differentiating (27) with respect to 𝜉, we get

𝑦
𝜉𝜉
𝐻

𝜉
+ 𝑦

𝜉
𝐻

𝜉𝜉
= 2𝑦

𝜉
𝑦
𝜉𝜉
𝑈

2
+ 2𝑦

2

𝜉
𝑈𝑈

𝜉
+ 2𝑈

𝜉
𝑈
𝜉𝜉

+ 2𝑦
𝜉
𝑦
𝜉𝜉
𝑉
2
+ 2𝑦

2

𝜉
𝑉𝑉

𝜉
+ 2𝑉

𝜉
𝑉
𝜉𝜉
.

(101)

After inserting the value of𝑦
𝜉
𝐻

𝜉𝜉
given by (101) into (100) and

multiplying the equation by 𝑦
𝜉
, we obtain that

𝑦
𝜉
⋅

𝑑𝑅

𝑑𝑡

= 𝑈𝑈
𝜉
𝑦
3

𝜉
− 𝑈

𝜉
𝑈
𝜉𝜉
𝑦
𝜉
+ (𝐻

𝜉
𝑦
𝜉
− 𝑦

2

𝜉
𝑈

2
− 𝑦

2

𝜉
𝑉
2
− 𝑉

2

𝜉
) 𝑦

𝜉𝜉

+ 𝑈𝑉
𝜉
𝑦
3

𝜉
− 𝑈

𝜉𝜉
𝑉
𝜉
𝑦
𝜉
+ 𝑈

𝜉
𝑉
𝜉
𝑦
𝜉𝜉
.

(102)

It follows from (27), and since 𝑦
𝜉𝑡
= (𝑈

𝜉
+ 𝑉

𝜉
), that

𝑦
𝜉
⋅

𝑑𝑅

𝑑𝑡

= 𝑦
𝜉𝑡
⋅ 𝑅. (103)

We claim that, for any time 𝑡 such that 𝑦
𝜉
(𝑡) ̸= 0,

𝑑

𝑑𝑡

(

𝑅

𝑦
𝜉

) =

𝑅
𝑡
𝑦
𝜉
− 𝑦

𝜉𝑡
𝑅

𝑦
2

𝜉

= 0. (104)

We have to prove that 𝑅/𝑦
𝜉
is 𝐶1 in time. Since

𝑅

𝑦
𝜉

= 𝑈𝑦
2

𝜉
− 𝑈

𝜉𝜉
+

𝑦
𝜉𝜉
𝑈
𝜉

𝑦
𝜉

= 𝑈𝑦
2

𝜉
− 𝑈

𝜉𝜉
+

𝑦
𝜉𝜉
𝑈
𝜉

𝑦
𝜉
+ 𝐻

𝜉

+

𝑦
𝜉𝜉
𝑀𝐻

𝜉

𝑦
𝜉
+ 𝐻

𝜉

=

𝐽 (𝑋,𝑋
𝜉
, 𝑋

𝜉𝜉
)

𝑦
𝜉
+ 𝐻

𝜉

,

(105)

for some polynomial 𝐽 and 𝑋 ∈ 𝐶
1
(𝑅, 𝐸), we get that 𝑋, 𝑋

𝜉
,

and𝑋
𝜉𝜉
are𝐶1 in time. Since𝑋(𝑡) remains in Γ, for all 𝑡, from

(26), we have 𝑦
𝜉
+ 𝐻

𝜉
> 0 and therefore 1/(𝑦

𝜉
+ 𝐻

𝜉
) is 𝐶1 in

time, which implies that 𝑅/𝑦
𝜉
is 𝐶1 in time. Hence, it holds

that

𝑅 (𝑡, 𝜉) = 𝐾 (𝜉) 𝑦
𝜉
(𝑡, 𝜉) , (106)

for some constant 𝐾(𝜉) which is independent of time, which
leads to

𝑦
2

𝜉
(𝑢 − 𝑢

𝑥𝑥
) ∘ 𝑦 = 𝐾 (𝜉) . (107)

For the multipeakons at time 𝑡 = 0, we have 𝑦(0, 𝜉) = 𝜉 and
(𝑢 − 𝑢

𝑥𝑥
)(0, 𝜉) = 0 for all 𝜉 ∈ 𝐴. Hence,

𝑅

𝑦
𝜉

(𝑡, 𝜉) = 0, (108)

for all time 𝑡 and all 𝜉 ∈ 𝐴. Thus, (𝑢−𝑢
𝑥𝑥
)(𝑡, 𝜉) = 0. Similarly,

(V − V
𝑥𝑥
)(𝑡, 𝜉) = 0.

For solutions with multipeakon initial data, we have
the following result. If 𝑦

𝜉
(𝑡, 𝜉) vanishes at some point 𝜉 in

the interval (𝜉
𝑖
, 𝜉

𝑖+1
), then 𝑦

𝜉
(𝑡, 𝜉) vanishes everywhere in

(𝜉
𝑖
, 𝜉

𝑖+1
). Moreover, for given initial multipeakon solution

𝑧(𝑥) = (𝑢, V)(𝑥) = (∑
𝑛

𝑖=1
𝑝
𝑖
𝑒
−|𝑥−𝜉

𝑖
|
, ∑

𝑛

𝑖=1
𝑟
𝑖
𝑒
−|𝑥−𝜉

𝑖
|
), let (𝑦, 𝑈, 𝑉,

𝑀,𝑁,𝐻) be the solution of system (21) with initial data
(𝑦, 𝑈, 𝑉,𝑀,𝑁,𝐻) given by (96a), (96b) and (96c), and then,
between adjacent peaks, if 𝑥

𝑖
= 𝑦(𝑡, 𝜉

𝑖
) ̸= 𝑥

𝑖+1
= 𝑦(𝑡, 𝜉

𝑖+1
),

the solution 𝑧(𝑡, 𝑥) = (𝑢, V)(𝑡, 𝑥) is twice differentiable with
respect to the space variable and we have (𝑧 − 𝑧

𝑥𝑥
) = 0, for

𝑥 ∈ (𝑥
𝑖
, 𝑥

𝑖+1
).

We now start the derivation of a system of ordinary
differential equations for multipeakons.
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From (21), we get that, for each 𝑖 = 1, 2 . . . , 𝑛,

𝑑𝑦
𝑖

𝑑𝑡

= 𝑢
𝑖
+ V

𝑖
,

𝑑𝑢
𝑖

𝑑𝑡

= −𝑃
1,𝑖
− 𝑃

2,𝑥𝑖
,

𝑑V
𝑖

𝑑𝑡

= −𝑃
3,𝑖
− 𝑃

4,𝑥𝑖
,

𝑑𝐻
𝑖

𝑑𝑡

= 𝑢
3

𝑖
− 2𝑢

𝑖
𝑃
2,𝑖
+ V3

𝑖
− 2V

𝑖
𝑃
4,𝑖
,

(109)

where (𝑦
𝑖
, 𝑢

𝑖
, V

𝑖
, 𝐻

𝑖
) = (𝑦, 𝑈, 𝑉,𝐻)(𝑡, 𝜉

𝑖
), 𝑃

𝑘,𝑖
= 𝑃

𝑘
(𝑡, 𝜉

𝑖
), and

𝑃
𝑘,𝑥𝑖

= 𝑃
𝑘,𝑥
(𝑡, 𝜉

𝑖
), (𝑘 = 1, 2, 3, 4), respectively. Since the

function 𝑦(𝑡, ⋅) is invertible, for almost every 𝑡, we can use
the change of variables 𝑥 = 𝑦(𝑡, 𝜉) such that 𝑃

𝑘,𝑖
and 𝑃

𝑘,𝑥𝑖
(𝑘 =

1, 2, 3, 4) can be rewritten as

𝑃
1,𝑖
=

1

2

∫

𝑅

𝑒
−|𝑦
𝑖
−𝑥|

(𝑢V
𝑥
) 𝑑𝑥,

𝑃
1,𝑥𝑖

= −

1

2

∫

𝑅

sgn (𝑦
𝑖
− 𝑥) 𝑒

−|𝑦
𝑖
−𝑥|

(𝑢V
𝑥
) 𝑑𝑥,

𝑃
2,𝑖
=

1

2

∫

𝑅

𝑒
−|𝑦
𝑖
−𝑥|

(𝑢
2
+

1

2

𝑢
2

𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

V2 −
1

2

V2
𝑥
)𝑑𝑥,

𝑃
2,𝑥𝑖

= −

1

2

∫

𝑅

sgn (𝑦
𝑖
− 𝑥) 𝑒

−|𝑦
𝑖
−𝑥|

× (𝑢
2
+

1

2

𝑢
2

𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

V2 −
1

2

V2
𝑥
)𝑑𝑥,

𝑃
3,𝑖
=

1

2

∫

𝑅

𝑒
−|𝑦
𝑖
−𝑥|

(V𝑢
𝑥
) 𝑑𝑥,

𝑃
3,𝑥𝑖

= −

1

2

∫

𝑅

sgn (𝑦
𝑖
− 𝑥) 𝑒

−|𝑦
𝑖
−𝑥|

(V𝑢
𝑥
) 𝑑𝑥,

𝑃
4,𝑖
=

1

2

∫

𝑅

𝑒
−|𝑦
𝑖
−𝑥|

(V2 +
1

2

V2
𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

𝑢
2
−

1

2

𝑢
2

𝑥
)𝑑𝑥,

𝑃
4,𝑥𝑖

= −

1

2

∫

𝑅

sgn (𝑦
𝑖
− 𝑥) 𝑒

−|𝑦
𝑖
−𝑥|

× (V2 +
1

2

V2
𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

𝑢
2
−

1

2

𝑢
2

𝑥
)𝑑𝑥.

(110)

Between two adjacent peaks located at 𝑦
𝑖
and 𝑦

𝑖+1
, we

know that 𝑧 = (𝑢, V) satisfies (𝑧 − 𝑧
𝑥𝑥
) = 0 and therefore

𝑧 = (𝑢, V) can be written as

𝑧 (𝑥) = (

𝑢 (𝑥)

V (𝑥)) = (

𝐴
𝑖
𝑒
𝑥
+ 𝐵

𝑖
𝑒
−𝑥

𝐶
𝑖
𝑒
𝑥
+ 𝐷

𝑖
𝑒
−𝑥) , (111)

for 𝑥 ∈ [𝑦
𝑖
, 𝑦

𝑖+1
], 𝑖 = 1, 2, . . . , 𝑛 − 1, where the constants 𝐴

𝑖
,

𝐵
𝑖
,𝐶

𝑖
, and𝐷

𝑖
depend on 𝑢

𝑖
, 𝑢

𝑖+1
, V

𝑖
, V

𝑖+1
, 𝑦

𝑖
, and 𝑦

𝑖+1
and read

𝐴
𝑖
=

𝑒
−𝑦
𝑖

2

[

𝑢
𝑖

cosh (𝛿𝑦
𝑖
)

+

𝛿𝑢
𝑖

sinh (𝛿𝑦
𝑖
)

] ,

𝐵
𝑖
=

𝑒
𝑦
𝑖

2

[

𝑢
𝑖

cosh (𝛿𝑦
𝑖
)

−

𝛿𝑢
𝑖

sinh (𝛿𝑦
𝑖
)

] ,

𝐶
𝑖
=

𝑒
−𝑦
𝑖

2

[

V
𝑖

cosh (𝛿𝑦
𝑖
)

+

𝛿V
𝑖

sinh (𝛿𝑦
𝑖
)

] ,

𝐷
𝑖
=

𝑒
𝑦
𝑖

2

[

V
𝑖

cosh (𝛿𝑦
𝑖
)

−

𝛿V
𝑖

sinh (𝛿𝑦
𝑖
)

] ,

(112)

where

𝑦
𝑖
=

1

2

(𝑦
𝑖
+ 𝑦

𝑖+1
) , 𝛿𝑦

𝑖
=

1

2

(𝑦
𝑖
− 𝑦

𝑖+1
) ,

𝑢
𝑖
=

1

2

(𝑢
𝑖
+ 𝑢

𝑖+1
) , 𝛿𝑢

𝑖
=

1

2

(𝑢
𝑖
− 𝑢

𝑖+1
) ,

V
𝑖
=

1

2

(V
𝑖
+ V

𝑖+1
) , 𝛿V

𝑖
=

1

2

(V
𝑖
− V

𝑖+1
) .

(113)

Thus, the constants𝐴
𝑖
, 𝐵

𝑖
,𝐶

𝑖
, and𝐷

𝑖
uniquely determine 𝑧 =

(𝑢, V) on the interval [𝑦
𝑖
, 𝑦

𝑖+1
], and we compute

𝛿𝐻
𝑖
= 𝐻

𝑖+1
− 𝐻

𝑖

= ∫

𝑦
𝑖+1

𝑦
𝑖

(𝑢
2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
) 𝑑𝑥

= 2𝑢
2

𝑖
tanh (𝛿𝑦

𝑖
) + 2𝛿𝑢

2

𝑖
coth (𝛿𝑦

𝑖
)

+ 2V2
𝑖
tanh (𝛿𝑦

𝑖
) + 2𝛿V2

𝑖
coth (𝛿𝑦

𝑖
)

= 𝛿𝐻
1𝑖
+ 𝛿𝐻

2𝑖
,

(114)

where 𝛿𝐻
1𝑖

= 2𝑢
2

𝑖
tanh(𝛿𝑦

𝑖
) + 2𝛿𝑢

2

𝑖
cosh(𝛿𝑦

𝑖
) and 𝛿𝐻

2𝑖
=

2V2
𝑖
tanh(𝛿𝑦

𝑖
) + 2𝛿V2

𝑖
cosh(𝛿𝑦

𝑖
). At this point, we can get

some more understanding of what is happening at a time
of collision. Let 𝑡∗ be a time when the two peaks located
at 𝑦

𝑖
and 𝑦

𝑖+1
collide, that is, such that lim

𝑡→ 𝑡
∗𝛿𝑦

𝑖
(𝑡) = 0.

Since the solution 𝑧 = (𝑢, V) remains in 𝐻
1 for all time,

the function 𝑧 = (𝑢, V) remains continuous so that we have
lim

𝑡→ 𝑡
∗𝛿𝑢

𝑖
(𝑡) = lim

𝑡→ 𝑡
∗𝛿V

𝑖
(𝑡) = 0, and, when 𝑡 tends

to 𝑡
∗, 𝐴

𝑖
, 𝐵

𝑖
, 𝐶

𝑖
, and 𝐷

𝑖
may have a finite limit. However,

we know that the first derivative blows up, which implies
that lim

𝑡→ 𝑡
∗𝐵

𝑖
= −lim

𝑡→ 𝑡
∗𝐴

𝑖
= ∞ and lim

𝑡→ 𝑡
∗𝐷

𝑖
=

−lim
𝑡→ 𝑡
∗𝐶

𝑖
= ∞.Thus, 𝛿𝑢

𝑖
and 𝛿V

𝑖
tend to zero, respectively,

but are slower than 𝛿𝑦
𝑖
. Indeed, let 𝑡 tend to 𝑡∗ in (114), and

then, to first order in 𝛿𝑦
𝑖
, we obtain that

√𝛿𝑢
2

𝑖
+ 𝛿V2

𝑖
= √

𝛿𝐻
𝑖

2

⋅ √𝛿𝑦
𝑖
+ ∘ (𝛿𝑦

𝑖
) , (115)
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which implies that 𝛿𝑢
𝑖
and 𝛿V

𝑖
tend to zero at the same rate as

√𝛿𝑦
𝑖
. We now turn to the computation of 𝑃

𝑘,𝑖
(𝑘 = 1, 2, 3, 4)

given by (110). Let us write 𝑧 = (𝑢, V) as

𝑧 (𝑡, 𝑥) = (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥))

= (

𝑛

∑

𝑗=0

(𝐴
𝑗
𝑒
𝑥
+ 𝐵

𝑗
𝑒
−𝑥
) 𝜒

(𝑦
𝑗
,𝑦
𝑗+1

)
(𝑥) ,

𝑛

∑

𝑗=0

(𝐶
𝑗
𝑒
𝑥
+ 𝐷

𝑗
𝑒
−𝑥
) 𝜒

(𝑦
𝑗
,𝑦
𝑗+1

)
(𝑥)) .

(116)

We have sets 𝑦
0
= −∞, 𝑦

𝑛+1
= ∞, 𝑢

0
= 𝑢

𝑛+1
= 0, V

0
= V

𝑛+1
=

0, 𝐴
0
= 𝑢

1
𝑒
−𝑦
1 , 𝐵

0
= 0, 𝐴

𝑛
= 0, 𝐵

𝑛
= 𝑢

𝑛
𝑒
𝑦
𝑛 , and 𝐶

0
= V

1
𝑒
−𝑦
1 ,

𝐷
0
= 0, 𝐶

𝑛
= 0,𝐷

𝑛
= V

𝑛
𝑒
𝑦
𝑛 . We have

𝑢V
𝑥
=

𝑛

∑

𝑗=0

(𝐴
𝑗
𝐶
𝑗
𝑒
2𝑥
− 𝐴

𝑗
𝐷

𝑗
+ 𝐵

𝑗
𝐶
𝑗
− 𝐵

𝑗
𝐷

𝑗
𝑒
−2𝑥

) 𝜒
(𝑦
𝑗
,𝑦
𝑗+1

)
,

𝑢
2
+

1

2

𝑢
2

𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

V2 −
1

2

V2
𝑥

=

𝑛

∑

𝑗=0

((

3

2

𝐴
2

𝑗
+ 𝐴

𝑗
𝐶
𝑗
) 𝑒

2𝑥

+ (𝐴
𝑗
𝐵
𝑗
− 𝐴

𝑗
𝐷

𝑗
− 𝐵

𝑗
𝐶
𝑗
+ 2𝐶

𝑗
𝐷

𝑗
)

+ (

3

2

𝐵
2

𝑗
+ 𝐵

𝑗
𝐷

𝑗
) 𝑒

−2𝑥
)𝜒

(𝑦
𝑗
,𝑦
𝑗+1

)
,

V𝑢
𝑥
=

𝑛

∑

𝑗=0

(𝐴
𝑗
𝐶
𝑗
𝑒
2𝑥
− 𝐶

𝑗
𝐵
𝑗
+ 𝐷

𝑗
𝐴

𝑗
− 𝐵

𝑗
𝐷

𝑗
𝑒
−2𝑥

) 𝜒
(𝑦
𝑗
,𝑦
𝑗+1

)
,

V2 +
1

2

V2
𝑥
+ 𝑢

𝑥
V
𝑥
+

1

2

𝑢
2
−

1

2

𝑢
2

𝑥

=

𝑛

∑

𝑗=0

((

3

2

𝐶
2

𝑗
+ 𝐴

𝑗
𝐶
𝑗
) 𝑒

2𝑥

+ (𝐶
𝑗
𝐷

𝑗
− 𝐶

𝑗
𝐵
𝑗
− 𝐷

𝑗
𝐴

𝑗
+ 2𝐴

𝑗
𝐵
𝑗
)

+ (

3

2

𝐷
2

𝑗
+ 𝐷

𝑗
𝐵
𝑗
) 𝑒

−2𝑥
)𝜒

(𝑦
𝑗
,𝑦
𝑗+1

)
.

(117)

We set

𝑘
𝑖𝑗
= {

−1 if 𝑖 ≤ 𝑗,

1 otherwise.
(118)

By inserting (117) into (110), we get

𝑃
1,𝑖
=

1

2

𝑛

∑

𝑗=0

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

× (𝐴
𝑗
𝐶
𝑗
𝑒
2𝑥
− 𝐴

𝑗
𝐷

𝑗
+ 𝐵

𝑗
𝐶
𝑗
− 𝐵

𝑗
𝐷

𝑗
𝑒
−2𝑥

) 𝑑𝑥,

𝑃
2,𝑖
=

1

2

𝑛

∑

𝑗=0

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

((

3

2

𝐴
2

𝑗
+ 𝐴

𝑗
𝐶
𝑗
) 𝑒

2𝑥

+ (𝐴
𝑗
𝐵
𝑗
− 𝐴

𝑗
𝐷

𝑗

−𝐵
𝑗
𝐶
𝑗
+ 2𝐶

𝑗
𝐷

𝑗
)

+ (

3

2

𝐵
2

𝑗
+ 𝐵

𝑗
𝐷

𝑗
) 𝑒

−2𝑥
)𝑑𝑥,

𝑃
3,𝑖
=

1

2

𝑛

∑

𝑗=0

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

× (𝐴
𝑗
𝐶
𝑗
𝑒
2𝑥
− 𝐶

𝑗
𝐵
𝑗
+ 𝐷

𝑗
𝐴

𝑗
− 𝐵

𝑗
𝐷

𝑗
𝑒
−2𝑥

) 𝑑𝑥,

𝑃
4,𝑖
=

1

2

𝑛

∑

𝑗=0

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

× ((

3

2

𝐶
2

𝑗
+ 𝐴

𝑗
𝐶
𝑗
) 𝑒

2𝑥

+ (𝐶
𝑗
𝐷

𝑗
− 𝐶

𝑗
𝐵
𝑗
− 𝐷

𝑗
𝐴

𝑗
+ 2𝐴

𝑗
𝐵
𝑗
)

+ (

3

2

𝐷
2

𝑗
+ 𝐷

𝑗
𝐵
𝑗
) 𝑒

−2𝑥
) .

(119)

It follows from (112) and (114) that

𝐴
2

𝑗
= [

𝑒
−𝑦
𝑗

2

(

𝑢
𝑗

cosh (𝛿𝑦
𝑗
)

+

𝛿𝑢
𝑗

sinh (𝛿𝑦
𝑗
)

)]

2

=

𝑒
−2𝑦
𝑗

sinh2 (2𝛿𝑦
𝑗
)

[𝑢
2

𝑗
sinh2 (𝛿𝑦

𝑗
)

+ 2𝑢
𝑗
𝛿𝑢

𝑗
sinh (𝛿𝑦

𝑗
) cosh (𝛿𝑦

𝑗
)

+𝛿𝑢
2

𝑗
cosh2 (𝛿𝑦

𝑗
)]

=

𝑒
−2𝑦
𝑗

4 sinh (2𝛿𝑦
𝑗
)

[𝛿𝐻
1𝑗
+ 4𝑢

𝑗
𝛿𝑢

𝑗
] ,

(120)

𝐴
𝑗
𝐵
𝑗
=

𝑒
−𝑦
𝑗

2

(

𝑢
𝑗

cosh (𝛿𝑦
𝑗
)

+

𝛿𝑢
𝑗

sinh (𝛿𝑦
𝑗
)

)

⋅

𝑒
𝑦
𝑗

2

(

𝑢
𝑗

cosh (𝛿𝑦
𝑗
)

−

𝛿𝑢
𝑗

sinh (𝛿𝑦
𝑗
)

)
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=

1

4 sinh (2𝛿𝑦
𝑗
)

[2𝑢
2

𝑗
tanh (𝛿𝑦

𝑗
) − 2𝛿𝑢

2

𝑗
coth (𝛿𝑦

𝑗
)]

=

1

4 sinh (2𝛿𝑦
𝑗
)

[4𝑢
2

𝑗
tanh (𝛿𝑦

𝑗
) − 𝛿𝐻

1𝑗
] ,

(121)

𝐴
𝑗
𝐶
𝑗
=

𝑒
−𝑦
𝑗

2

(

𝑢
𝑗

cosh (𝛿𝑦
𝑗
)

+

𝛿𝑢
𝑗

sinh (𝛿𝑦
𝑗
)

)

⋅

𝑒
−𝑦
𝑗

2

(

V
𝑗

cosh (𝛿𝑦
𝑗
)

+

𝛿V
𝑗

sinh (𝛿𝑦
𝑗
)

)

=

𝑒
−2𝑦
𝑗

2 sinh (2𝛿𝑦
𝑗
)

[𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
) + 𝛿𝑢

𝑗
V
𝑗

+𝛿V
𝑗
𝑢
𝑗
+ 𝛿𝑢

𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] ,

(122)

𝐴
𝑗
𝐷

𝑗
=

𝑒
−𝑦
𝑗

2

(

𝑢
𝑗

cosh (𝛿𝑦
𝑗
)

+

𝛿𝑢
𝑗

sinh (𝛿𝑦
𝑗
)

)

⋅

𝑒
𝑦
𝑗

2

(

V
𝑗

cosh (𝛿𝑦
𝑗
)

−

𝛿V
𝑗

sinh (𝛿𝑦
𝑗
)

)

=

1

2 sinh (2𝛿𝑦
𝑗
)

[𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
) + 𝛿𝑢

𝑗
V
𝑗

−𝛿V
𝑗
𝑢
𝑗
− 𝛿𝑢

𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] ,

(123)

𝐵
𝑗
𝐶
𝑗
=

𝑒
𝑦
𝑗

2

(

𝑢
𝑗

cosh (𝛿𝑦
𝑗
)

−

𝛿𝑢
𝑗

sinh (𝛿𝑦
𝑗
)

)

⋅

𝑒
−𝑦
𝑗

2

(

V
𝑗

cosh (𝛿𝑦
𝑗
)

+

𝛿V
𝑗

sinh (𝛿𝑦
𝑗
)

)

=

1

2 sinh (2𝛿𝑦
𝑗
)

[𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
) + 𝛿V

𝑗
𝑢
𝑗

−𝛿𝑢
𝑗
V
𝑗
− 𝛿𝑢

𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] ,

(124)

𝐵
𝑗
𝐷

𝑗
=

𝑒
𝑦
𝑗

2

(

𝑢
𝑗

cosh (𝛿𝑦
𝑗
)

−

𝛿𝑢
𝑗

sinh (𝛿𝑦
𝑗
)

)

⋅

𝑒
𝑦
𝑗

2

(

V
𝑗

cosh (𝛿𝑦
𝑗
)

−

𝛿V
𝑗

sinh (𝛿𝑦
𝑗
)

)

=

𝑒
2𝑦
𝑗

2 sinh (2𝛿𝑦
𝑗
)

[𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
) − 𝛿𝑢

𝑗
V
𝑗

−𝛿V
𝑗
𝑢
𝑗
+ 𝛿𝑢

𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] ,

(125)

𝐵
2

𝑗
= [

𝑒
𝑦
𝑗

2

(

𝑢
𝑗

cosh (𝛿𝑦
𝑗
)

−

𝛿𝑢
𝑗

sinh (𝛿𝑦
𝑗
)

)]

2

=

𝑒
2𝑦
𝑗

4 sinh (2𝛿𝑦
𝑗
)

[𝛿𝐻
1𝑗
− 4𝑢

𝑗
𝛿𝑢

𝑗
] .

(126)

Thus, from (120)–(126), we can obtain that

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

𝐴
2

𝑗
𝑒
2𝑥
𝑑𝑥

=

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

2 (2 + 𝑘
𝑖𝑗
) sinh (2𝛿𝑦

𝑗
)

sinh ((2 + 𝑘
𝑖𝑗
) 𝛿𝑦

𝑗
)

× [𝛿𝐻
1𝑗
+ 4𝑢

𝑗
𝛿𝑢

𝑗
] ,

(127)

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

𝐴
𝑗
𝐶
𝑗
𝑒
2𝑥
𝑑𝑥

=

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

(2 + 𝑘
𝑖𝑗
) sinh (2𝛿𝑦

𝑗
)

sinh ((2 + 𝑘
𝑖𝑗
) 𝛿𝑦

𝑗
)

⋅ [𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
) + 𝛿𝑢

𝑗
V
𝑗
+ 𝛿V

𝑗
𝑢
𝑗

+𝛿𝑢
𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] ,

(128)

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

𝐴
𝑗
𝐵
𝑗
𝑑𝑥

=

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

2 sinh (2𝛿𝑦
𝑗
)

sinh (𝛿𝑦
𝑗
)

× [4𝑢
2

𝑗
tanh (𝛿𝑦

𝑗
) − 𝛿𝐻

1𝑗
] ,

(129)

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

𝐴
𝑗
𝐷

𝑗
𝑑𝑥

=

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

sinh (2𝛿𝑦
𝑗
)

sinh (𝛿𝑦
𝑗
)

⋅ [𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
)+𝛿𝑢

𝑗
V
𝑗
− 𝛿V

𝑗
𝑢
𝑗
− 𝛿𝑢

𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] ,

(130)

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

𝐵
𝑗
𝐶
𝑗
𝑑𝑥

=

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

sinh (2𝛿𝑦
𝑗
)

sinh (𝛿𝑦
𝑗
)

⋅ [𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
)+𝛿V

𝑗
𝑢
𝑗
− 𝛿𝑢

𝑗
V
𝑗
− 𝛿𝑢

𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] ,

(131)
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∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

𝐶
𝑗
𝐷

𝑗
𝑑𝑥

=

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

2 sinh (2𝛿𝑦
𝑗
)

sinh (𝛿𝑦
𝑗
) [4V2

𝑗
tanh (𝛿𝑦

𝑗
) − 𝛿𝐻

2𝑗
] ,

(132)

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

𝐵
2

𝑗
𝑒
−2𝑥

𝑑𝑥

=

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

2 (𝑘
𝑖𝑗
− 2) sinh (2𝛿𝑦

𝑗
)

sinh ((𝑘
𝑖𝑗
− 2) 𝛿𝑦

𝑗
)

× [𝛿𝐻
1𝑗
− 4𝑢

𝑗
𝛿𝑢

𝑗
] ,

(133)

∫

𝑦
𝑗+1

𝑦
𝑗

𝑒
−𝑘
𝑖𝑗
(𝑦
𝑖
−𝑥)

𝐵
𝑗
𝐷

𝑗
𝑒
−2𝑥

𝑑𝑥

=

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

(𝑘
𝑖𝑗
− 2) sinh (2𝛿𝑦

𝑗
)

sinh ((𝑘
𝑖𝑗
− 2) 𝛿𝑦

𝑗
)

⋅ [𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
)−𝛿𝑢

𝑗
V
𝑗
− 𝛿V

𝑗
𝑢
𝑗
+ 𝛿𝑢

𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] .

(134)

It thus follows from (127)–(134) that

𝑃
1,𝑖
=

𝑛

∑

𝑗=0

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

6 cosh (𝛿𝑦
𝑗
)

[2𝑘
𝑖𝑗
𝑢
𝑗
V
𝑗
sinh2 (𝛿𝑦

𝑗
) tanh (𝛿𝑦

𝑗
)

+ 2𝑘
𝑖𝑗
𝛿𝑢

𝑗
𝛿V

𝑗
sinh (𝛿𝑦

𝑗
) cosh (𝛿𝑦

𝑗
)

+ 2𝛿𝑢
𝑗
V
𝑗
cosh2 (𝛿𝑦

𝑗
)

+ 2𝛿V
𝑗
𝑢
𝑗
cosh2 (𝛿𝑦

𝑗
)

+ 𝛿𝑢
𝑗
V
𝑗
+ 𝛿V

𝑗
𝑢
𝑗
− 3𝑢

𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
)

+3𝛿𝑢
𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] ,

𝑃
2,𝑖
=

𝑛

∑

𝑗=0

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

4 cosh (𝛿𝑦
𝑗
)

[𝛿𝐻
1𝑗
cosh2 (𝛿𝑦

𝑗
)

+ 4𝑘
𝑖𝑗
𝑢
𝑗
𝛿𝑢

𝑗
sinh2 (𝛿𝑦

𝑗
)

+ 2𝑢
2

𝑗
tanh (𝛿𝑦

𝑗
) + 4V2

𝑗
tanh (𝛿𝑦

𝑗
)

− 𝛿𝐻
2𝑗
−

4

3

𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
)

+

8

3

𝛿𝑢
𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)

+

4

3

𝑢
𝑗
V
𝑗
cosh (𝛿𝑦

𝑗
) sinh (𝛿𝑦

𝑗
)

+

4

3

𝛿𝑢
𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
) cosh2 (𝛿𝑦

𝑗
)

+

4

3

𝑘
𝑖𝑗
𝛿𝑢

𝑗
V
𝑗
sinh2 (𝛿𝑦

𝑗
)

+

4

3

𝑘
𝑖𝑗
𝛿V

𝑗
𝑢
𝑗
sinh2 (𝛿𝑦

𝑗
)] .

(135)

We can also write 𝑃
1,𝑖
and 𝑃

2,𝑖
as

𝑃
1,𝑖
=

𝑛

∑

𝑗=0

𝑃
1,𝑖𝑗
, 𝑃

2,𝑖
=

𝑛

∑

𝑗=0

𝑃
2,𝑖𝑗
, (136)

where

𝑃
1,𝑖𝑗

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

6

𝑢
1
V
1
𝑒
𝑦
1
−𝑦
𝑖
, for 𝑗 = 0,

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

6 cosh (𝛿𝑦
𝑗
)

× [2𝑘
𝑖𝑗
𝑢
𝑗
V
𝑗
sinh2 (𝛿𝑦

𝑗
) tanh (𝛿𝑦

𝑗
)

+2𝑘
𝑖𝑗
𝛿𝑢

𝑗
𝛿V

𝑗
sinh (𝛿𝑦

𝑗
) cosh (𝛿𝑦

𝑗
)

+2𝛿𝑢
𝑗
V
𝑗
cosh2 (𝛿𝑦

𝑗
)

+2𝛿V
𝑗
𝑢
𝑗
cosh2 (𝛿𝑦

𝑗
) + 𝛿𝑢

𝑗
V
𝑗

+𝛿V
𝑗
𝑢
𝑗
− 3𝑢

𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
)

+3𝛿𝑢
𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)] ,

for 𝑗 = 1, . . . , 𝑛 − 1,

−

1

6

𝑢
𝑛
V
𝑛
𝑒
−𝑦
𝑛
+𝑦
𝑖 for 𝑗 = 𝑛,

𝑃
2,𝑖𝑗

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

4

𝑢
2

1
𝑒
𝑦
1
−𝑦
𝑖
+

1

6

𝑢
1
V
1
𝑒
𝑦
1
−𝑦
𝑖
, for 𝑗 = 0,

𝑒
−𝑘
𝑖𝑗
𝑦
𝑖
⋅ 𝑒

𝑘
𝑖𝑗
𝑦
𝑗

4 cosh (𝛿𝑦
𝑗
)

× [𝛿𝐻
1𝑗
cosh2 (𝛿𝑦

𝑗
)

+4𝑘
𝑖𝑗
𝑢
𝑗
𝛿𝑢

𝑗
sinh2 (𝛿𝑦

𝑗
) + 2𝑢

2

𝑗
tanh (𝛿𝑦

𝑗
)

+4V2
𝑗
tanh (𝛿𝑦

𝑗
) − 𝛿𝐻

2𝑗
−

4

3

𝑢
𝑗
V
𝑗
tanh (𝛿𝑦

𝑗
)

+

8

3

𝛿𝑢
𝑗
𝛿V

𝑗
coth (𝛿𝑦

𝑗
)

+

4

3

𝑢
𝑗
V
𝑗
cosh (𝛿𝑦

𝑗
) sinh (𝛿𝑦

𝑗
)

+

4

3

𝛿𝑢
𝑗
𝛿V

𝑗
⋅ coth (𝛿𝑦

𝑗
) cosh2 (𝛿𝑦

𝑗
)

+

4

3

𝑘
𝑖𝑗
𝛿𝑢

𝑗
V
𝑗
sinh2 (𝛿𝑦

𝑗
)

+

4

3

𝑘
𝑖𝑗
𝛿V

𝑗
𝑢
𝑗
sinh2 (𝛿𝑦

𝑗
)] ,

for 𝑗 = 1, . . . , 𝑛 − 1,

1

4

𝑢
2

𝑛
𝑒
−𝑦
𝑛
+𝑦
𝑖
+

1

6

𝑢
𝑛
V
𝑛
𝑒
−𝑦
𝑛
+𝑦
𝑖
,

for 𝑗 = 𝑛.

(137)
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The terms 𝑃
3,𝑖
, 𝑃

4,𝑖
, and 𝑃

𝑘,𝑖𝑥
(𝑘 = 1, 2, 3, 4) can be computed

in the same way and we have

𝑃
1,𝑖𝑥

= −

𝑛

∑

𝑗=0

𝑘
𝑖𝑗
𝑃
1,𝑖𝑗
, 𝑃

2,𝑖𝑥
= −

𝑛

∑

𝑗=0

𝑘
𝑖𝑗
𝑃
2,𝑖𝑗
,

𝑃
3,𝑖𝑥

= −

𝑛

∑

𝑗=0

𝑘
𝑖𝑗
𝑃
3,𝑖𝑗
, 𝑃

4,𝑖𝑥
= −

𝑛

∑

𝑗=0

𝑘
𝑖𝑗
𝑃
4,𝑖𝑗
.

(138)

The result can be summarized in the following theorem.

Theorem 12. Assume that 𝑦
𝑖
= 𝜉

𝑖
, 𝑧

𝑖
= (𝑢

𝑖
, V

𝑖
) = (𝑢(𝜉

𝑖
), V(𝜉

𝑖
))

and 𝐻
𝑖
= ∫

𝜉
𝑖

−∞
(𝑢

2
+ 𝑢

2

𝑥
+ V2 + V2

𝑥
)𝑑𝑥 for 𝑖 = 1, . . . , 𝑛 with

a multipeakon initial data 𝑧 = (𝑢, V) as given by (87). Then,
there exists a global solution (𝑦

𝑖
, 𝑢

𝑖
, V

𝑖
, 𝐻

𝑖
) of (109), (136),

and (138) with initial data (𝑦
𝑖
, 𝑢

𝑖
, V

𝑖
, 𝐻

𝑖
). On each interval

[𝑦
𝑖
(𝑡), 𝑦

𝑖+1
(𝑡)], one defines 𝑧(𝑡, 𝑥) = (𝑢, V)(𝑡, 𝑥) as the solution

of the Dirichlet problem 𝑧 − 𝑧
𝑥𝑥

= 0 with boundary conditions
𝑧(𝑡, 𝑦

𝑖
(𝑡)) = 𝑧

𝑖
(𝑡) and 𝑧(𝑡, 𝑦

𝑖+1
(𝑡)) = 𝑧

𝑖+1
(𝑡) for each time

𝑡. Thus 𝑧 = (𝑢, V) is a conservative solution of the modified
coupled two-component Camassa-Holm system, which is the
multipeakon conservative solution.
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