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A main concern in applications of game theory is how to effectively select a Nash equilibrium, especially a pure-strategy Nash
equilibrium for a finite 𝑛-person game in normal form.This selection process often requires the computation of all Nash equilibria.
It is well known that determining whether a finite game has a pure-strategy Nash equilibrium is an NP-hard problem and it is
difficult to solve by naive enumeration algorithms. By exploiting the properties of pure strategy and multilinear terms in the payoff
functions, this paper formulates a newmixed 0-1 linear program for computing all pure-strategyNash equilibria. To our knowledge,
it is the first method to formulate amixed 0-1 linear programming for pure-strategy Nash equilibria and it may work well for similar
problems. Numerical results show that the approach is effective and this method can be easily distributed in a distributed way.

1. Introduction

Nash equilibrium, as defined in [7], plays a fundamental role
in the development of game theory and its diverse applica-
tions in areas such as biology, computer science, economics,
and management and social sciences. In these applications, a
main concern is how to effectively select a Nash equilibrium,
especially a pure-strategy Nash equilibrium for a finite 𝑛-
person game in normal form. To tackle this problem, many
contributions have been made in the literature.

In recent years, most related work is focused on finding
mixed-strategy Nash equilibrium. In terms of computational
complexity, it was shown in [1, 2] that the problem of finding
onemixed-strategyNash equilibrium is PPAD-complete.The
firstmethod for computingNash equilibriumof a two-person
game was developed in [3] and was extended to computing

Nash equilibria of 𝑛-person games independently in [4, 5].
The existence of Nash equilibrium was established from an
application of Brouwer and Kakutani fixed-point theorems in
[6, 7]. To approximate fixed points of continuous mappings,
simplicial methods were originated in [8] and substantially
developed in the literature such as [9–15]. Simplicial methods
were adapted for computing Nash equilibria in [16]. Several
more advanced simplicial methods for computing Nash
equilibria were presented in [17–19]. A pivoting procedure
was proposed in [20, 21] for computing the Nash equilibria
of two-person games selected by the linear tracing procedure
proposed in [22]. This procedure was extended to 𝑛-person
games in [23]. A survey of the literature on the computation
of Nash equilibria before 1996 can be found in [24] and
on computing equilibria for two-person games in [25]. By
exploiting differentiability of the problem, several methods
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have been developed for computing Nash equilibria in the
literature. A smooth logarithmic tracing procedure with
two parameters was proposed in [26]. It was proved in
[27] that the procedure converges to a Nash equilibrium
as two parameters approach zero one after another. The
linear tracing procedure together with well-chosen nonlinear
transformations of variables of the system of the optimality
conditions leads to a differentiable homotopy method in
[28]. As a result of Kohlberg and Mertens’ structure theorem
[29], the global Newton method in [30] was combined
with the homotopy method in [11] to obtain an algorithm
for computing Nash equilibrium. A survey on homotopy
methods for computing Nash equilibrium is referred to in
[31]. Some new related work has been developed in the
literature [32–36].

All the algorithms mentioned above can only find a
sample Nash equilibrium. Unfortunately, in practice, a game
can havemanyNash equilibria andwhich equilibrium should
be effectively selected to play is a very challenging issue. The
equilibrium selection process often requires the computation
of all Nash equilibria of a game. To address this issue, several
algorithms have been developed in the literature. A path-
following algorithm was described in [37] to compute all
Nash equilibria of a bimatrix game. A homotopy algorithm
was presented in [38] to find all Nash equilibria of an 𝑛-
person game. Both of these algorithms are based on systems
of polynomial equations. A survey on polyhedral homotopy
continuation methods for all Nash equilibria can be found in
[39]. In [40], a mixed-integer program (MIP) was formulated
to find Nash equilibria of a bimatrix game, which can
be employed to compute all Nash equilibria of a bimatrix
game. Recently, by enumerating vertices of polyhedrons, two
algorithms were introduced in [41] for computing all Nash
equilibria of a bimatrix game.

As a special example of the mixed-strategy Nash equi-
librium, the pure-strategy Nash equilibrium has gotten more
attention recently. The work of [42] shows that determining
whether a game has a pure-strategy Nash equilibrium is NP-
hard. The work of [2] presents a novel generic mapping
between graphical games and Markov random fields so
that pure Nash equilibria in the former can be found by
statistical inference on the latter. Based on a new description
format of game-stimulate-response pair, the work of [43] puts
forward a constraints’ satisfaction-based algorithm on this
data structure to compute pureNash equilibriumof graphical
game. The work of [44] develops an efficient algorithm,
which is called ValuedNash Propagation, for computing pure
strategy Nash equilibria that satisfy various criteria (such as
the utilitarian or Nash-Bernoulli social welfare functions) in
games with sparse interaction structure. Some other related
work can be found in [2, 45, 46].

As a special case of integer programming, the mixed 0-
1 linear programming, in which unknowns are binary, has
many applications in operation research. Many classic prob-
lems, such as the knapsack problem, facility location problem,
production planning problem, and time tabling problem,
can be formulated as a mixed 0-1 linear programming. The
research of these problemswhich has a long history andmany
commercial softwares, most of which are based on branch

and bound method, cutting plane method, or branch and cut
method, could solve this mixed 0-1 linear programming well.

This paper studies the computation of all pure-strategy
Nash equilibria of a finite 𝑛-person game in normal form.
To solve this problem, we formulate a mixed 0-1 linear pro-
gramming by exploiting the properties of pure strategy and
multilinear forms in the payoff functions. An enumeration
of all the feasible solutions of the mixed 0-1 linear program
yields all pure-strategy Nash equilibria. Numerical results
show that the method is promising. To our knowledge, it is
the firstmethod to formulate amixed 0-1 linear programming
for pure-strategy Nash equilibria and this method may work
well for other similar problems. Furthermore, as an advantage
of the formulation, one can apply distributed computation to
dramatically speed up the computation.

The rest of the paper is organized as follows. Section 2
formulates a mixed 0-1 linear program for computing all
pure-strategy equilibria. Section 3 presents numerical results
to show that the approach is effective.The paper is concluded
with some remarks in Section 4.

2. A Mixed 0-1 Linear Programming
Formulation

In this section a mixed 0-1 linear programming will be
formulated to all pure-strategy Nash equilibria of a finite
game.

Let𝑁 = {1, 2, . . . , 𝑛} be the set of players. The pure strat-
egy set of player 𝑖 ∈ 𝑁 is denoted by 𝑆𝑖 = {𝑠𝑖

𝑗
| 𝑗 ∈ 𝑀

𝑖
} with

𝑀
𝑖
= {1, 2, . . . , 𝑚

𝑖
}. Given 𝑆𝑖 with 𝑖 ∈ 𝑁, the set of all pure

strategy profiles is 𝑆 = ∏𝑛
𝑖=1
𝑆
𝑖. We denote the payoff function

of player 𝑖 ∈ 𝑁 by 𝑢𝑖 : 𝑆 → 𝑅. For 𝑖 ∈ 𝑁, let 𝑆−𝑖 = ∏
𝑘∈𝑁\{𝑖}

𝑆
𝑘.

Then, 𝑠 = (𝑠1
𝑗
1

, 𝑠
2

𝑗
2

, . . . , 𝑠
𝑛

𝑗
𝑛

) ∈ 𝑆 can be rewritten as 𝑠 = (𝑠𝑖
𝑗
𝑖

, 𝑠
−𝑖
)

with 𝑠−𝑖 = (𝑠1
𝑗
1

, . . . , 𝑠
𝑖−1

𝑗
𝑖−1

, 𝑠
𝑖+1

𝑗
𝑖+1

, . . . , 𝑠
𝑛

𝑗
𝑛

) ∈ 𝑆
−𝑖. A mixed strategy

of player 𝑖 is a probability distribution on 𝑆𝑖 denoted by 𝑥𝑖 =
(𝑥
𝑖

1
, 𝑥
𝑖

2
, . . . , 𝑥

𝑖

𝑚
𝑖

). Let 𝑋𝑖 be the set of all mixed strategies of
player 𝑖. Then, 𝑋𝑖 = {𝑥𝑖 = (𝑥𝑖

1
, 𝑥
𝑖

2
, . . . , 𝑥

𝑖

𝑚
𝑖

) ∈ 𝑅
𝑚
𝑖

+
| ∑
𝑚
𝑖

𝑗=1
𝑥
𝑖

𝑗
=

1}. Thus, for 𝑥𝑖 ∈ 𝑋𝑖, the probability assigned to pure strategy
𝑠
𝑖

𝑗
∈ 𝑆
𝑖 is equal to 𝑥𝑖

𝑗
. Given 𝑋𝑖 with 𝑖 ∈ 𝑁, the set of all

mixed strategy profiles is 𝑋 = ∏𝑛
𝑖=1
𝑋
𝑖. For 𝑖 ∈ 𝑁, let 𝑋−𝑖 =

∏
𝑘∈𝑁\{𝑖}

𝑋
𝑘. Then, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑋 can be rewritten

as 𝑥 = (𝑥𝑖, 𝑥−𝑖) with 𝑥−𝑖 = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) ∈
𝑋
−𝑖. If 𝑥 ∈ 𝑋 is played, then the probability that a pure

strategy profile 𝑠 = (𝑠1
𝑗
1

, 𝑠
2

𝑗
2

, . . . , 𝑠
𝑛

𝑗
𝑛

) ∈ 𝑆 occurs is ∏𝑛
𝑖=1
𝑥
𝑖

𝑗
𝑖

.
Therefore, for 𝑥 ∈ 𝑋, the expected payoff of player 𝑖 is given
by 𝑢𝑖(𝑥) = ∑

𝑠∈𝑆
𝑢
𝑖
(𝑠)∏
𝑛

𝑖=1
𝑥
𝑖

𝑗
𝑖

. With these notations, a finite
𝑛-person game in normal form can be represented as Γ =
⟨𝑁, 𝑆, {𝑢

𝑖
}
𝑖∈𝑁
⟩ or Γ = ⟨𝑁,𝑋, {𝑢𝑖}

𝑖∈𝑁
⟩.

Definition 1 (Nash, [7]). A mixed strategy profile 𝑥∗ ∈ 𝑋 is
a Nash equilibrium of game Γ if 𝑢𝑖(𝑥∗) ≥ 𝑢𝑖(𝑥𝑖, 𝑥∗−𝑖) for all
𝑖 ∈ 𝑁 and 𝑥𝑖 ∈ 𝑋𝑖.

With this definition, an application of the optimality
condition leads to the fact that 𝑥∗ is a Nash equilibrium if
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and only if there are 𝜆∗ and 𝜇∗ together with 𝑥∗ satisfying
the system of

𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑥
−𝑖
) + 𝜆
𝑖

𝑗
− 𝜇
𝑖
= 0,

𝑒
𝑖⊤
𝑥
𝑖
− 1 = 0,

𝑥
𝑖

𝑗
𝜆
𝑖

𝑗
= 0, 𝑥

𝑖

𝑗
≥ 0,

𝜆
𝑖

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑚

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑒𝑖 = (1, 1, . . . , 1)⊤ ∈ 𝑅𝑚𝑖 .

Lemma 2. Let 𝛽 be a given positive number such that

𝛽 ≥ max
𝑖∈𝑁

{max
𝑠∈𝑆

𝑢
𝑖
(𝑠) −min

𝑠∈𝑆

𝑢
𝑖
(𝑠)} . (2)

Then, (1) is equivalent to

𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑥
−𝑖
) + 𝜆
𝑖

𝑗
− 𝜇
𝑖
= 0,

𝑒
𝑖⊤
𝑥
𝑖
− 1 = 0,

𝑥
𝑖

𝑗
≤ V𝑖
𝑗
,

𝜆
𝑖

𝑗
≤ 𝛽 (1 − V𝑖

𝑗
) , V𝑖

𝑗
∈ {0, 1} ,

𝑥
𝑖

𝑗
≥ 0, 𝜆

𝑖

𝑗
≥ 0,

𝑗 = 1, 2, . . . , 𝑚
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(3)

Proof. Let (𝑥, 𝜆, V) be a solution of the system (3). Suppose
that V𝑖

𝑗
= 0 in (3). Then, 𝑥𝑖

𝑗
= 0 and 𝜆𝑖

𝑗
≤ 𝛽. Thus, 𝑥𝑖

𝑗
𝜆
𝑖

𝑗
= 0.

Suppose that V𝑖
𝑗
= 1 in (3). Then, 𝜆𝑖

𝑗
= 0. Thus, 𝑥𝑖

𝑗
𝜆
𝑖

𝑗
= 0.

Therefore, (𝑥, 𝜆) is a solution of the system (1).
Let (𝑥, 𝜆)be a solution of the system (1). Since∑𝑚𝑖

𝑗=1
𝑥
𝑖

𝑗
= 1,

there must exist some 𝑘 ∈ 𝑀
𝑖
such that 𝑥𝑖

𝑘
> 0. From 𝑥𝑖

𝑘
𝜆
𝑖

𝑘
=

0, we get that 𝜆𝑖
𝑘
= 0. Thus, 𝜇

𝑖
= 𝑢
𝑖
(𝑠
𝑖

𝑘
, 𝑥
−𝑖
) ≤ max

𝑠∈𝑆
𝑢
𝑖
(𝑠).

Therefore, for any 𝑗 ∈ 𝑀
𝑖
, we obtain from the system (1) that

𝜆
𝑖

𝑗
= 𝜇
𝑖
− 𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑥
−𝑖
) ≤ max
𝑠∈𝑆

𝑢
𝑖
(𝑠) −min

𝑠∈𝑆

𝑢
𝑖
(𝑠) ≤ 𝛽. (4)

Suppose that 𝑥𝑖
𝑗
= 0. Let V𝑖

𝑗
= 0. Thus,

𝑥
𝑖

𝑗
= 0 ≤ V𝑖

𝑗
,

𝜆
𝑖

𝑗
≤ 𝛽 (1 − V𝑖

𝑗
) = 𝛽.

(5)

Suppose that 𝑥𝑖
𝑗
> 0. Let V𝑖

𝑗
= 1. Thus,

𝑥
𝑖

𝑗
≤ V𝑖
𝑗
= 1,

𝜆
𝑖

𝑗
= 0 ≤ 𝛽 (1 − V𝑖

𝑗
) = 0.

(6)

Therefore, (𝑥, 𝜆, V) is a solution of the system (3). This
completes the proof.

This lemma implies that finding a pure-strategy Nash
equilibrium is equivalent to finding a solution to the system
of

𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑥
−𝑖
) + 𝜆
𝑖

𝑗
− 𝜇
𝑖
= 0,

𝑒
𝑖⊤
𝑥
𝑖
− 1 = 0,

𝜆
𝑖

𝑗
≤ 𝛽 (1 − 𝑥

𝑖

𝑗
) , 𝑥

𝑖

𝑗
∈ {0, 1} ,

𝜆
𝑖

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑚

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(7)

For any 𝑠𝑖
𝑗
∈ 𝑆
𝑖, one can obtain from 𝑢𝑖(𝑥) that

𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑥
−𝑖
) = ∑

𝑠
−𝑖
=(𝑠
1

𝑗1
,...,𝑠
𝑖−1

𝑗𝑖−1
,𝑠
𝑖+1

𝑗𝑖+1
,...,𝑠
𝑛

𝑗𝑛
)∈𝑆
−𝑖

𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑠
−𝑖
)∏

𝑘 ̸= 𝑖

𝑥
𝑘

𝑗
𝑘

.

(8)

Let 𝑦(𝑠−𝑖) = ∏
𝑘 ̸= 𝑖
𝑥
𝑘

𝑗
𝑘

for 𝑠−𝑖 = (𝑠1
𝑗
1

, . . . , 𝑠
𝑖−1

𝑗
𝑖−1

, 𝑠
𝑖+1

𝑗
𝑖+1

, . . . , 𝑠
𝑛

𝑗
𝑛

) ∈

𝑆
−𝑖. Then,

𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑥
−𝑖
) = ∑

𝑠
−𝑖
=(𝑠
1

𝑗1
,...,𝑠
𝑖−1

𝑗𝑖−1
,𝑠
𝑖+1

𝑗𝑖+1
,...,𝑠
𝑛

𝑗𝑛
)∈𝑆
−𝑖

𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑠
−𝑖
) 𝑦 (𝑠
−𝑖
) .

(9)

Substituting this into (7) yields

∑

𝑠
−𝑖
∈𝑆
−𝑖

𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑠
−𝑖
) 𝑦 (𝑠
−𝑖
) + 𝜆
𝑖

𝑗
− 𝜇
𝑖
= 0,

𝑒
𝑖⊤
𝑥
𝑖
− 1 = 0,

𝜆
𝑖

𝑗
≤ 𝛽 (1 − 𝑥

𝑖

𝑗
) , 𝑥

𝑖

𝑗
∈ {0, 1} ,

𝜆
𝑖

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑚

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑦 (𝑠
−𝑖
) = ∏

𝑘 ̸= 𝑖

𝑥
𝑘

𝑗
𝑘

, 𝑠
−𝑖
∈ 𝑆
−𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(10)

Observe that 𝑦(𝑠−𝑖) ∈ {0, 1} since 𝑥𝑖
𝑗
∈ {0, 1}. This property

leads to the following result.

Lemma 3. For 𝑖 ∈ 𝑁 and 𝑠−𝑖 = (𝑠1
𝑗
1

, . . . , 𝑠
𝑖−1

𝑗
𝑖−1

, 𝑠
𝑖+1

𝑗
𝑖+1

, . . . , 𝑠
𝑛

𝑗
𝑛

) ∈

𝑆
−𝑖, the system of

𝑦 (𝑠
−𝑖
) = ∏

𝑘 ̸= 𝑖

𝑥
𝑘

𝑗
𝑘

,

𝑥
𝑘

𝑗
𝑘

∈ {0, 1} , 𝑘 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑖,

(11)

is equivalent to the system of

𝑦 (𝑠
−𝑖
) ≥ ∑

ℎ ̸= 𝑖

𝑥
ℎ

𝑗
ℎ

− (𝑛 − 2) ,

𝑦 (𝑠
−𝑖
) ≤ 𝑥
𝑘

𝑗
𝑘

, 0 ≤ 𝑦 (𝑠
−𝑖
) ,

𝑥
𝑘

𝑗
𝑘

∈ {0, 1} , 𝑘 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑖.

(12)
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Proof. Let (𝑦, 𝑥) be a solution of the system (12). Suppose that
𝑥
𝑘

𝑗
𝑘

= 1, for all 𝑘 ̸= 𝑖. Then,

𝑦 (𝑠
−𝑖
) ≥ ∑

ℎ ̸= 𝑖

𝑥
ℎ

𝑗
ℎ

− (𝑛 − 2) = (𝑛 − 1) − (𝑛 − 2) = 1,

𝑦 (𝑠
−𝑖
) ≤ 𝑥
𝑘

𝑗
𝑘

= 1, 𝑘 ̸= 𝑖.

(13)

Thus, 𝑦(𝑠−𝑖) = ∏
𝑘 ̸= 𝑖
𝑥
𝑘

𝑗
𝑘

= 1.
Suppose that 𝑥𝑘

𝑗
𝑘

= 0, ∃𝑘 ̸= 𝑖. Then,

𝑦 (𝑠
−𝑖
) ≤ 𝑥
𝑘

𝑗
𝑘

= 0, ∃𝑘 ̸= 𝑖, 0 ≤ 𝑦 (𝑠
−𝑖
) . (14)

Thus, 𝑦(𝑠−𝑖) = ∏
𝑘 ̸= 𝑖
𝑥
𝑘

𝑗
𝑘

= 0. Therefore, (𝑦, 𝑥) is a solution of
the system (11).

Let (𝑦, 𝑥) be a solution of the system (11). Suppose that
𝑥
𝑘

𝑗
𝑘

= 1, for all 𝑘 ̸= 𝑖. Then, 𝑦(𝑠−𝑖) = ∏
𝑘 ̸= 𝑖
𝑥
𝑘

𝑗
𝑘

= 1. Thus,

∑

ℎ ̸= 𝑖

𝑥
ℎ

𝑗
ℎ

− (𝑛 − 2) = (𝑛 − 1) − (𝑛 − 2) = 1 ≤ 𝑦 (𝑠
−𝑖
) = 1,

𝑦 (𝑠
−𝑖
) = 1 ≤ 𝑥

𝑘

𝑗
𝑘

= 1, 𝑘 ̸= 𝑖, 0 ≤ 𝑦 (𝑠
−𝑖
) .

(15)

Suppose that 𝑥𝑘
𝑗
𝑘

= 0, ∃𝑘 ̸= 𝑖. Then, 𝑦(𝑠−𝑖) = ∏
𝑘 ̸= 𝑖
𝑥
𝑘

𝑗
𝑘

= 0.
Thus,

∑

ℎ ̸= 𝑖

𝑥
ℎ

𝑗
ℎ

− (𝑛 − 2) ≤ (𝑛 − 2) − (𝑛 − 2) = 𝑦 (𝑠
−𝑖
) = 0,

𝑦 (𝑠
−𝑖
) = 0 ≤ 𝑥

𝑘

𝑗
𝑘

, 𝑘 ̸= 𝑖, 0 ≤ 𝑦 (𝑠
−𝑖
) .

(16)

Therefore, (𝑦, 𝑥) is a solution of the system (12). This com-
pletes the proof.

Replacing 𝑦(𝑠−𝑖) = ∏
𝑘 ̸= 𝑖
𝑥
𝑘

𝑗
𝑘

of the system (10) with the
system (12), we obtain a mixed 0-1 linear program, which is
as follows:

∑

𝑠
−𝑖
∈𝑆
−𝑖

𝑢
𝑖
(𝑠
𝑖

𝑗
, 𝑠
−𝑖
) 𝑦 (𝑠
−𝑖
) + 𝜆
𝑖

𝑗
− 𝜇
𝑖
= 0,

𝑒
𝑖⊤
𝑥
𝑖
− 1 = 0,

𝜆
𝑖

𝑗
≤ 𝛽 (1 − 𝑥

𝑖

𝑗
) ,

𝑥
𝑖

𝑗
∈ {0, 1} ,

𝜆
𝑖

𝑗
≥ 0,

𝑗 = 1, 2, . . . , 𝑚
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑦 (𝑠
−𝑖
) ≥ ∑

ℎ ̸= 𝑖

𝑥
ℎ

𝑗
ℎ

− (𝑛 − 2) ,

𝑦 (𝑠
−𝑖
) ≤ 𝑥
𝑘

𝑗
𝑘

, 𝑘 ̸= 𝑖,

0 ≤ 𝑦 (𝑠
−𝑖
) ,

𝑠
−𝑖
∈ 𝑆
−𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(17)

As a corollary of Lemma 3, we obtain the following result.

Corollary 4. The system (17) is equivalent to the system (7).

The above idea is illustrated in the following example.

Example 5. Consider a three-player game Γ = (𝑁, 𝑆, {𝑢𝑖}
𝑖∈𝑁
),

where𝑁 = {1, 2, 3}, 𝑆𝑖 = {𝑠𝑖
1
, 𝑠
𝑖

2
}, 𝑖 ∈ 𝑁, and {𝑢𝑖}

𝑖∈𝑁
are given

by

𝑠
2

1
𝑠
2

2
𝑠
2

1
𝑠
2

2

𝑠
1

1
(1, 1, 1) (1, 0, 1) (0, 1, 0) (1, 0, 0)

𝑠
1

2
(1, 1, 1) (1, 0, 1) (0, 1, 0) (0, 0, 0)

𝑠
3

1
𝑠
3

2

(18)

Let 𝛽 = 1. The mixed 0-1 linear program for this game is
given by

𝑦 (𝑠
2

1
, 𝑠
3

1
) + 𝑦 (𝑠

2

2
, 𝑠
3

1
) + 𝑦 (𝑠

2

2
, 𝑠
3

2
) + 𝜆
1

1
− 𝜇
1
= 0,

𝑦 (𝑠
2

1
, 𝑠
3

1
) + 𝑦 (𝑠

2

2
, 𝑠
3

1
) + 𝜆
1

2
− 𝜇
1
= 0,

𝑥
1

1
+ 𝑥
1

2
= 1,

𝑦 (𝑠
1

1
, 𝑠
3

1
) + 𝑦 (𝑠

1

2
, 𝑠
3

1
) + 𝑦 (𝑠

1

1
, 𝑠
3

2
) + 𝑦 (𝑠

1

2
, 𝑠
3

2
) + 𝜆
2

1
− 𝜇
2
= 0,

𝜆
2

2
− 𝜇
2
= 0,

𝑥
2

1
+ 𝑥
2

2
= 1,

𝑦 (𝑠
1

1
, 𝑠
2

1
) + 𝑦 (𝑠

1

2
, 𝑠
2

1
) + 𝑦 (𝑠

1

1
, 𝑠
2

2
) + 𝑦 (𝑠

1

2
, 𝑠
2

2
) + 𝜆
3

1
− 𝜇
3
= 0,

𝜆
3

2
− 𝜇
3
= 0,

𝑥
3

1
+ 𝑥
3

2
= 1,

𝜆
𝑖

𝑗
≤ 1 − 𝑥

𝑖

𝑗
, 𝑥
𝑖

𝑗
∈ {0, 1} , 𝜆

𝑖

𝑗
≥ 0,

𝑗 = 1, 2, 𝑖 = 1, 2, 3,

𝑦 (𝑠
2

1
, 𝑠
3

1
) ≥ 𝑥
2

1
+ 𝑥
3

1
− 1, 𝑦 (𝑠

2

1
, 𝑠
3

1
) ≤ 𝑥
2

1
,

𝑦 (𝑠
2

1
, 𝑠
3

1
) ≤ 𝑥
3

1
, 𝑦 (𝑠

2

1
, 𝑠
3

1
) ≥ 0,

𝑦 (𝑠
2

1
, 𝑠
3

2
) ≥ 𝑥
2

1
+ 𝑥
3

2
− 1, 𝑦 (𝑠

2

1
, 𝑠
3

2
) ≤ 𝑥
2

1
,

𝑦 (𝑠
2

1
, 𝑠
3

2
) ≤ 𝑥
3

2
, 𝑦 (𝑠

2

1
, 𝑠
3

2
) ≥ 0,

𝑦 (𝑠
2

2
, 𝑠
3

1
) ≥ 𝑥
2

2
+ 𝑥
3

1
− 1, 𝑦 (𝑠

2

2
, 𝑠
3

1
) ≤ 𝑥
2

2
,

𝑦 (𝑠
2

2
, 𝑠
3

1
) ≤ 𝑥
3

1
, 𝑦 (𝑠

2

2
, 𝑠
3

1
) ≥ 0,

𝑦 (𝑠
2

2
, 𝑠
3

2
) ≥ 𝑥
2

2
+ 𝑥
3

2
− 1, 𝑦 (𝑠

2

2
, 𝑠
3

2
) ≤ 𝑥
2

2
,
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𝑦 (𝑠
2

2
, 𝑠
3

2
) ≤ 𝑥
3

2
, 𝑦 (𝑠

2

2
, 𝑠
3

2
) ≥ 0,

𝑦 (𝑠
1

1
, 𝑠
3

1
) ≥ 𝑥
1

1
+ 𝑥
3

1
− 1, 𝑦 (𝑠

1

1
, 𝑠
3

1
) ≤ 𝑥
1

1
,

𝑦 (𝑠
1

1
, 𝑠
3

1
) ≤ 𝑥
3

1
, 𝑦 (𝑠

1

1
, 𝑠
3

1
) ≥ 0,

𝑦 (𝑠
1

2
, 𝑠
3

1
) ≥ 𝑥
1

2
+ 𝑥
3

1
− 1, 𝑦 (𝑠

1

2
, 𝑠
3

1
) ≤ 𝑥
1

2
,

𝑦 (𝑠
1

2
, 𝑠
3

1
) ≤ 𝑥
3

1
, 𝑦 (𝑠

1

2
, 𝑠
3

1
) ≥ 0,

𝑦 (𝑠
1

1
, 𝑠
3

2
) ≥ 𝑥
1

1
+ 𝑥
3

2
− 1, 𝑦 (𝑠

1

1
, 𝑠
3

2
) ≤ 𝑥
1

1
,

𝑦 (𝑠
1

1
, 𝑠
3

2
) ≤ 𝑥
3

2
, 𝑦 (𝑠

1

1
, 𝑠
3

2
) ≥ 0,

𝑦 (𝑠
1

2
, 𝑠
3

2
) ≥ 𝑥
1

2
+ 𝑥
3

2
− 1, 𝑦 (𝑠

1

2
, 𝑠
3

2
) ≤ 𝑥
1

2
,

𝑦 (𝑠
1

2
, 𝑠
3

2
) ≤ 𝑥
3

2
, 𝑦 (𝑠

1

2
, 𝑠
3

2
) ≥ 0,

𝑦 (𝑠
1

1
, 𝑠
2

1
) ≥ 𝑥
1

1
+ 𝑥
2

1
− 1, 𝑦 (𝑠

1

1
, 𝑠
2

1
) ≤ 𝑥
1

1
,

𝑦 (𝑠
1

1
, 𝑠
2

1
) ≤ 𝑥
2

1
, 𝑦 (𝑠

1

1
, 𝑠
2

1
) ≥ 0,

𝑦 (𝑠
1

1
, 𝑠
2

2
) ≥ 𝑥
1

1
+ 𝑥
2

2
− 1, 𝑦 (𝑠

1

1
, 𝑠
2

2
) ≤ 𝑥
1

1
,

𝑦 (𝑠
1

1
, 𝑠
2

2
) ≤ 𝑥
2

2
, 𝑦 (𝑠

1

1
, 𝑠
2

2
) ≥ 0,

𝑦 (𝑠
1

2
, 𝑠
2

1
) ≥ 𝑥
1

2
+ 𝑥
2

1
− 1, 𝑦 (𝑠

1

2
, 𝑠
2

1
) ≤ 𝑥
1

2
,

𝑦 (𝑠
1

2
, 𝑠
2

1
) ≤ 𝑥
2

1
, 𝑦 (𝑠

1

2
, 𝑠
2

1
) ≥ 0,

𝑦 (𝑠
1

2
, 𝑠
2

2
) ≥ 𝑥
1

2
+ 𝑥
2

2
− 1, 𝑦 (𝑠

1

2
, 𝑠
2

2
) ≤ 𝑥
1

2
,

𝑦 (𝑠
1

2
, 𝑠
2

2
) ≤ 𝑥
2

2
, 𝑦 (𝑠

1

2
, 𝑠
2

2
) ≥ 0.

(19)

3. Numerical Results

In this section, some numerical results are presented. Under
the softwareMicrosoftVisual Studio 2008 and ILOGCPLEX,
we use C++ to call ILOG CPLEX API functions which are
based on the branch and cut method to solve the mixed 0-1
linear program (17). The MIP (mixed integer programming)
search method, which is a dynamic search strategy or branch
and cut strategy in ILOG CPLEX, is determined by the
ILOGCPLEX automatically. All other parameters are also set
automatically by ILOG CPLEX itself.

We have run our code on a workstation of Lenovo
ThinkStation D20 4155-BM4 with 16 processors and 16G
RAM. In the presentation of numerical results, some symbols
are explained as follows:

Num𝑁: the number of players;

Num𝑆: the number of strategies for each player;

NumEquilibra: the number of pure-strategy Nash
equilibria for the instance;

Table 1: The payoff function 𝑢𝑖(𝑠𝑖
𝑗
, 𝑠
−𝑖
) is generated from 0 to 10

randomly.

Prob. Num𝑁 Num𝑆 NumEquilibra Time (s)
1 3 4 1 0.53
2 3 4 2 0.62
3 3 4 2 0.56
4 3 5 3 0.56
5 3 6 2 0.41
6 3 6 1 0.66
7 3 7 5 0.59
8 3 8 6 0.58
9 3 8 3 0.89
10 3 8 3 0.81
11 3 10 2 1.00
12 3 11 3 1.47
13 3 12 4 1.81
14 3 14 4 4.91
15 3 14 8 3.81
16 3 15 6 5.87
17 3 19 13 27.86
18 3 19 3 33.40
19 3 21 13 47.28
20 3 23 10 102.51
21 3 24 22 122.94
22 3 25 21 239.20
23 3 26 13 278.50
24 3 26 15 301.58
25 3 28 21 419.97
26 3 33 22 1870.24
27 3 35 20 2082.34
28 3 40 24 4599.72
29 3 44 20 3033.29
30 3 45 26 16992.10

Time: the total computational time to solve the
problem.

Example 1. Consider a three-player game Γ = (𝑁, 𝑆, {𝑢𝑖}
𝑖∈𝑁
),

where𝑁 = {1, 2, 3}. The number of strategies for each player,
Num𝑆, is generated from 3 to 45 randomly. The {𝑢𝑖}

𝑖∈𝑁
are

generated randomly too. There are three different ranges for
{𝑢
𝑖
}
𝑖∈𝑁

in this example, which are from 0 to 10, from 0 to 50,
and from 0 to 100.

Let 𝛽 = 1000; 30 instances have been solved for
each range of {𝑢𝑖}

𝑖∈𝑁
. Numerical results for each range are

presented in Tables 1, 2, and 3, respectively.

Example 2. Consider a five-player game Γ = (𝑁, 𝑆, {𝑢𝑖}
𝑖∈𝑁
),

where 𝑁 = {1, 2, 3, 4, 5}. The number of strategies for each
player, Num𝑆, is generated from 3 to 7 randomly. The {𝑢𝑖}

𝑖∈𝑁

are generated randomly too. There are three different ranges
for {𝑢𝑖}

𝑖∈𝑁
in this example, which are from 0 to 10, from 0 to

50, and from 0 to 100.
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Table 2: The payoff function 𝑢𝑖(𝑠𝑖
𝑗
, 𝑠
−𝑖
) is generated from 0 to 50

randomly.

Prob. Num𝑁 Num𝑆 NumEquilibra Time (s)
1 3 3 4 0.46
2 3 3 0 0.50
3 3 3 1 0.40
4 3 4 0 0.34
5 3 4 2 0.52
6 3 6 0 0.45
7 3 7 1 0.70
8 3 7 2 0.82
9 3 7 1 0.57
10 3 8 0 0.73
11 3 9 0 0.66
12 3 10 0 0.93
13 3 11 1 1.64
14 3 16 0 13.26
15 3 19 0 33.22
16 3 20 3 40.67
17 3 21 2 55.10
18 3 22 4 74.20
19 3 24 0 195.78
20 3 24 2 142.14
21 3 27 3 507.44
22 3 29 2 1178.18
23 3 30 1 1287.87
24 3 30 1 1667.70
25 3 32 1 1638.94
26 3 33 2 1761.86
27 3 34 0 3125.08
28 3 35 5 3446.67
29 3 44 3 36601.30
30 3 45 5 43583.30

Let𝛽 = 1000; 10 instances have been solved for each range
of {𝑢𝑖}

𝑖∈𝑁
. Numerical results for each range are presented in

Tables 4, 5, and 6, respectively.
From Tables 1, 2, and 3, one can see that this mixed 0-1

linear programming method can find all pure-strategy Nash
equilibria of three-person game effectively. For example, in
Table 1 the problem 30 with 45 strategies can be solved in
16992.10 seconds and the number of equilibria is 26. It has
been shown that every 𝑛-person game can be reduced to
a three-person game in polynomial time in [47]. However,
some five-person games are still solved by this method in
our examples in order to test the effectiveness of this mixed
0-1 linear programming approach. The numerical results for
five-person can be obtained from Tables 4, 5, and 6. All the
numerical results show that this new method can handle
all pure-strategy Nash equilibria of 𝑛-person successfully.
However, the computation time increases quickly with the
increasing of the problems’ dimension. To tackle this prob-
lem, the distributed computation, which is a salient feature
of the integer programming, will be considered in our next

Table 3: The payoff function 𝑢𝑖(𝑠𝑖
𝑗
, 𝑠
−𝑖
) is generated from 0 to 100

randomly.

Prob. Num𝑁 Num𝑆 NumEquilibra Time (s)
1 3 3 0 0.41
2 3 3 2 0.45
3 3 4 2 0.51
4 3 5 0 0.49
5 3 5 2 0.61
6 3 7 0 0.56
7 3 7 2 0.41
8 3 8 0 0.61
9 3 8 2 0.89
10 3 8 2 0.68
11 3 10 1 1.11
12 3 12 1 4.00
13 3 13 1 2.64
14 3 13 2 2.64
15 3 16 0 14.25
16 3 19 4 25.70
17 3 22 4 55.94
18 3 24 2 132.87
19 3 24 1 142.96
20 3 25 2 246.76
21 3 26 2 499.40
22 3 28 0 804.76
23 3 28 1 671.67
24 3 30 2 1382.03
25 3 32 1 2821.16
26 3 34 2 3325.67
27 3 37 1 7088.06
28 3 38 2 9395.13
29 3 41 2 20441.10
30 3 43 0 29204.70

Table 4: The payoff function 𝑢𝑖(𝑠𝑖
𝑗
, 𝑠
−𝑖
) is generated from 0 to 10

randomly.

Prob. Num𝑁 Num𝑆 NumEquilibra Time (s)
1 5 3 4 1.09
2 5 3 3 1.18
3 5 3 2 1.19
4 5 4 3 6.85
5 5 4 4 5.26
6 5 5 2 98.95
7 5 5 3 152.76
8 5 5 1 122.88
9 5 6 4 2092.13
10 5 6 2 1693.61

work. Besides, some similar problems with multilinear terms
could be solved by this method too.
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Table 5: The payoff function 𝑢𝑖(𝑠𝑖
𝑗
, 𝑠
−𝑖
) is generated from 0 to 50

randomly.

Prob. Num𝑁 Num𝑆 NumEquilibra Time (s)
1 5 3 3 1.20
2 5 3 1 0.99
3 5 3 1 1.71
4 5 4 1 5.69
5 5 4 1 5.62
6 5 4 1 11.90
7 5 4 3 6.77
8 5 5 1 1996.60
9 5 6 2 2031.19
10 5 7 3 18094.80

Table 6: The payoff function 𝑢𝑖(𝑠𝑖
𝑗
, 𝑠
−𝑖
) is generated from 0 to 100

randomly.

Prob. Num𝑁 Num𝑆 NumEquilibra Time (s)
1 5 3 0 0.80
2 5 4 0 10.98
3 5 4 0 11.11
4 5 4 1 6.93
5 5 4 0 11.07
6 5 5 1 99.30
7 5 5 0 138.33
8 5 6 1 2408.44
9 5 6 2 1960.49
10 5 7 3 22237.60

4. Conclusions

In this paper, a mixed 0-1 linear programming approach
has been proposed to find all pure-strategy Nash equilibria
of a finite 𝑛-person game in normal form. This method is
based on the properties of pure strategy andmultilinear terms
in the payoff functions. Some numerical results have been
given too. The results are promising. However, there is still
some interesting future work to be done in the next step.
For one thing, as a nice feature of integer programming, the
computation will be implemented in a distributed way, which
can significantly speed up the efficiency. For another, more
research about the properties of strategy and multilinear
terms has to be done in order to compute more general Nash
equilibria, mixed-strategy Nash equilibria.
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