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1 Introduction

Sleep has a significant effect on many physiological func-
tions and plays a fundamental role in the genesis and 
insurgence of different pathologies (cardiologic, neuro-
logical, and metabolic). Its quality is one of the aspects 
that mostly influence our everyday life. It has a strong 
impact on natural processes like memorization, learning, 
and concentration [29]. Poor sleep quality or too short 
sleep time have been identified among the main causes of 
car or work accidents [24]. Also, sleep disturbances (i.e., 
the ones related to breathing) have a strong association 
with cardiovascular pathologies. A bad quality of sleep 
has an impact on blood pressure, decreases the immunity 
defenses, and may increase the insurgence probability of 
metabolic disturbances such as obesity and diabetes [7, 9, 
17, 34].

Sleep quality is generally evaluated through 
polysom-nography (PSG), which consists of many 
physiological signals recorded during one or more nights 
of sleep: elec-troencephalogram (EEG), electro-
myogram (EMG), and electro-oculogram (EOG), 
besides respiration activity and electrocardiogram (ECG). 
Rules and guidelines provided by the American 
Academy of Sleep Medicine (AASM) allow the 
evaluation of wakefulness, sleep macrostructures, built 
through the alternation of different sleep stages as 
rapid eye movement (or REM), non-REM light sleep 
(stage 1 and 2), non-REM (or NREM) deep sleep (stage 
3, also called slow-wave sleep, SWS), and 
microstructures, such as the cyclic alternating pattern 
(CAP sleep), K-complexes, microarousals [13, 16, 30].
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The standard practice is to perform sleep evaluation by 
the visual or semi-automatic scoring of polysomnographic 
traces [3]. This technique requires specific instrumentation 
and signals which are recorded and scored by trained per-
sonnel. In addition, their acquisition may be so comfortless 
to affect the sleep quality itself. On the other hand, many 
different studies have demonstrated that sleep strongly 
affects the peripheral system, particularly the autonomic 
nervous system, so that the heart rate variability (HRV) 
sig-nal presents different patterns during different sleep 
stages [14, 20, 23, 27] and during sleep phasic events [12, 
28]. For these reasons, many recent studies have focused 
on the effects of sleep stage transitions on peripheral 
systems. Most of the works found in the literature have 
given empha-sis on the correspondence of different pattern 
of heart rate with different sleep stages [35], and more 
recently, a few works [8, 33] described methods to 
perform sleep stag-ing through HRV analysis. One of the 
advantages of using HRV for sleep evaluation is the 
possibility of employing less intrusive devices, such as a 
sensorized T-shirt or mat-tress [4, 15, 21].

Different features have shown to be promising in terms 
of differentiation between different sleep stages, using 
HRV analysis, e.g., features in both time and frequency 
domains (mean and standard deviation of HRV; total 
power (TP); very low frequency power (VLF); low-fre-
quency power (LF), and high-frequency power (HF) [20, 
25, 31]. In addition, approximate entropy (ApEn) and 
sam-ple entropy (SampEn), two commonly used tools for 
non-linear dynamic analysis of HRV, were considered. 
Estrada et al. [10] employed ApEn, as well as time and 
frequency domain features, of EEG and, then separately, 
of HRV. They found that features extracted during REM 
sleep, both from EEG and HRV, always overlapped with 
the features of any other stage. The use of SampEn for 
char-acterizing sleep stages from HRV was first 
demonstrated by Vigo et al. [32]. They analyzed 5-min 
epochs of wake state, stage 3 of NREM, and REM sleep. 
They found that SampEn in REM and deep sleep was 
significantly different (p < 0.005).

The goal of this study is to improve the automatic 
dis-tinction of wakefulness (WAKE) from sleep (SLEEP) 
and also of NREM from REM sleep, using HRV-based 
fea-tures only. During NREM stage 1, people drips in 
and out 

of sleep. Inspired by Kortelainen [15], who merged stage 
1 with wake, and to reduce the ambiguity between wake 
and NREM, stage 1 was not considered in this study.

We first introduce new features that reflect the changes 
in regularity of the RR series (i.e., the series of intervals 
between successive R peaks of an ECG signal), among the 
different sleep stages. These nonlinear features enhance 
the characterization of sleep autonomic regulations and 
have been evaluated along with more established ones 
(classical time and frequency metrics as well as other non-
linear features). The classification performances depend 
on the features as well as on the proper selection of a clas-
sifier. However, the focus of this study is not to check the 
best classification strategy, but on the contrary, to verify 
the possible merit of new parameters in sleep classifica-
tion. The actual classification performances of the entire 
feature set, and of selected features only, were evaluated 
using a feed forward neural network (FFNN), a special 
kind of artificial neural network (ANN) commonly used in 
pattern recognition and classification problems. FFNN is a 
very established tool for pattern recognition and classi-
fication. Thus, it was selected because, in our experience, 
it is also very effective in describing separation manifolds 
in the parameter space. Existing methods, reporting high 
accuracy in classifying sleep stages [8, 33], used a large 
set of features, making the system computationally expen-
sive. In here, an improved accuracy has been sought using 
a smaller number of features, which would be helpful in 
implementing the system on low-power computers or 
smartphones.

2  Methods

The block diagram in Fig. 1 summarizes the proposed 
method. First, RR series of the considered epochs have 
been preprocessed to remove artifacts or ectopic beats. 
After preprocessing, a set of features has been extracted 
from RR series, and the performance of FFNN for WAKE 
versus SLEEP and NREM versus REM classifications has 
been tested using this set of features. Finally, a reduced set 
of best relevant features has been selected, from the 
extracted feature set, and the performance of the classifiers 
has been tested using these reduced set as well.

Fig. 1  Block diagram of the 
proposed method
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2.1  Dataset

Full PSG of 20 patients with suspected sleep-disordered 
breathing was recorded for one night, each at the Sleep 
Center of Tampere University Hospital, Finland. The Ethi-
cal Committee of the Pirkanmaa Hospital District approved 
the study, and all the subjects gave an informed consent 
to be included into the study. The age of the subjects was 
between 49 and 68 years; the BMI varied between 21.8 
and 40.6; 13 patients were females. The patients suffered 
from a variety of sleep disorders, including either differ-
ent degrees of nocturnal apnea/hypopnea and/or insomnia 
(34 % of subjects: no-apnea, 32 %: mild/moderate apnea, 
34 %: severe apnea).

We considered the inter-beats (RR) series obtained from 
the ECG recordings, as well as the sleep scoring automati-
cally derived from the complete PSG recordings (mainly 
using the EEG traces) through the Somnologica® software; 
the scoring was based on 30-s epochs. ECG R peak posi-
tions were detected automatically, also using the Somno-
logica® software.

2.2  Preprocessing

RR intervals may contain artifacts due to ectopic beats, 
movements, or detachments of the leads. These arti-
facts have been removed using a two-step processing. 
In the first step, RR intervals that lay outside the interval 
I = [Q1 − 3 × IR, Q3 + 3 × IR] were marked as artifacts. 
Q1 and Q3 are, respectively, the first and the third quar-
tiles of the RR series, while the interquartile range, IR, is 
defined as Q3 − Q1. In the second step, we labeled as nor-
mal those RR values, which varied <20 % of the previously 
accepted RR interval [18] (considering that the very first 
accepted RR interval was within the IR of the entire series).

RR segments of different lengths (corresponding to 2, 
6, and 10 epochs, 30 s each, classified as pertaining to a 
common sleep stage) were considered for the study only 
if at least 20 % of the beats were finally marked as nor-
mal. Transitions were not considered, and each segment 
belonged to one sleep stage only.

2.3  Feature extraction

Feature extraction is a critical step for classification. The 
performance of the classifier depends on how robust the 
feature set is in distinguishing the entities. In this study, 
we first considered features that were shown as effective in 
previous studies; further, we added features describing the 
regularity of the series. They can be classified as (1) time-
domain; (2) frequency domain; (3) detrended fluctuation 
analysis (DFA); and (4) regularity features.

1. Time-domain features: Standard deviation (SDNN)
and the mean value (MeanNN) [19] of the normal RR
intervals were selected. SDNN and MeanNN of each
segment were, respectively, normalized by SDNN and
mean of the entire RR series.

2. Frequency domain features: To estimate spectral fea-
tures of each window, segments of normal beats were
fit to an autoregressive model (AR) of fixed order.
A previous work [20] showed that a model order of
about 8 was sufficient for sleep classification purposes.
In particular, it permitted to have at least one pole in
each relevant spectral band. In this study, the order
of the model was further increased to 9, such that the
Anderson’s test [5], which checks the whiteness of
the prediction error, failed for <5 % of the examined
cases. From the estimated model, three frequency band
powers were extracted using the spectral decomposi-
tion technique described in [2]. The bands were: VLF
from 0.003 to 0.04 Hz, LF from 0.04 to 0.15 Hz, and
HF from 0.15 to 0.4 Hz. Figure 2 shows the RR sig-
nal considered for about 1.5 h in a single recording and
the spectral components of the different sleep stages
considered. Each of these powers was normalized by
TP, and the LF/HF ratio (ratio of the power in the two
bands) was also considered. As shown in the exam-
ple of Fig. 2, the spectral components of HR during
NREM and REM appear to be different. Finally, the
modulus of the pole with the largest residual in the HF
band (PoleHF) was also included into the feature set.
PoleHF is strongly related to the respiratory frequency
and periodicity [20].

3. Detrended fluctuation analysis (DFA): DFA is a scal-
ing analysis method that provides a simple quantitative
parameter to estimate the autocorrelation properties of
a non-stationary signal. It has proven useful in charac-
terizing correlations in apparently irregular time series
[22]. In DFA, an integrated time series is constructed
from the original one. Then, this integrated time series
is divided into non-overlapping “time-windows” of
increasing size n, and local trends are subtracted. The
fluctuation of the remaining signal is determined while
increasing the window size. The slope of the vari-
ance of the fluctuations versus the window size defines
the scaling exponent. For many biological signals,
among which most RR series, the DFA plot in loga-
rithmic scale consists of two distinct linearly scaling
regions of different slopes, separated at a break point.
The two slopes are termed as “short-range scaling
exponent” (α1) and “long-range scaling exponent” (α2).
In this paper, only the short-range scaling exponent has
been considered. For estimating α1, n was varied from
4 to 11. The short-range DFA scaling exponent needs



at least 4n samples to be computed reliably [22]. When 
considering windows of 2 epochs, the number of beats 
is around 60. Thus, the requirements are satisfied for 
computing short-term DFA and not for long-term DFA 
(which was not considered).

4. Regularity features: Sample entropy is a statistic com-
monly used to measure the regularity and complexity 
of physiological and clinical time series. SampEn [26] 
quantifies the regularity of a time series by match-
ing a pattern of length m with any other pattern of the 
same length within a tolerance r; then, the comparison
is repeated at an extended length m + 1. In this study, 
m = 1 and r = 0.2 × SDNN were used, given the short 
length of the series. SampEn was computed for both 
RR series and for series produced by AR models fit-
ted on the RR series as in [1]. The numerical estima-
tion of SampEn (SampEnNN) for a time series RR(i), 
for 1 ≤ j ≤ N starts with constructing the templates
Um(j) = {RR(j), RR(j + 1), . . .  , RR(j + m − 1)}

of size m for 1 ≤ j ≤ N − m and defin-

ing the distance between Um(i) and Um(j) by 
d
[

Um(i), Um(j)
]

= max
0≤k≤m−1

|U(i + k) − U(j + k)|.

Now, let Am
j  be the number of templates Um(i) such 

that d[Um(i), Um(j)] ≤ r, for 1 ≤ i ≠ j ≤ N − m and
Cm

j (r) = Am
j /(N − m − 1) and let Am+1

j  be the number of 
templates Um+1(i) such that d

[

Um+1(i), Um+1(j)
]

≤ r for
1 ≤ i ≠ j ≤ N − m and Cm+1

j (r) = Am+1
j /(N − m − 1).

If we define A(m, r) =
∑N−m

j=1 Cm
j (r)/(N − m) and  

A(m + 1, r) =
∑N−m

j=1 (r)/(N − m), then SampEnNN

(m, r, N) = log A(m, r) − log A(m + 1, r).
SampEnNN may be affected by nonlinearity, non-Gauss-

ianity, or non-stationarity present in the series. Thus, start-
ing from the same AR model employed for computing fre-
quency domain features, the value of SampEn (SampEnTH) 
was instead derived analytically using the formula 
pro-posed by Aktaruzzaman and Sassi [1]. In fact, for a 
station-ary stochastic process (thus, for an AR process 
x[n]), the probability of matching two templates of size m, 
within the error tolerance r, can be represented by
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Fig. 2  Top panel one hour and a half of a PSG recording: a 3-stage 
hypnogram top and the corresponding RR series bottom. Middle 
panel power spectra of the RR series during the different sleep stages. 

Bottom positions of the poles of an AR model fitted to an RR series 
during each of the three stages considered (PoleHF was marked with 
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Pm =

x(m)+r
∫

x(m)−r

· · ·

x(1)+r
∫

x(1)−r

e−ΣT
mΣ−1

m Σm

(2π)m/2 det (2Σm)1/2
dξ1 . . . dξm′

where Σm is the Toeplitz covariance matrix of the AR pro-
cess. Then, SampEn can be expressed analytically as

SampEnTH = log Pm − log Pm+1.

Alternatively, an expected value of SampEn (SampEnSYN) 
of the AR model was estimated computing the mean value 
of SampEn obtained for 200 synthetic series (of the same 
length of the original ones), generated through the AR 
model itself (a Monte Carlo approach). These parametric 
estimations of SampEn (SampEnTH and SampEnSYN) are 
truly affected only by the linear behavior of the model. 
Finally, the capability of the AR model to well approxi-
mate the series in terms of SampEnNN was tested using the 
Monte Carlo simulations result. To this aim, the distribu-
tion of SampEn values, estimated from the synthetic series, 
was compared with SampEnNN. The value of 
SampEnNN may fall within or outside this distribution 
(Fig. 3). The probability of agreement (ProbAgree) 
between SampEnNN and the distribution increases from 0 
(SampEnNN lies out-side the distribution) to 0.5 
(SampEnNN corresponds to the median of SampEnSYN). 
ProbAgree was calculated nonpara-metrically using the 
ranks of SampEnSYN.

2.4   Classification

The goals of this study were to distinguish different sleep 
stages. A FFNN was first trained using a set of features 
extracted from a training set of data. Then, the trained 
FFNN was used for classification of the test dataset.

The data from the 20 recorded patients were divided 
according to two different cross-validation techniques: 

leave one out (LOO) among recordings and tenfold on 
the total amount of data. In the dataset considered, the 
distribution of the classes was unbalanced. This may 
neg-atively influence the training of the FFNN [36]. For 
this reason, the entire study was repeated using both 
unbal-anced and balanced proportions of classes for 
training. To balance the populations, samples were 
selected ran-domly. Also, the different initializations of 
the randomly selected weights might lead to (slightly) 
different clas-sification results. To minimize this 
problem, the training and testing of the FFNN was 
repeated five times, and the average performances were 
taken into account. Finally, the classification 
performances provided by the network were evaluated 
by means of accuracy (ACC), sensitivity (SENS), 
specificity (SPEC), and Cohen’s Kappa (K) reli-ability 
[6].

2.5  Feature selection

The possibility of reducing the feature set dimension 
was investigated. To this aim, a feature selection 
strategy was applied, using the following two approaches:
• Greedy backward elimination: The classification reli-

ability (K) was checked by leaving one feature out at a
time. The feature discarded at each round was the one
leading to the highest K value of the remaining set. This
procedure was repeated until only the most significant
feature was retained.

• Greedy forward selection: The procedure was started
with the single best feature estimated using the previous
approach. In here, at each round, another feature, from
the remaining ones, was added to the set. The addi-
tional feature was chosen so that the new set of features
was leading to the highest K value. The procedure was
repeated until all the features were included.

Fig. 3  Probability density of 
the values of SampEn computed 
on 200 synthetic series (thick 
black line), of which SampEn-

SYN is the average value, and 
the probability of agreement 
(ProbAgree) for three distinct 
values of SampEnNN (verti-
cal bars). The probability of 
agreement is indicated for each 
SampEnNN
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The feature selection strategy was performed on win-
dows of 6 epochs, with a tenfold cross-validation (CV) 
procedure. We limited the feature selection procedure to 6 
epochs, because shorter time periods may be not sufficient 
for a reliable estimation of certain parameters (spectral 
estimation, entropy evaluation), while longer periods HRV 
series may be affected by non-stationarity and may be too 
long when compared with the 30-s epochs clinically used 
for sleep classification.

3  Results

The twelve features {MeanNN, SDNN, VLF, LF, HF, LF/
HF, PoleHF, DFAα1, SampEnNN, SampEnTH, SampEnSYN, 
and ProbAgree} were extracted from each RR segment of 2, 
6, and 10 epochs. A logarithmic transformation was applied 
to SDNN, HF, and LF/HF in order to get statistical 
distribu-tions closer in shape to a Gaussian function. Figure 
4 shows the distributions of the extracted features with 
respect to the sleep stages considered (after average value 
subtraction and 

normalization of the standard deviation). For some of them, 
like VLF, PoleHF, and the various SampEn, the distributions 
of REM and NREM stages differ, even visually. The power 
of each single feature, in separating sleep stages, has been 
statistically tested through a Kruskal–Wallis nonparametric 
analysis of variance. All the features significantly (p < 0.01) 
discriminate SLEEP from WAKE and NREM from REM.

The number of neurons in the hidden layer of the FFNN 
affects its capabilities. To determine it, the performances 
of the classifier were preliminary observed using different 
number of hidden neurons (8, 12, 15, 20, 25) in a smaller 
case study (only a subset of the subjects and epochs was 
used). The classification performances, in terms of accu-
racy, did not improve using more than 12 neurons, which is 
what was employed in the following of the study.

The results for discriminating the different sleep stages 
using the full feature set have been summarized in Table 1, 
which reports ACC along with K, for balanced and unbal-
anced number of samples and using both tenfold and LOO 
validation techniques. The accuracy of WAKE versus 
SLEEP classification was 77.16 and 71.65 %, for tenfold 
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and LOO techniques, respectively, with unbalanced num-
ber of samples and 2 epochs. ACC and K did not change 
considerably neither increasing the number of epochs nor 
changing the proportion of samples (balanced or unbal-
anced). It is worth noting that SENS and SPEC represent 
here the true recognition of WAKE and SLEEP stages, 
respectively. There was an incremental trend in SENS 
(from 40.40 %, 2 epochs to 52.17 %, 10 epochs) and K 
(from 0.38 to 0.44) with increasing the RR segment length, 
when tenfold validation was used. The same happened in 

NREM versus REM classification, where ACC increased 
(from 83.17 to 88.21 %), as well as SPEC (29.33 to 
57.88 %) and K (0.32 to 0.57). The classifier showed a 
slightly smaller recognition accuracy (84.62 % instead of 
88.21 %) when LOO was used.

Table 2 shows the average results of the feature selec-
tion procedure for WAKE versus SLEEP classification. 
In Table 2a, the first row corresponds to the results for 
the full set of features, as well as the last row of Table 2b. 
The value of K increased from 0.34 (when only MeanNN 

Table 1  Sleep stage classification using the full feature set. (a) Results for WAKE versus SLEEP classification. (b) NREM versus REM clas-
sification results

Number  
of epochs

Distribution 
type

Tenfold LOO

ACC (%) SENS (%) SPEC (%) K ACC (%) SENS (%) SPEC (%) K

(a)

 2 Unbalanced 77.16 ± 0.14 40.40 ± 0.71 92.62 ± 0.25 0.38 ± 0.01 71.65 ± 13.77 41.39 ± 20.78 89.61 ± 8.75 0.28 ± 0.18

Balanced 69.93 ± 0.69 66.22 ± 0.71 73.64 ± 1.10 0.40 ± 0.01 68.37 ± 11.79 65.56 ± 21.27 70.93 ± 17.00 0.27 ± 0.21

 6 Unbalanced 77.22 ± 0.68 47.20 ± 2.80 89.99 ± 0.62 0.41 ± 0.02 69.66 ± 16.69 42.35 ± 25.58 88.28 ± 10.11 0.26 ± 0.22

Balanced 72.40 ± 0.95 73.51 ± 1.36 71.29 ± 1.14 0.45 ± 0.02 67.59 ± 12.09 71.97 ± 22.28 70.26 ± 17.12 0.31 ± 0.24

 10 Unbalanced 77.91 ± 0.27 52.17 ± 1.42 88.90 ± 0.76 0.44 ± 0.01 71.92 ± 18.24 43.68 ± 27.34 88.96 ± 7.78 0.29 ± 0.24

Balanced 75.09 ± 1.10 76.17 ± 2.18 74.00 ± 2.15 0.50 ± 0.02 70.76 ± 10.68 73.28 ± 23.74 72.10 ± 15.31 0.32 ± 0.24

(b)

 2 Unbalanced 83.17 ± 0.14 96.02 ± 0.22 29.33 ± 1.19 0.32 ± 0.01 82.07 ± 5.14 94.42 ± 6.33 30.30 ± 22.68 0.27 ± 0.16

Balanced 71.96 ± 0.86 72.48 ± 2.02 71.44 ± 1.39 0.44 ± 0.02 68.69 ± 16.55 69.69 ± 22.88 67.59 ± 23.85 0.29 ± 0.19

 6 Unbalanced 86.74 ± 0.46 94.78 ± 0.36 51.38 ± 3.35 0.51 ± 0.02 84.63 ± 6.51 93.13 ± 9.33 46.39 ± 26.96 0.41 ± 0.21

Balanced 80.50 ± 1.02 80.58 ± 2.04 80.42 ± 1.75 0.61 ± 0.02 75.83 ± 16.92 75.57 ± 22.85 78.20 ± 23.00 0.44 ± 0.24

 10 Unbalanced 88.21 ± 0.63 94.91 ± 0.54 57.88 ± 2.72 0.57 ± 0.02 84.62 ± 8.12 91.47 ± 11.41 52.27 ± 33.69 0.42 ± 0.25

Balanced 82.79 ± 2.17 84.00 ± 2.18 81.59 ± 2.92 0.66 ± 0.04 79.39 ± 15.65 79.40 ± 19.98 80.17 ± 22.38 0.49 ± 0.25

Table 2  Results of the features selection procedure for WAKE versus 
SLEEP classification, using windows of 6 epochs with balanced data-
sets. (a) Classification performances after removing one feature at a 

time (the feature removed is indicated in each row). (b) Classification 
performances after adding one feature at a time

ACC (%) SENS (%) SPEC (%) K ACC (%) SENS (%) SPEC (%) K

(a) (b)

 All 74.40 73.80 74.90 0.49  MeanNN 67.10 58.90 75.30 0.34

 VLF 76.10 76.60 75.60 0.52  VLF 70.10 69.90 70.30 0.40

 DFAα1 74.90 75.90 74.00 0.50  DFAα1 72.10 71.20 72.90 0.44

 SampEnTH 75.00 75.30 74.70 0.50  ProbAgree 72.50 73.20 71.80 0.50

 SampEnSYN 74.70 74.80 74.50 0.49  SDNN 72.90 74.20 71.50 0.46

 LF/HF 74.80 74.40 75.20 0.50  LF/HF 73.30 72.90 73.70 0.47

 PoleHF 75.80 77.40 74.20 0.52  SampEnSYN 74.80 75.90 73.70 0.50

 SampEnNN 74.90 74.40 75.50 0.50  SampEnTH 74.30 74.50 74.10 0.49

 SDNN 73.30 74.20 72.30 0.47  HF 75.00 74.50 75.50 0.50

 ProbAgree 71.60 71.20 72.10 0.43  SampEnNN 74.60 75.30 73.80 0.49

 HF 68.90 62.50 75.30 0.38  LF 74.20 74.00 74.40 0.48

 LF 67.10 58.90 75.30 0.34  PoleHF 74.40 73.80 74.90 0.49

 MeanNN (MeanNN is the only features left after removal of LF)  All (All features are included after the addition of PoleHF)



was considered) to 0.45 (when VLF, DFAα1, and ProbAgree 
were also added). The addition of the remaining features 
just increased the feature set dimension without any major 
significant contribution to the value of K. A similar behav-
ior was observed when reducing the size of the feature set. 
Thus, the set of {MeanNN, VLF, DFAα1, and ProbAgree} was 
further considered for WAKE versus SLEEP classification. 
Similarly, the results of the feature selection strategy for 
NREM versus REM classification are instead illustrated in 
Table 3. Also, in this case, the value of K did not improve 
considerably beyond the addition of four features. The 
four best relevant features were: {MeanNN, LF, PoleHF, and 
SampEnSYN}.

The classification results obtained using only the four 
most relevant features are reported in Table 4. The accuracy 
obtained for training with unbalanced samples of classes 
might prove unsatisfactory (K value was very small). Also, 

K values for training with balanced number of samples are 
always higher than those with unbalanced sets. Thus, in 
Table 4, we have summarized only the results for training 
with balanced samples. Overall, there was no considerable 
difference between ACC (88.22 %) and K (0.56), obtained 
using only four relevant features, and ACC (88.21 %) and 
K (0.57) obtained with the full set of features. The mean 
results using tenfold and the LOO cross-validation were 
comparable for every cases, while the standard deviation 
was higher using the LOO technique, suggesting that the 
inter-subject variability is large.

As a final confirmation that four features are suffi-
cient for describing the variability of the data, we further 
verified using principal component analysis (PCA), a lin-
ear technique which is often used to guide feature selec-
tion with traditional classification methods [11], that four 
transformed variables captured 99 % of the variance of the 

Table 3  Results of the features selection procedure for NREM ver-
sus REM classification, using windows of 6 epochs with balanced 
datasets. (a) Classification performances after removing one feature at 

a time (the feature removed is indicated in each row). (b) Classifica-
tion performances after adding one feature at a time

ACC (%) SENS (%) SENS (%) K ACC (%) SENS (%) SENS (%) K

(a) (b)

All 84.10 83.70 67.70 0.68 PoleHF 75.90 74.20 77.60 0.52

VLF 84.40 85.40 83.40 0.69 LF 80.50 79.50 81.60 0.61

HF 84.20 84.60 83.90 0.69 MeanNN 83.30 81.80 84.80 0.67

SampEnTH 84.50 85.50 83.40 0.70 SampEnSYN 84.60 84.60 84.50 0.70

DFAα1 84.90 85.70 84.20 0.70 SampEnNN 85.10 85.10 85.20 0.70

LF/HF 84.50 84.80 84.10 0.69 SDNN 84.70 85.20 84.30 0.70

SDNN 84.80 85.60 84.10 0.67 DFAα1 85.00 85.60 84.40 0.70

SampEnSYN 84.40 83.90 84.80 0.69 VLF 85.00 85.50 84.50 0.70

ProbAgree 84.70 84.80 84.50 0.69 LF/HF 84.60 84.80 84.30 0.69

SampEnNN 83.60 82.60 84.60 0.67 HF 84.60 84.70 84.50 0.69

MeanNN 80.90 79.10 82.70 0.62 ProbAgree 83.50 83.80 83.30 0.67

LF 75.90 74.20 77.60 0.52 SampEnTH 75.90 74.20 77.60 0.52

PoleHF (PoleHF is the only features left after removal of LF) All (All features are included after the addition of SampEnTH)

Table 4  Sleep stages classification using 4 relevant features only. (a) Results (mean ± std) for WAKE versus SLEEP classification. (b) NREM
versus REM classification

Number  
of epochs

Distribution  
type

Tenfold LOO

ACC SENS SPEC K ACC SENS SPEC K

(a)

 2 Balanced 67.69 ± 0.44 62.89 ± 0.91 72.48 ± 0.77 0.35 ± 0.01 67.55 ± 9.93 65.29 ± 17.72 70.37 ± 13.81 0.26 ± 0.22

 6 Balanced 70.79 ± 0.81 72.99 ± 1.49 68.60 ± 2.20 0.42 ± 0.02 69.02 ± 11.34 75.13 ± 18.99 68.57 ± 15.92 0.31 ± 0.24

 10 Balanced 73.30 ± 0.94 76.39 ± 2.21 70.21 ± 1.20 0.47 ± 0.02 71.34 ± 11.73 77.15 ± 17.00 69.27 ± 14.02 0.33 ± 0.23

(b)

 2 Balanced 71.73 ± 0.66 74.08 ± 0.78 69.38 ± 0.83 0.43 ± 0.01 68.35 ± 15.32 68.34 ± 21.57 71.11 ± 22.58 0.29 ± 0.18

 6 Balanced 80.28 ± 1.33 79.40 ± 2.29 81.16 ± 0.77 0.61 ± 0.03 74.54 ± 19.72 73.74 ± 25.54 80.24 ± 20.34 0.44 ± 0.24

 10 Balanced 83.78 ± 2.06 82.41 ± 2.60 85.15 ± 2.73 0.68 ± 0.04 79.77 ± 15.72 79.68 ± 20.07 81.13 ± 22.88 0.51 ± 0.25



data in both classification problems. When considering the 
WAKE versus SLEEP problem, the features with the larg-
est normalized weight with respect to each of the first four 
principal components were: SampEnSYN, LF, ProbAgree, and 
MeanNN, while for the NREM versus REM classification, 
they were: HF, LF, ProbAgree, and MeanNN. Interestingly 
also with this simplified approach, the new features we 
introduced were significantly relevant in the classification 
problems.

4  Discussion

This study supports the possibility of building a fully auto-
matic classification of sleep stages into WAKE, NREM, 
and REM, using RR series analysis. In fact, the features 
considered were not only statistically different in different 
sleep stages, but also relevant when used in a classifier.

A set of 12 features, including new ones based on the 
regularity of the series, was considered for discriminating 
NREM versus REM and WAKE versus SLEEP. The feature 
selection strategy reduced the feature set dimension from 
12 to 4, by removing redundant parameters which did not 
carry additional information. The overall classification per-
formances (as measured by ACC, K) did not change signifi-
cantly when a subset of four features instead of the full set 
was considered.

Two nearly distinct sets of four features (with the excep-
tion of MeanNN contained in both) were selected for the 
two classification problems. In addition to time and fre-
quency domain parameters (already reported in the litera-
ture), three additional features were included in these sets.

MeanNN and PoleHF were previously reported [20] as 
significant features for sleep staging into NREM ver-
sus REM and also here proved so. In particular, MeanNN 
increased from WAKE to SLEEP and from REM to NREM 
indicating an augmented vagal control. Similarly, VLF 
and LF proved here valuable in discriminating between 
WAKE versus SLEEP and NREM versus REM, confirm-
ing previous studies [20, 25]. VLF has been normalized as 
a percentage of the total power: its increase during WAKE 
indicates that the total variance is influenced also by dif-
ferent factors in addition to the sympatho-vagal system, 
while during SLEEP, the main source of variability is the 
sympatho-vagal balance. Moreover, LF was expected to 
increase during REM. However, in this study, LF increased 
during NREM. This can be explained with the fact that LF 
is normalized with respect to the total power. Thus, the 
higher values of LF during NREM are also determined by 
the lower values of VLF during NREM. Finally, the mod-
ule of the strongest pole in the HF band (PoleHF) was pre-
viously employed for discriminating between NREM and 
REM [20] and here proved highly informative. This feature 

captures the periodicity of the respiration rhythm which is 
high during NREM sleep and decreases significantly dur-
ing REM [20].

The use of three measures of SampEn has been inspired 
by the fact that their estimates may vary differently accord-
ing to series characteristics, such as the presence of non-
linearity, non-stationarity, and non-Gaussianity. However, 
in here, the three methods showed really similar behaviors 
(Fig. 4). SampEnNN, SampEnSYN, and SampEnTH in prac-
tice carried the same information, even if the latter two are 
linear indexes while the former is a nonlinear metric. Over-
all, the entropy increased significantly during NREM, sug-
gesting a higher regularity during REM sleep.

The relevance of DFAα1 and ProbAgree in the classifi-
cation process suggests that there are evident changes in 
short-term correlations and nonlinear regularity of HR 
during different sleep stages. A part from increasing the 
overall classification performances, it gave also informa-
tion about the physiology of sleep. In fact, during SLEEP, 
the decreased DFAα1 might reflect a reduced short-term (in 
the range 4–11 heart beats) persistence of HRV patterns in 
time, while, coherently, a larger ProbAgree suggests a possi-
ble lowering of nonlinearity or non-stationarity during such 
periods.

SampEnSYN and ProbAgree as well as the majority of 
the extracted features depend on autoregressive models 
estimation. Thus, at least 3 min of recording (6 epochs) 
was needed to get good classification performances 
(see Tables 1 and 4) using AR models. Also, ACC and K 
increased with the number of epochs considered. Further 
studies will focus on the selection of the best signal length 
for classification. In addition, the use of time-variant mod-
els will be introduced, in order to verify the possibility of 
reducing the number of samples needed to perform a simi-
larly reliable classification. This would be a significant step 
toward a 30-s HRV-based hypnogram.

The recognition accuracy obtained using LOO is slightly 
smaller than what achieved using tenfold validation, and 
this is likely due to the fact that 20 subjects were not enough 
to capture the large variability of patterns across subjects. 
As a consequence, the features of the subject excluded 
from training were completely “new” for the FFNN and 
could not be predicted by the knowledge acquired from the 
rest of the population. LOO is closer to what happens in a 
practical application, where the FFNN is trained in a labo-
ratory and then used on different subjects. However, to cap-
ture the possible variability in the features across subjects, 
a much larger population should be employed (and such a 
large population is not easy to obtain). Using only 20 sub-
jects, the results are underestimating the possible accuracy 
of the method. Given, the relatively small number of sub-
jects at disposal, LOO was considered as a sort of limiting 
bottom value for accuracy, while tenfold CV represented 



a correspondent limiting top value. In fact, with the latter 
samples in the test and training set, even if completely dis-
tinguished, might be correlated among them.

From a technical standpoint, the unbalance in the distri-
bution of classes has become a crucial problem in machine 
learning algorithms, because the performances of the learn-
ing phase could be seriously compromised. So a balanced 
distribution of classes is often recommended [36] as we did 
consider in here. As expected, in comparing the results with 
balanced versus unbalanced number of samples for train-
ing and testing, the performances gave privilege to the most 
represented class (SLEEP for WAKE versus SLEEP and 
NREM for NREM versus REM classification) when unbal-
anced samples are used for training. This is typical when 
the sets are skewed toward one of the classes. This issue 
supports the statement that the classification is more reli-
able when training is performed with balanced number of 
samples. Also, the reliability factor K helped in checking if 
the classifier was biased to a specific class. Although such 
considerations are important in practice, only a few studies 
[15, 21, 25] considered this issue.

To the best of our knowledge, a few previous studies [8, 
20, 25, 33] performed sleep stage classification from HRV 
analysis. It is difficult to compare the results obtained on 
different datasets, because the accuracy depends on the 
characteristics of the datasets themselves, and also on the 
specific type of classifier employed. However, the accuracy 
of NREM and REM classification obtained in this study 
was always larger than 82 %, which is an improvement 
over the results reported in Mendez et al. [20]. Although, 
Redmond et al. [25] reported a classification accuracy for 
WAKE versus SLEEP of 89 %, which is larger, they used 
a set of 30 features, collected not only from ECG but also 
from respiratory signals. The overall accuracy found in 
this work (Table 4) is equivalent to those reported in [33] 
(tables 5 and 6), even if here using only 4 features (which 
should be more computationally cost effective). Our results 
are also comparable with those reported in [8], even though 
they used 32 features, and in here only 4 or 12. The slightly 
better accuracy (84.4 %, instead of 79.8 %) reported 
in [8] for long (10 epochs) RR series may be due to the 
usage of bootstrapping to increase the number of samples 
(i.e., REM). In fact, due to the requirement of considering 
only homogenous consecutive sleep epochs, the number of 
long RR segments in our study is small, so it might lead to 
insufficient training of the neural network (which does not 
happen with short series). It is also worth noting that the 
population considered here included patients with different 
degree of apnea, but apnea-related events were not consid-
ered separately from the other signal segments and were 
just included blindly in the study (to mimic real-world situ-
ations). Thus, while our results were possibly negatively 

influenced by this methodological decision, the overall 
method proved robust to the presence of apnea.

5  Conclusions

The proposed method appeared prospective for automatic 
sleep stage classification, based on HRV analysis only, 
with a focus on the distinction of wakefulness from sleep, 
and REM from NREM sleep. The regularity parameters 
were found as the most significant among the features 
considered, for both classification problems. Apart from 
increasing the overall classification performances, they 
also provided information about the physiology of sleep, 
in particular with respect to NREM stages. These findings 
paved the way to further investigations of the behavior of 
the autonomic nervous system during sleep. Time-variant 
autoregressive (TVAR) models, as well as other machine 
learning tools, less sensitive to the unbalanced proportion 
of samples, will be investigated in future works to improve 
the classification performances of the method.
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