
Robust bounded feasibility verification of
piecewise affine systems via reachability

computations

Riccardo Desimini and Maria Prandini ∗

∗ Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano,
Italy (e-mail: {riccardo.desimini, maria.prandini}@polimi.it).

Abstract: We address robust bounded feasibility verification for a discrete-time PieceWise
Affine (PWA) system whose evolution can be influenced by some input. The aim is to determine
an input sequence that makes the system satisfy a certain property within a finite time horizon,
while maximizing the amount of perturbation that can be applied to the input without violating
the given property. This is important to assess the robustness of the solution to numerical errors.
We focus on the case of a property expressed in terms of the output of the system taking values
in a certain spec set, and propose a verification method resting on reachability computations.
The idea is to determine the set of states that the system can reach through all its possible
evolutions, with the input taking values in its whole range, and check if the computed reach
sets intersect with the one corresponding to the output spec set. If this is the case, then, an
input sequence driving the output to the spec set exists and can be determined together with
its robustness level by solving a linear optimization program.

1. INTRODUCTION

In this paper, verification of dynamical systems evolving
under the effect of some input is addressed. We focus on
the class of the discrete-time PieceWise Affine (PWA)
systems, whose evolution is governed by a collection of
affine dynamics that become activated according to the
value assumed by state and input inside a polyhedral
partition of the state cross input space.

PWA systems have been extensively studied by researchers
because of their significant modelling capabilities, de-
spite their simple mathematical description made of linear
equalities and inequalities. In Heemels et al. (2001), PWA
systems have been proven to be equivalent to a class of
linear hybrid systems called Mixed Logical Dynamical
(MLD), a modelling framework that allows to describe
various classes of systems like, e.g., finite state machines
interacting with dynamical systems and systems with
mixed discrete/continuous inputs and states, Bemporad
and Morari (1999a).

Among the broad variety of approaches available in the
literature for hybrid systems verification, Schupp et al.
(2015), a well-known methodology is the one that performs
reachability analysis through state sets computation to
check if a certain property related to the temporal evo-
lution of a given system is satisfied, Asarin et al. (2006).
The idea is to compute the sets of states that the system
can reach during its evolution (reach sets) by propagating
the set of initial states through the system dynamics under
the influence of all the possible inputs affecting the system.
The effectiveness of a set-based reachability approach in
terms of both computability and conservativeness of the
result depends on the adopted representation of the reach
sets, jointly with the system dynamics through which reach
sets evolve.

According to such set-based reachability paradigm, a
verification algorithm for discrete-time MLD systems
based on Linear and Mixed Integer Linear Programming
(LP/MILP) has been proposed in Bemporad and Morari
(1999b) to assess if the system executions can exit a
provided safe region in a bounded time horizon, and
also to estimate the maximal output range of the system
in such an horizon. In the proposed method, sets are
modelled through convex polyhedra and interval outer-
approximations are introduced to simplify sets represen-
tations while they are propagated through the system
dynamics.

Here, we address a verification problem for discrete-time
PWA systems where the aim is to determine if a certain
property (called specification) expressed in terms of reach-
ability of a polyhedral region in the output space can be
satisfied at the earliest time instant of a given finite time
horizon.

Differently from Bemporad and Morari (1999b), we model
the state sets through zonotopes, i.e., centrally symmetric
convex polytopes. By using zonotopes, propagation of sets
through an affine dynamics subject to an input varying
inside a zonotope can be done efficiently, even for high
dimensional systems, Girard (2005). Moreover, to perform
sets outer-approximations, we adopt and extend some
methods in the literature that provide tighter approxi-
mations than intervals. Inspired by Vignali et al. (2014),
we also introduce a robustness measure, and look for the
maximum amount of perturbation that can be applied
to the input while still satisfying the specification when
computing a solution to our verification problem. In this
way, the numerical reliability of the solution is improved.

Reachability analysis of hybrid systems has been also
addressed in Frehse et al. (2011), where a tool modelling



piecewise affine systems by means of hybrid automata
is presented. Such a tool also combines polyhedra and
support function representations of continuous sets to
compute an over-approximation of the reachable states.
However, differently from our setup, the tool makes use of
continuous-time models.

The tool CORA, Althoff (2015), can be applied to discrete-
time nonlinear dynamical systems verification but requires
some regularity of the nonlinear dynamics (see Althoff
et al. (2018)), whereas we consider PWA systems and do
not require their dynamics to be continuous.

Basic notions and notations

Given two positive integers m and n, the symbol Rm×n

denotes the space of them×n real matrices and Rm stands
for Rm×1. The symbols Om,n and Im denote respectively
the m × n matrix with all zero entries and the identity
matrix of order m, Om stands for Om,m and 0m stands
for Om,1. A (convex) polyhedron P ⊂ Rh is defined as
the intersection of q half-spaces (H-representation, Ziegler
(2012)), and can be expressed through Pa ∈ Rq×h and
pb ∈ Rq as P = {z ∈ Rh|Paz ≤ pb} or P = (Pa, pb) for ease
of notation. A polytope is a (convex) bounded polyhedron.
Zonotopes are centrally symmetric convex polytopes. More
precisely, a convex polytope in Rh is a zonotope if it can be
written as Z = {z ∈ Rh|z = c +

r
i=1 βigi,βi ∈ [−1, 1]},

where c ∈ Rh is the center and gi ∈ Rh, i ∈ {1, . . . , r},
are the generators. We shall then use 〈c,G〉 as a more
concise notation of Z, where G ∈ Rh×r is the generator
matrix, which contains the generators as its columns. The
ratio r/h is the order of the zonotope. Intervals in Rh are
zonotopes. The propagation of a zonotopic set through an
affine dynamics with input taking values in a zonotope
leads to a zonotope (closure property of zonotopes with
respect to affine transformations and Minkowski sum).

2. PROBLEM FORMULATION

Consider a PieceWise Affine (PWA) system described by

xk+1 = Aixk +Biuk + ei if (xk, uk) ∈ Mi

yk = Cixk +Diuk + fi
(1)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp

is the output, and Mi is the i-th mode of the system, i =
1, . . . , s. The mode collection {Mi}si=1 forms a polyhedral
partition of the state cross input space, and matrices and
vectors Ai, Bi, ei, Ci, Di, fi have appropriate dimensions.
System (1) is initialized at x0 = x̂0, and the input is
constrained to the interval U = [u, u] ⊂ Rm. Given a
positive integer k, the ordered collection (i0, . . . , ik) of the
active mode indices up to time k is the switching sequence
of system (1) in the horizon [0, k].

The goal is to determine if there exists a time instant
k̄ ∈ [0, N ] and an input sequence u∗

k ∈ U , k = 0, . . . , k̄,
such that the output satisfies yk̄ ∈ Ysp, where Ysp ⊂ Rp

is a polyhedral set. Among all possible time instants k̄,
we look for the minimum one. Given k̄, we look for a
sequence {u∗

k}k̄k=0 with the maximum robustness level,
where robustness is evaluated in terms of amount of
perturbation that can be given to each input component
u∗
ki (i = 1, . . . ,m) along the time horizon [0, k̄] while still

satisfying the specification at time k̄, i.e., yk̄ ∈ Ysp.

3. PROPOSED METHOD

In this section, we describe a method to solve the robust
bounded feasibility problem for PWA systems that is based
on reach sets computations. Consistently with the mode
definition in (1), reach sets are computed in the state
cross input space. It is then convenient to introduce vector
z = [xT uT ]T and rewrite the system equations (1) as:

zk+1 = Ãizk + B̃ivk + ẽi if zk ∈ Mi (2)
yk = C̃izk + f̃i

where

Ãi =


Ai Bi

Om,n 0m


B̃i =


On,m

Im


ẽi =


ei
0m



C̃i = [Ci Di] f̃i = fi

for i = 1, . . . , s, and v ∈ U is a fictitious input vector used
to assign to the u component of z all values in U . 1

The proposed approach rests on the computation of the
set of all state-input values that can be reached starting
from R0 = {x̂0} × U at time k = 0 by applying all
admissible input values. As soon as a time t is found where
the state-input reach set Rt maps into a set of output
values that intersects the spec set Ysp, then, the bounded
feasibility problem has a solution with k̄ = t, and the input
sequence (u∗

0, . . . , u
∗
k̄
) with maximal robustness level can

be computed by solving a linear optimization program.

The steps involved in the proposed method are sketched
in the following algorithm:

Algorithm 1 Reachability-based verification algorithm

Require: x̂0, U , PWA dynamics in (2), Ysp

for k = 0, . . . , N do
Compute Rk = {Rki}nk

i=1 (Section 3.1)
for i = 1, . . . , nk do
Test if (C̃jiRki ⊕ f̃ji) ∩ Ysp = ∅ (Section 3.2)

if (C̃jiRki ⊕ f̃ji) ∩ Ysp ∕= ∅ then
Compute (u∗

0, . . . , u
∗
k) with maximal robustness

level (Section 3.3)
return (u∗

0, . . . , u
∗
k)

end if
end for

end for

3.1 Reach sets computation through zonotopes

We start observing that the input constraint set U is a
zonotope with center cu = 0.5(u+u) and generator matrix
Gu = 0.5 diag(u− u).

If a reach set is a zonotope and it is contained in a mode,
its propagation through the system dynamics is easy. More
precisely, let Zk = 〈cz,k, Gz,k〉 be a zonotopic reach set
computed at time k. If Zk is contained within mode Mi,
then, an arbitrary state zk = cz,k+Gz,kαz,k in Zk subject
to input vk = cu +Guαv,k in U maps into

zk+1 = Ãicz,k + ÃiGz,kαz,k + B̃icu + B̃iGuαv,k + ẽi =

= cz,k+1 +Gz,k+1αz,k+1,

1 Note that reformulation (2) is not needed if system (1) has modes
described in the state-space only. In such a case, z = x and v = u.



where we set

cz,k+1 = Ãicz,k + B̃icu + ẽi

Gz,k+1 =

ÃiGz,k B̃iGu



αz,k+1 =

αT
z,k αT

v,k

T αz,k+1∞ ≤ 1.

(3)

This shows that the reach set Zk+1 originated from Zk

when all possible values for vk in U are applied to (2)
is given by the zonotope Zk+1 = 〈cz,k+1, Gz,k+1〉. If
each of the reach sets Z1,Z2, . . . ,ZN is contained within
one single mode, then, they are all zonotopes. Their
centers and generators can be recursively computed by the
equations in (3) initialized with

c0 =


x̂0

cu


G0 =


On,ju
Gu


,

where ju denotes the number of columns of Gu. Note that
ÃiG0 = On+m,ju , which corresponds to ju degenerate
generators that are identically zero and should then be
removed from G1. This is due to the fact that the initial
state x0 is not affected by uncertainty and the zonotope
to which the input belongs is fixed.

If the reach set at time k splits over different modes, then,
each part is a polytope (not necessarily a zonotope) and
evolves according to a different affine dynamics. Different
branches along which the reach sets are propagated are
then generated. To ease the reach set propagation along
each branch, it is convenient to adopt a zonotopic outer-
approximation of each polytopic set P originated from the
splitting. P is approximated by a tightly enclosing zono-
tope ZP = 〈cZP

, GZP
〉 with an invertible generator matrix.

More precisely, the center and the generator matrix are
computed as follows:

cZP
=

R

2


wmax

j + wmin
j


, GZP

=
R

2
diag


wmax

j − wmin
j


,

with wmax
j = maxj wj and wmin

j = minj wj , where wj

is the j-th vertex of the polytope obtained by applying
the coordinate transformation matrix R−1 to P , with R
representing a suitably chosen (invertible) matrix. R needs
to be best chosen to get a tight over-approximation. To this
purpose, one can adopt two methods:

Principal Component Analysis (PCA): the set of the
vertices of P is interpreted as a set of data and R provides
the transformation to a new orthogonal coordinate system
where the greatest variance of the data is along the first
axis, the second greatest variance of the data is along the
second axis and so on and so forth. The method in Althoff
(2010) can be adopted.

Maximum volume inner ellipsoid : the largest ellipsoidal
inner approximation of P is computed and its axes are
taken as directions of the new coordinate system. The
algorithm presented in Zhang and Gao (2003) can be
adopted to determine the ellipsoidal inner approximation
of a full-dimensional polyhedron by solving a convex
optimization program. We extended such an algorithm so
as to deal with lower-dimensional polyhedra too.

Note that the outer approximation procedure can be
also useful to maintain fixed the maximum number of
generators of all zonotopes: whenever a zonotope has a
larger number of generators, it is outer-approximated by a
zonotope with the chosen maximum number of generators.

3.2 Testing the intersection with the spec set

At each time step k when propagating the reach set, we
need to check if the specification is met for at least one of
the currently computed sets, say Rcur, which can be either
a polytope or a zonotope and is within a mode, say Mcur.
To this purpose, we first need to specify the set Zcur

sp of
states z that are within modeMcur and satisfy the spec. A
H-representation (Zsp,a, zsp,b) of Z

cur
sp is readily obtained

through its definition:

Zsp,az =


Mcur,a

Ysp,aC̃cur


z ≤


mcur,b

ysp,b − Ysp,af̃cur


= zsp,b

where (Mcur,a,mcur,b) and (Ysp,a, ysp,b) are respectively
the H-representation of Mcur and Ysp, and we use the
output transformation in (2) when mode Mcur is active.
Depending on the fact that Rcur is a zonotope, i.e., Rcur =
〈ccur, Gcur〉, or a polytope, i.e., Rcur = (Hcur,a, hcur,b), one
of the following two (linear) feasibility tests can be used
to check if it intersects Zcur

sp :

find α find z

subject to: subject to:

α∞ ≤ 1 Hcur,az ≤ hcur,b

Zsp,aGcurα ≤ zsp,b − Zsp,accur Zsp,az ≤ zsp,b
Note that to solve such problems no explicit representation
of Rcur ∩ Zcur

sp is required.

3.3 Optimal input sequences computation

Suppose that Rcur∩Zcur
sp ∕= ∅ at time step k̄. To determine

an input sequence that leads to the satisfaction of the
specification with the maximum robustness level, we first
recover the switching sequence originating the intersection
Rcur ∩ Zcur

sp , say (i0, i1, . . . , ik̄). According to such a se-
quence, system (1) reduces to the following constrained
affine time varying system:

xk+1 = Aikxk +Bikuk + eik
yk = Cikxk +Dikuk + fik
(xk, uk) ∈ Mik , k = 0, 1, . . . , k̄

(4)

Then, we can adopt the method in Vignali et al. (2014)
for the class of linear time invariant systems by suitably
adapting it to the time-varying affine dynamics in (4). The
key idea is to parametrize each input component as follows:

uki = (1− βi)ûki + βi
ui + ui

2
+ βi

ui − ui

2
wki, (5)

where wki is a set-valued auxiliary signal taking values
in [−1, 1], whereas βi ∈ [0, 1] and ûki ∈ [ui, ui] are
optimization variables to be determined so as to maximize
the size βi(ui − ui) of the interval

Iki = [ûki + βi(ui − ûki), ûki + βi(ui − ûki)] ⊆ [ui, ui].

Note that Iki collapses to the singleton {ûki} when βi = 0,
and coincides with the whole interval [ui, ui] when βi = 1.

We can replace the bilinear term (1 − βi)ûki in (5) with
uβki taking values in [(1−βi)ui, (1−βi)ui], thus obtaining

uki = uβki +
ui + ui

2
βi +

ui − ui

2
βiwki. (6)

Accordingly, the range Iki of uki can be expressed as
Iki = [uβki + βiui, uβki + βiui], and ûki can be recovered
through:

ûki =

 uβki

1− βi
if βi ∈ [0, 1)

0.5(ui + ui) if βi = 1.



We are now in the position to formulate the constrained
optimization problem to determine the input with the
maximum range of variability such that the specification is
satisfied with the PWA system evolving according to (4):

max
βi∈[0,1],uβki,i=1,...,m,k=0,...,k̄

J(β) (7)

subject to:

yk̄ = Cik̄xk̄ +Dik̄uk̄ + fik̄ ∈ Ysp

xk+1 = Aikxk +Bik [uk1 . . . ukm]
T
+ eik , x0 = x̂0

uki = uβki +
ui + ui

2
βi +

ui − ui

2
βiwki

(1− βi)ui ≤ uβki ≤ (1− βi)ui

(xk, uk) ∈ Mik

∀wki ∈ [−1, 1], i = 1, . . . ,m, k = 0, . . . , k̄,

where the cost J(β) can take one of the following forms:
J(β) = minj=1,...,m βj or J(β) =

m
j=1 λjβj with λj ∈

[0, 1], j = 1, . . . ,m, and
m

j=1 λj = 1. Irrespectively of the

chosen form, problem (7) is a linear program.

If problem (7) is feasible, then, a solution to the robust
bounded feasibility problem is found. If instead problem
(7) is infeasible for all the sets Rcur computed at time k̄
that intersect Zcur

sp , then, one should move to time k̄+1 and
repeat similar computations. If the time step index reaches
N and no solution is found, then, the robust bounded
feasibility problem has no solution.

4. REDUCING THE COMPUTATIONAL EFFORT

The reach sets computation involves propagating a set
through the PWA dynamics. Reach sets may intersect
multiple modes, thus generating new branches in the
reach set propagation associated with different switching
sequences. Since the number of switching sequences grows
exponentially with the time horizon length, the problem
may become computationally challenging. In order to
reduce the number of branches, we propose the following
two methods:

Set-containment verification: if some newly computed set
is contained within a previously computed reach set, then,
its propagation is halted.

Maximal invariant set computation: whenever a new mode
is visited when propagating the reach sets, we determine
the maximal invariant set inside that mode, if there is any.
If no state in the invariant set satisfies the specification,
then, we halt the propagation of any reach set that is
contained in such an invariant.

We now describe in more detail some computational as-
pects involved in the implementation of these methods.

4.1 Set-containment verification

Let Rcur be the currently computed set: such a set rep-
resents either a zonotope inside a single mode or a (poly-
topic) part of a zonotope that covers multiple modes. If no
split occurred, then we must check inclusion between two
zonotopes.

In order to check if a zonotope Rcur = 〈ccur, Gcur〉
is contained inside a zonotope Zold, a H-representation
(Hold,a, hold,b) of the container Zold has to be computed.

Such a conversion can be performed by means of the
algorithm described in Althoff (2010). Then, the set-
containment condition for Rcur is given by:

Hold,accur + max
α∈[−1,1]r

Hold,aGcurα ≤ hold,b

which is equivalent to

Hold,accur + Hold,aGcur1 ≤ hold,b

where the operators max(·) and  · 1 are meant to
be applied element-wise and row-wise respectively. If in-
stead a split occurred, we have to check if a poly-
tope Rcur = (Hcur,a, hcur,b) is contained inside Zold =
(Hold,a, hold,b) and the set-containment condition rewrites
as maxp∈Rcur Hold,ap ≤ hold,b, where the maximum is pre-
computed by means of linear programs involving the rows
of Hold,a and matrices Hcur,a, hcur,b.

The applicability of this procedure is limited by the
complexity of the conversion of a G-representation to a

H-representation, which is O

ng


ng

d−1


, with ng denoting

the number of generators and d the space dimension,
Althoff (2010).

4.2 Maximal invariant set computation

Once we fix a mode of the PWA system, say M, the dy-
namics is affine and the maximal invariant set computation
problem can be rephrased as follows.

Given the affine dynamical system

zk+1 = Ãzk + B̃vk + ẽ, (8)

determine (if it exists) the largest set I ⊆ M such that

Ãz + B̃v + ẽ ∈ I for all z ∈ I and for all v ∈ U .
If system (8) has an equilibrium z̄ ∈ M associated to
some constant input v̄ ∈ U , the coordinate transformation
(z̃, ṽ) = (z, v)− (z̄, v̄) can be applied so as to reformulate
(8) as follows:

z̃k+1 = Ãz̃k + B̃ṽk, (9)

where ṽ ∈ Ũ = {ũ ∈ Rm : ũ = v − v̄, v ∈ U}. System (8)
is then reduced to a linear system where both the input
set Ũ and the set M̃ = {z̃ ∈ Rn+m : z̃ = z − z̄, z ∈ M}
contain the origin. In this context, an iterative algorithm
has been proposed in Kolmanovsky and Gilbert (1998)

that computes (if it exists) the maximal invariant set Ĩ

inside M̃, from which the maximal invariant set inside M
for system (8) can be recovered as I = {z ∈ Rn+m : z = z̃+

z̄, z̃ ∈ Ĩ}.
To check if there exists any state in I that satisfies the
specification, we need to introduce first the set ZM

sp that

contains any state z such that C̃z+ f̃ ∈ Ysp, where (C̃, f̃)
denotes the output dynamics associated with mode M.
Then, we have to check if the intersection I∩ZM

sp is empty
and we can use the computational procedure described in
Section 3.2 to this purpose.

5. A NUMERICAL EXAMPLE

In this section we apply the method in Section 3 to a
numerical example of a bouncing ball. The ball is thrown
with a force that acts only at the first time instant by
providing some acceleration input. Then, it evolves of free



motion. We aim at verifying if the acceleration input at the
first time instant can be chosen so that the ball reaches a
given region by a prescribed minimum amount of bounces.

The model of the system is a discrete-time PWA obtained
by sampling the continuous ball dynamics with period
Ts = 0.2 s. The state x and the input u are given by x =
[nb ph pv vh vv δu]

T ∈ R6, u = [ah av]
T ∈ U = [u, u], where

u = [0 − 100]T , u = [50 0]T , nb is the number of bounces,
ph and pv are respectively the horizontal and vertical
component of the ball position, vh and vv are respectively
the horizontal and vertical velocity components, and δu is
a scalar used to transmit the acceleration u to the ball at
the initial time instant only.

The system dynamics is completely described by four
different behaviours: forced motion (FoM), forced bounce
(FoB), free motion (FrM) and free bounce (FrB), described
by the following equations and activation conditions:

FoM :






nb,k+1 = nb,k

ph,k+1 = ph,k + Tsvh,k
pv,k+1 = pv,k + Tsvv,k
vh,k+1 = vh,k + Tsah,k
vv,k+1 = vv,k + Ts(av,k − ag)

δu,k+1 = 1

if


δu,k < 0.5

pv,k + Tsvv,k > 0

FoB :






nb,k+1 = nb,k + 1

ph,k+1 = ph,k + Tsvh,k
pv,k+1 = 0

vh,k+1 = vh,k + Tsah,k
vv,k+1 = −βrvv,k
δu,k+1 = 1

if


δu,k < 0.5

pv,k + Tsvv,k ≤ 0

FrM and FrB are activated if

FrM :


δu,k ≥ 0.5

pv,k + Tsvv,k > 0
FrB :


δu,k ≥ 0.5

pv,k + Tsvv,k ≤ 0

and have the same equations as FoM and FoB respectively,
but with the input set to zero (ah,k = av,k = 0). The
gravity acceleration ag and the restitution coefficient of
the ball βr are set equal to ag = 9.8 m

s2 and βr = 0.8. FoM
and FoB model respectively the ball motion and bounce
when an external force is acting on it, while FrM and FrB
model respectively the ball motion and bounce when the
external force is not affecting the ball.

The system modes are defined in the state-space through
the polyhedral partition associated to the following half-
spaces: HS1 : −δu ≤ −0.5 and HS2 : pv + Tsvv ≤ 0. To
identify the i-th mode Mi of the system (i = 1, . . . , 4), we
can use the following relation: i = 2δi,1 + δi,2 + 1, where
δi,j = 1 if mode Mi is contained in the half-space HSj ,
and 0, otherwise. FoM is then associated to mode 1, FoB is
associated to mode 2, FrM to mode 3 and FrB to mode 4.
The above equations, conditions and half-spaces are then
expressed in a compact way through the equation:

xk+1 = Aixk +Biuk + ei if (xk, uk) ∈ Mi.

The system is initialized at x0 = x̂0 = [0 0 10 0 0 0]T ,
which activates mode M1 (FoM) at time k = 0. By intro-
ducing y = [n+

b p+h p+v ]
T and the output transformation:

yk = Cixk +Diuk + fi if (xk, uk) ∈ Mi

where Ci = MyAi, Di = MyBi, fi = Myei, My = [I3 O3],
we can express the output specifications through the set
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Fig. 1. Projections onto the pv-vv space of the computed
sets in the horizon [0, k̄] associated to the switching
sequence SS∗: in red the mode boundaries, in black
the computed sets with their centers trajectory, in
magenta the outer-approximations of the split ones
and in blue the projection onto pv-vv of the set of
states with output y ∈ Ysp for some u ∈ U .

Ysp = [nb,+∞)× [20, 22]× [5, 7],

i.e., the ball is required to reach the square [20, 22]× [5, 7]
after at least nb bounces. The goal then is determining u
at time k = 0 such that y enters Ysp at the earliest time
instant k̄.

Consider nb = 7. In our implementation on a personal
computer equipped with a dual-core 2.6 GHz Intel Core
i5 processor and 8 GB of RAM, the value k̄ = 103 with
an admissible switching sequence SS∗ = (i∗0, . . . , i

∗
k̄
) is

found in about 2 minutes. Projections of the computed
sets in [0, k̄] associated to SS∗ are shown in Figure 1.
Outer-approximations of split sets are computed using
the PCA technique and linear programs are solved with
CPLEX. After computing k̄ and SS∗, problem (7) is solved
by applying SS∗ and minimizing J(β) = minj=1,...,m βj ,
obtaining β∗ = [0.0097 0.0071]T and u∗

β0 = [4.8544 −
95.0682]T , which correspond to the maximal input range:

I∗0 = [4.8544, 5.3398]× [−95.7797,−95.0682] ⊆ U .
If we apply u∗

0 = [5.0971 −95.4240]T , i.e., the center of I∗0 ,
the corresponding state trajectory in the horizon [0, k̄] is
made of the centers of the (zonotopic) state sets obtained
by applying all the inputs in I∗0 . Figure 2 represents the
simulated values of p+h and p+v when u0 is chosen both in I∗0
and U \ I∗0 : as one can see, when u0 ∈ I∗0 the specifications
at time k̄ are always satisfied, while this is not necessarily
true when u0 ∈ U \ I∗0 .
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Fig. 2. Values of p+h and p+v for k ∈ [0, k̄] obtained by
choosing u0 ∈ I∗0 (red) and u0 ∈ U \ I∗0 (blue) with
the boundaries of Ysp (black).

An alternative approach to compute k̄ and SS∗ based
on Mixed Integer Linear Programming (MILP) is now
presented and then applied to our example. Consider the
equivalent Mixed Logical Dynamical (MLD) reformulation
of system (1) (see Bemporad and Morari (1999a) for the
details):



xk+1 = Axk +Buuk +Bδδk +Bzzk + f

yk = Cxk +Duuk +Dδδk +Dzzk + g

Exxk + Euuk + Eδδk + Ezzk ≤ e

(10)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are respectively the
state, input and output of system (1), while z ∈ Rq and
δ ∈ {0, 1}d are vectors of auxiliary continuous and binary
variables respectively. More precisely, δk is the binary
conversion of the active mode index at time k. All the
matrices and vectors in (10) are of suitable dimensions. To
compute k̄ and SS∗ with reformulation (10), we proceed
as follows. At step k ∈ [0, N ], a feasibility problem is
solved where variables u, δ and z are chosen in [0, k] so
as to satisfy the constraints (10), u ∈ U and yk ∈ Ysp.
Since (10) is a set of linear equalities and inequalities and
Ysp is polyhedral, the problem at hand is a MILP. If the
MILP is feasible, then k̄ = k and SS∗ is readily obtained
from the optimized binary vectors {δ∗j }kj=0, otherwise the
same MILP is solved by choosing u, δ and z in the horizon
[0, k + 1] and so on, until k = N . If for k = N no feasible
solution is found, then the bounded feasibility problem has
no solution.

Table 1 shows the time required to compute SS∗ for
different values of nb when using the set-based reachability
computation method and the introduced MILP method,
including also the case with k̄ known. The MILP approach
is affordable only when nb (and thus k̄) is small. Note that
a single MILP needs to be solved when k̄ is known. Yet,
this is more costly than performing reachability compu-
tations for large values of k̄. Mixed integer programs are
solved with CPLEX, which by default employs parallel
MIP optimization. A parallel implementation of reach set
propagation along different branches should be investi-
gated to speed up the set-based reachability computation
method proposed in this paper.

Table 1. Time comparison between set-based
reachability (SBR) and MILP approach.

nb = 2 nb = 3 nb = 5 nb = 7

SBR ∼ 6 s ∼ 15 s ∼ 53 s ∼ 82 s

MILP (k̄ unknown) ∼ 1 s ∼ 6 s ∼ 165 s ∼ 5280 s

MILP (k̄ known) ∼ 0.2 s ∼ 1 s ∼ 10 s ∼ 225 s

Finally, we can assess the combinatorial complexity of the
adopted methods by referring to the number of switching
sequences for the set-based reachability method and the
number of binary variables for the MILP method. The
maximum number of switching sequences in [0, k̄] is given

by sk̄ = 2dk̄. In the MILP method, since k̄ MILPs are
solved where the j-th MILP has 2dj binary variables,

j = 1, . . . , k̄, we have 2d(1−2dk̄)
1−2d

binary variables in total.

If k̄ is known, the number of binary variables is 2dk̄,
which equals the number of switching sequences in the
set-based reachability method. It then appears that by
propagating the reach sets through the system dynamics,
we are better exploiting the structure of the problem
with respect to mathematical programming, where this is
embedded within the constraints.

6. CONCLUSIONS

In this paper, robust bounded feasibility verification of
PWA systems has been addressed through an approach
based on reach sets computation. When the time horizon
length is large, then, the proposed approach represents
a valid alternative to other approaches for PWA systems
based, e.g., on a MILP formulation.
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Schupp, S., Ábrahám, E., Chen, X., Ben Makhlouf, I.,
Frehse, G., Sankaranarayanan, S., and Kowalewski, S.
(2015). Current challenges in the verification of hybrid
systems. In Cyber Physical Systems. Design, Modeling,
and Evaluation, 8–24.

Vignali, R., Deori, L., and Prandini, M. (2014). Control
input design: detecting non influential inputs while
satisfying a reachability specification. IFAC Proceedings
Volumes, 47(3), 1416–1421.

Zhang, Y. and Gao, L. (2003). On numerical solution of
the maximum volume ellipsoid problem. SIAM Journal
on Optimization, 14(1), 53–76.

Ziegler, G.M. (2012). Lectures on polytopes, volume 152 of
Graduate Texts in Mathematics. Springer-Verlag New
York, New York, NY, USA.


