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1. Introduction. Often at the earliest stage of an engineering project, a pre-
liminary optimization could be useful, in order to allow the designer to ascertain the
envisaged performance of the system under development.

Providing an efficient (analytical) tool to quickly define the Pareto-optimal set
could be an extremely valuable chance to make the right design decision at the right
time.

The procedure proposed here to obtain the Pareto-optimal set in analytical form
refers mostly to design problems described by a limited number of design variables 
and a limited number of objective functions and constraints.

In the first part of the paper, the analytical derivation of the expression of the
Pareto-optimal set for multi-objective optimization problems is dealt with.

According to the knowledge of the authors, in the literature, very few papers
exist on this topic and related issues. A survey of current continuous multi-objective
optimization concepts and methods is presented in Ref. [19]. Some relevant con-
tributions are given in Ref. [17] and Ref. [20] in which some new formulations of
the Fritz John first order conditions are proposed and analyzed. In Ref. [30] first
and second order conditions are proposed for a convex multi-objective problem via
scalarization and in Ref. [1] some second order conditions are analyzed in detail. In
Refs. [17, 20, 30, 1, 32, 26] necessary and/or sufficient conditions are discussed but
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no procedures are introduced nor mentioned to allow the analytical derivation of the
Pareto-optimal set. A slightly different formulation of the Fritz-John conditions is
used in Ref. [4], where a symbolic algorithm for finding the Pareto front is discussed.

The procedure we propose in the paper is based on the reformulation of the Fritz
John conditions for Pareto-optimality (first order conditions). Necessary conditions (a
relaxed form of the Fritz John ones) are introduced and used to define the procedure
to find analytically the Pareto-optimal set [18].

In the second part of the paper basic engineering examples are used to show the
effectiveness of the proposed procedure.

First, the Fonseca and Fleming problem with two design variables and two ob-
jective functions has been addressed.

Second, the diameter of two spheres pressed one against the other have been de-
signed to obtain mimimum mass, minumum compliance with the constraint of struc-
tural integrity.

Third, an ideal cantilever has been designed in order to minimize both mass and
deflection in presence of maximum stress and buckling design constraints. Analytical
solutions for optimal beam design are described in Ref. [25] for a single objective
problem (min compliance) where the design variable is the area of the beam. In Refs.
[13, 21, 6, 10], the multi-objective problem referring to the derivation of an optimal
cantilever beam has been introduced and solved by applying numerical optimization
methods.

Fourth, the Fonseca and Fleming problem with three design variables, two objec-
tive functions and two design constraints has been addressed.

2. The Fritz John necessary conditions. A multi-objective optimization
problem can be formulated as (bold characters indicate vectors or matrices), see Ref.
[23]

minimize F(x) = ( f1(x), f2(x), ..., fk(x) )

subject to x ∈ S = {x ∈ Rn | G(x) = (g1(x), g2(x), ..., gm(x)) ≤ 0}
(2.1)

The problem (2.1) has n design variables (x1, ..., xn), k objective functions (f1, ..., fk),
and m constraint functions (g1, ..., gm).

DEF. Pareto-optimal solution (global). Given a multi-objective optimization prob-
lem (minimization) considering n design variables and k objective functions, the
Pareto-optimal solution xi satisfies the following conditions

6 ∃xj :

{

fn(xj) ≤ fn(xi) n = 1, 2, 3, ..., k
∃l : fl(xj) < fl(xi)

(2.2)

The Fritz John necessary conditions for Pareto-optimality are reported below (see
Ref. [23])



Fritz John conditions. Let the objective and constraint functions of problem (2.1)
be continuously differentiable at a decision vector x∗ ∈ S. A necessary condition for x∗

to be Pareto-optimal is that vectors must exists reading 0 ≤ λ ∈ Rk and 0 ≤ µ ∈ Rm.
If (λ,µ) 6= (0,0)







∑k
i=1 λi∇fi(x

∗) +
∑m

j=1 µj∇gj(x
∗) = 0

µjgj(x
∗) = 0 ∀j = 1, ...,m.

(2.3)

The Fritz John conditions (2.3) become the well known Karush-Kuhn-Tucker
(KKT) sufficient conditions for Pareto-optimality if λ 6= 0 and if objective and con-
straint functions are convex. Dealing with convex multi-objective optimization prob-
lems, every local Pareto-optimal solution is also global Pareto-optimal, see Ref. [23].

Convexity can be easily checked by considering the Hessian H of a function f(x).
If the Hessian is positive semi-definite (H(f(x)) ≥ 0) then f(x) is convex [3].

Actually, the convexity assumption can be relaxed and the KKT sufficient con-
ditions are also valid if the objective functions are pseudo-convex and the constraint
functions quasi-convex, see Ref. [17, 20].

A function f(x) is quasi-convex if f(βxI + (1− β)xII) ≤ max[f(xI), f(xII)] for
all 0 ≤ β ≤ 1 and for all xI , xII .

A differentiable function f(x) is pseudo-convex if for all xI ,xII such that∇f(xI)T (xII−
xI) ≥ 0, we have f(xII) ≥ f(xI). Every pseudo-convex function is also quasi-convex
[23].

Pseudo-convexity can be checked for a twice differentiable function f(x) by means
of the first and second partial derivatives arranged into the bordered determinant
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∣

∣

∣
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(2.4)

along with its leading principal minors
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∣

∣
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... |Bn| = |B|(2.5)

where fi ≡ ∂f/∂xi and fij ≡ ∂2f/∂xi∂xj .

If |B1| < 0, |B2| < 0, ..., |Bn| < 0 for all x then f(x) is pseudo-convex [28, 29]
(sufficient condition).

3. The L matrix. Let ∇F and ∇G be the matrices of the gradients (Jacobian
matrices) of objective and constraint functions respectively



∇F = [∇f1 ∇f2 ...∇fk] =







∂f1
∂x1

· · · ∂fk
∂x1

...
. . .

...
∂f1
∂xn

· · · ∂fk
∂xn






[n x k]

∇G = [∇g1 ∇g2 ...∇gm] =







∂g1
∂x1

· · · ∂gm
∂x1

...
. . .

...
∂g1
∂xn

· · · ∂gm
∂xn






[n xm]

(3.1)

Let O be the null matrix [m x k] and

G = diag(g1, g2, ..., gm) [m xm](3.2)

a diagonal matrix which has on the main diagonal the constraint functions.
Let L be the matrix

L =

[

∇F ∇G
O G

]

[(n+m) x (k +m)](3.3)

The Fritz John conditions can be simply written as follows.

Fritz John conditions (matrix form). Let the objective and constraint functions of
problem (2.1) be continuously differentiable at a decision vector x∗ ∈ S. A necessary
condition for x∗ to be Pareto-optimal is the existence of a vector δ ∈ Rk+m such that

L · δ = 0

with L = L(x∗) and δ ≥ 0 and δ 6= 0.
(3.4)

This definition is completely equivalent to definition (2.3) since δ is the vector

δ =

[

λ

µ

]

[(k +m) x 1](3.5)

Let us notice that no constraints on the respective values of n, k,m have been set,
so L is in general rectangular.

4. Analytical derivation of the Pareto-optimal set. The matrix form of
the Fritz John conditions (3.4) can be employed to derive the analytical expression of
the Pareto-optimal set.

All of the following considerations refer to problems in which n ≥ k, that is the
number of design variables is greater or equal than the number of objective functions.

The Fritz John conditions (see Eq. 3.4) can be relaxed by removing the condition
δ ≥ 0.



The relaxed Fritz John conditions read

L · δ = 0

with L = L(x∗) and δ 6= 0.
(4.1)

This relaxation implies that we are dealing with necessary conditions also in
presence of convex objective functions and constraints. So, the analytical expression
derived on the basis of the relaxed form contains the actual Pareto-optimal set but
also non-Pareto-optimal solutions.

The non-Pareto-optimal solutions have to be eliminated by computing the mini-
mum of each objective function. Such minima obviously define the boundaries of the
Pareto-optimal set.

The relaxed Fritz John conditions (Eq. 4.1) are a homogeneous system of linear
equations [2]. The trivial solution δ = 0 is obviously of no interest.

If we consider the homogeneous overdetermined system of (n+m) linear equations
in (k+m) variables, L ·δ = 0, there will be non-trivial solutions only when the system
has enough linearly dependent equations so that the number of independent equations
is at most (k+m). But being (n+m) ≥ (k+m), the number of independent equations
(i.e. rank(L)) could be as high as (k +m), in which case the trivial solution δ = 0
is the only one. The matrix LTL is positive definite if and only if all the columns of
L are linearly independent [7], i.e. rank(L) = k +m and a positive definite matrix is
always nonsingular. If LTL is nonsingular, there is the unique trivial solution δ = 0,
but if LTL is singular there are infinitely many solutions. This approach gives the
exact solution when one does exist.

So, eq. 4.1 admits non-trivial solution if

det(LTL) = 0.(4.2)

For a square matrix L, this condition is simply obtained by setting to zero its
determinant.

If n < k (the number of design variables is smaller than the number of objective
functions), det(LTL) is always zero and the problem is no longer a minimization
problem. The analytical expression of the Pareto-optimal set can be simply derived
by directly applying the substitution method [22, 21].

So, we can state the following necessary conditions for Pareto-optimality (relaxed
Fritz John conditions)

L-matrix necessary conditions for Pareto-optimality. Let the objective and con-
straint functions of problem (2.1) be continuously differentiable at a decision vector
x∗ ∈ S and let be n ≥ k. A necessary condition for x∗ to be Pareto-optimal is that
det(LTL) = 0 with L = L(x∗).

By computing the determinant of the L matrix, the analytical relationship be-
tween the design variables that represents the Pareto-optimal set in the design variable
space can be obtained.

The flow chart of the proposed procedure to find the Pareto-optimal set in the
design variable space is shown in Fig. 4.1.

For a number of special problems, the L-matrix necessary conditions for Pareto-
optimality can be further simplified as described is the following subsections.
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Fig. 4.1. Flow chart of the proposed procedure.



4.1. Unconstrained problem. Clearly, if the problem (2.1) is unconstrained,
that is there are no constraint functions, the L matrix is simply L = ∇F. Hence, the
L-matrix condition is

det(LTL) = 0 ⇒ det(∇FT∇F) = 0(4.3)

4.2. Even number of design variables and objective functions. If n = k,
that is the number of design variables is equal to the number of objective functions,
the L matrix is square. So, it is not necessary to multiply it by its transposed matrix
and the L-matrix condition is simply, see Eq. (3.2,3.3)

det(LTL) = 0 ⇒ det(L) = 0 ⇒
(

m
∏

i=1

gi

)

· det(∇F) = 0(4.4)

Hence, the Pareto-optimal set for the constrained problem can be an active con-
straint and/or the Pareto-optimal set for the unconstrained problem, see Eq. (4.3).

4.2.1. Unconstrained problem with n = k = 2. For the simplest multi-
objective unconstrained problem with two objective functions and two design vari-
ables, the L-matrix condition is

det(∇FT∇F) = 0 ⇒ det(∇F) = 0 ⇒ ∂f1
∂x1

· ∂f2
∂x2

=
∂f1
∂x2

· ∂f2
∂x1

(4.5)

According to the knowledge of the authors, this formula is original. The formula
has been successfully applied by the authors in Ref. [12] to solve the actual and very
important engineering problem referring to the trade-off between road-holding and
comfort of ground vehicles.

5. Case studies. A number of case studies are presented which address the
derivation of the Pareto-optimal set either in the design variable domain or in the
objective function domain.

5.1. Case #1. Two design variables, two objective functions, no con-
straints. The problem proposed by Fonseca and Fleming in [11] has been selected
from the ones presented in the literature [27], and used to find analytically the Pareto-
optimal set (see Fig. 4.1).

The problem has two design variables and two objective functions and reads

minimize

(

f1(x1, x2) = 1− e−[(x1−1/
√
2)2+(x2−1

√
2)2]

f2(x1, x2) = 1− e−[(x1+1/
√
2)2+(x2+1

√
2)2]

)

(5.1)

Convexity can be easily verified for the problem given by Eq. 5.1 by computing the
Hessian matrix for the two objective functions and checking that H(f1(x1, x2)) ≥ 0
and H(f2(x1, x2)) ≥ 0, see Step 1 in Fig. 4.1.

Eq. 4.5 (Step 2 in Fig. 4.1) can be directly applied to obtain the analytical
expression of the Pareto front, see Step 3 in Fig. 4.1.

(x1 − 1/
√
2)(x2 + 1/

√
2) = (x1 + 1/

√
2)(x2 − 1/

√
2) ⇒ x1 = x2(5.2)



which has to be limited by the minima of the two objective functions considered
separately.

The two minima are computed by directly setting to zero the gradients, being
both the Hessian matrixes for f1 and f2 positive semi-definite, see Step 4 in Fig. 4.1.

∇f1 = 0 (H(f1) ≥ 0) ⇒ x1 = 1/
√
2, x2 = 1/

√
2

∇f2 = 0 (H(f2) ≥ 0) ⇒ x1 = −1/
√
2, x2 = −1/

√
2

(5.3)

So the analytical expression of the Pareto-optimal front in the design variables
domain (see Step 5 in Fig. 4.1) reads

x1 = x2 with − 1/
√
2 ≤ x1 ≤ 1/

√
2 and − 1/

√
2 ≤ x2 ≤ 1/

√
2.(5.4)

and in the objective functions domain the analytical expression of the Pareto-
optimal front (obtained by simple substitution) reads

f1 = 1 + (f2 − 1) e−4+4
√

− log(1−f2) 0 ≤ f2 ≤ 0.982.(5.5)

Even if the two objective functions are convex, the Pareto front is non-convex,
so the Pareto-optimal set cannot be computed by applying a simple weighted sum
approach [21]. A state of the art multi-objective genetic algorithm (MOGA)[15] has
been used to validate the analytical results. The results are shown in Fig. 5.1.
The MOGA requires about ten thousand objective functions evaluation to obtain a
reasonable level of accuracy.

5.2. Case #2. Two design variables, two objective functions, one con-
straint. The problem has two design variables, i.e. the diameters of, respectively, two
spheres D1 and D2. Two objective functions are to be minimized, namely the total
mass M and the relative displacement of the two spheres along the axis of loading y.
The design constraint is the maximum stress in one (or both) of the spheres σmax.
The problem could refer to the basic design of sintered materials [8]. The elastic stress
and deformation produced by the pressure between two spheres has been modelled on
the basis of Hertz’s theory [31].

The optimization problem reads

minimize

(

M(D1, D2) =
1
6 π ρ

(

D1
3 +D2

3
)

y(D1, D2) = ky
3

√

P 2 (D1+D2)
D1 D2 E2

)

σmax = kσ 3

√

P E2 (D1+D2)2

D2
1 D2

2
≤ σadm

(5.6)

given ρ the material density, E the material modulus of elasticity, σadm the ma-
terial admissible stress, kσ = 0.616, ky = 1.55 [31].

Pseudo-convexity can be easily verified for the problem in Eq. 5.6 by applying
Eq. 2.5. M(D1, D2) and y(D1, D2) are pseudo-convex, being |B1| < 0, |B2| < 0 for
all D1, D2, see Step 1’ in Fig. 4.1.

Eq. 4.4 (Step 2 in Fig. 4.1) can be directly applied to obtain the analytical
expression of the Pareto front, see Step 3 in Fig. 4.1.
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Fig. 5.1. Analytical vs. numerical solution. Pareto-optimal set into the design variables domain
(top) and into the objective functions domain (bottom) for the problem 5.1.

P 2 ky π ρ
(

D1
4 −D2

4
)



σadm − kσ
3

√

E2 P (D1 +D2)
2

D1
2 D2

2



 = 0(5.7)

The Pareto-optimal front for the constrained problem is coincident with the
Pareto-optimal set for the unconstrained problem, see Eq. (4.3), up to the activation
of the maximum stress constraint σmax = σadm and it reads

D1 = D2 for D2 ≥ 2E

√

P k3σ
σ3
adm

(5.8)

which has to be limited by the minima of the two objective functions considered
separately.



The two minima read, see Step 4 in Fig. 4.1.

min M(D1, D2) D1 = D2 → 0
min y(D1, D2) D1 = D2 → ∞(5.9)

Eqs. 5.9 don’t affect the results given in Eq. 5.8, so the analytical expression of
the Pareto-optimal set in the design variables domain (see Step 5 in Fig. 4.1) reads

D1 = D2 for D2 ≥ 2E

√

P k3σ
σ3
adm

(5.10)

and in the objective functions domain the analytical expression of the Pareto-
optimal set (obtained by simple substitution) reads

y = ky 3

√

2P 2

E2 (3M
π ρ )

1
3

(5.11)

A numerical procedure has been used to validate the analytical results. The
results are shown in Fig. 5.2.

5.3. Case #3. Two design variables, two objective functions, two (four)
constraints. Let us imagine that a cantilever has to be designed. The cantilever,
shown in Fig. 5.3, has a rectangular cross section and a force acts at the free end.
Let us assume that the optimization problem to be solved is to find the values of the
design variables (length b and length h) defining the cantilever cross section1 in order
to minimize both the cantilever mass and the cantilever deflection at its free end. The
two constraints refer respectively to the maximum stress at the fixed end (the stess
must be less than (or equal to) the admissible stress) and to elastic stability (buckling
to be be avoided).

A designer should choose the values defining the cross section of the cantilever in
order to get it as light and stiff as possible, avoiding both a failure (due to too high
stress) and elastic instability.

In mathematical form, the above optimization problem may be stated as follows.
Given
l the cantilever length [m]
b the beam cross section width [m]
h the beam cross section height [m]
J = 1

12bh
3 the flexural moment of inertia

of the section (n–n axis) [m4]
F the force applied at the cantilever free end (see Fig.5.3) [N]
σE the material yield stress [MPa]
η safety coefficient (≥1) [–]
σadm = σE/h the admissible stress at the cantilever fixed end [MPa]
E the material modulus of elasticity (Young’s modulus) [MPa]
G the material modulus of tangential elasticity [MPa]
ρ the material density [kg/m3]

1b and h may vary, respectively, within two well defined ranges
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Fig. 5.2. Analytical vs. numerical solution. Pareto-optimal set into the design variables
(D1,D2) domain (top) and into the objective functions (y,M) domain (bottom) for the problem
5.6. Material 100Cr6 Steel, ρ = 7800 kg/m3, E = 210000MPa, σadm = 2500MPa, F = 100N ,
kσ = 0.616, ky = 1.55.

and defining
m = ρbhl the cantilever mass [kg]

y =
1

3

Fl3

EJ
= 4

Fl3

Ebh3
the deflection at the free end

due to load F [m]

σmax = 6
Fl

bh2
the maximum stress located

at the top of the cross section
at the fixed end of the cantilever [MPa]

Fcr =
k1b

3h

l2

√

(

1− k2
b

h

)

EG the critical load (see [31, 14]) [N]



Fig. 5.3. Cantilever whose rectangular cross section has to be defined in order to minimize both
the cantilever mass and the cantilever deflection at the free end.

find b and h such that

bmin ≤ b ≤ bmax

hmin ≤ h ≤ hmax

and such that

min

(

m(b, h)
y(b, h)

)

= min

(

ρbhl

4 Fl3

Ebh3

)

(5.12)

subject to

σmax = 6
Fl

bh2
≤ σadm = σE/η(5.13)

F < Fcr =
k1b

3h

l2

√

(

1− k2
b

h

)

EG(5.14)

In Fig. 5.4 the results of such a computation are shown. Each point in the
rectangle on the plane b–h corresponds a point in the manifold on the plane y–m.
The rectangular manifold on the plane b–h is transformed into the manifold on the



(a) (b)

Fig. 5.4. (a) cantilever cross section width b and height h that are considered for the op-
timization. (b) cantilever mass m(b, h) and cantilever deflection at the free end y(b, h). The
manifold in (b) accounts for the constraints on the maximum stress (5.13) and on the critical
load (5.14). Data: (symbols referring to (5.13) , (5.14) and Fig. 5.3) bmin = 0.001m, bmax =
0.020m, hmin = 0.001m, hmax = 0.200m, ρ = 2700 kg/m3 E = 70000MPa, G = 27000MPa,
σE = 160MPa, η = 1, F = 1000N, l = 1m, k1 = 0.669, k2 = 0.63.

(a) (b)

Fig. 5.5. The two Pareto–optimal sets defined, respectively in the design variable domain (a)
and in the objective function domain (b). Data in Fig.5.4.

plane y–m. In other words, a transformation is established between the domain of
design variables and the domain of objective functions.

As all the possible combinations of design variables b, h have been used to generate
m(b, h) y(b, h) (having verified thatm(b, h) y(b, h) do satisfy the constraints (5.13) and
(5.14)), the question is now how to find the values of b, h which minimize concurrently
the mass m and the deflection y at the free end of the cantilever.
All of the solutions corresponding to points in Fig. 5.5 which do not lay on the
bold line (defined by the two end points ymin and mmin) are wrong solutions to be
discarded by a designer. Conversely, the good or Pareto-optimal solutions are those
and only those which are represented by points laying on the said bold line, the set
of these solutions is the Pareto–optimal set.

The task of the designer is that of choosing a solution from the Pareto–optimal
set and only from this set (Ref. [15]).



5.3.1. Analytical Solution. The analytical solution of the stated optimization
problem can be found by firstly considering the problem as unconstrained, i.e. admis-
sible maximum stress and elastic stability constraints are removed from the problem
formulation. The objective functions are continuous and differentiable. The beam
deflection y is convex [3]

H = 4Fl3
[

2
b3h3

3
b2h4

3
b2h4

12
bh5

]

(5.15)

being the eigenvalues of matrix H both real and positive.
The beam mass m is not convex, but only pseudo-convex, being m strictly mono-

tonically increasing for any feasible value of b and h (b > 0, h > 0).
The L-matrix defined by Eq. (3.3) with ∇G =0 (no constraints present), reads

L =

[

h l ρ − 4F l3

E b2 h3

b l ρ − 12F l3

E bh4

]

(5.16)

By applying Eq. (4.5), we have

−8F l4 ρ

E b h3
= 0(5.17)

which has solution only if bh3 → ∞. Such solution not belonging to the set
of the positive and finite numbers has no physical meaning. The nonexistence of
the Pareto-optimal set can be proved by considering the ǫ-constraint method [16]
and by applying the monotonicity principles [24]. The first monotonicity principle is
violated for this optimization problem. In fact, if we apply the ǫ-constraint method
and we consider the beam mass (m) as objective function and the beam deflection
(y(b, h)) as (active) design constraint, the objective function (m(b, h)) is monotonically
increasing by considering both the design variables (b, h), but the design variables are
not bounded below by the active constraint on beam deflection (y(b, h)).

By including upper and lower bounds for b and h, the Pareto-optimal set for the
unconstrained problem is given by the two boundaries on the design variables domain
(b = bmin and h = hmax), as shown in Fig. (5.6). The Pareto-optimal set is limited
between minm = m(bmin, hmin) and min y = y(bmax, hmax).

If a sufficiently large design space is considered, the two design constraints read

σ =
6F l

b h2
≤ σmax(5.18)

Fcr =
k1b

3h

l2

√

(

1− k2
b

h

)

EG ≥ F(5.19)

that for any given b can be rewritten as

h ≥
√

6F l

b σmax
(5.20)
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Fig. 5.6. The two Pareto–optimal sets defined, respectively in the design variable domain (a)
and in the objective function domain (b). Unconstrained problem with bmin ≤ b ≤ bmax and
hmin ≤ h ≤ hmax. Data in Fig.5.4.
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Fig. 5.7. Equation (5.21) represents the buckling limit. It has a minimum at b, h. For b > b

the buckling constraint equation (5.21) has no physical meaning.

h ≥ b k2
2

+

√

E2 G2 b8 k1
2 k2

2 + 4E F 2 G l4

2EGb3 k1
(5.21)

Eq. (5.20) represents the limit on the admissible maximum stress, it is a mono-
tonic decreasing function proportional to 1/

√
b and it has limits h → ∞ as b → 0 and

h → 0 as b → ∞. Eq. (5.21) represents the limit on buckling. It has limits h → ∞ as
b → 0 and h → ∞ as b → ∞. Function (5.21), plotted in Fig. 5.7, is non-monotonic
and it has a minimum at

b = 8

√

36F 2 l4

7EGk21 k
2
2

, h = 8

√

77 F 2 l4 k62
66 EGk21

(5.22)



It must be noticed that for b > b the buckling constraint equation (5.21) has no
physical meaning, i.e. the buckling constraint has to be considered only for b ≤ b.
For b → 0 the equation of the buckling constraint is proportional to 1/b3 and, thus,
is more binding than the constraint on the maximum stress. For b = b and h = h the
maximum stress on the cantilever beam can be computed by replacing Eq. (5.22) into
the expression of the maximum stress (5.18). By considering reasonable values for
the system parameters, the computed stress level for b = b and h = h is unacceptable
for any engineering material. Therefore at b = b (and above) the constraint on the
maximum stress is active.

Since for b → 0 the buckling constraint is active and for b = b the constraint on
the maximum stress is active and the two constraints functions are continuous and
monotonic in the range 0 < b < b, there must be a design solution given by equation

b k2
2

+

√

E2 G2 b8 k1
2 k2

2 + 4E F 2 G l4

2EGb3 k1
−
√

6F l2

b σmax
= 0(5.23)

in which the active constraint switches from buckling to maximum stress.
By substituting Eq. (5.20) into the expressions of the mass and of the deflec-

tion of the cantilever beam, the following equation representing the maximum stress
constraint in the objective functions domain can be obtained

m =
9 ρF E

σmax
2
y(5.24)

Eq. (5.24) is a straight line with positive angular coefficient, so the buckling
constraint is the active one up to the maximum acceptable stress level, and the L-
matrix of Eq. (3.3) reads

L =













h l ρ − 4F l3

E b2 h3

E Gb2 k1 (6 h−7 b k2)

2 l2
√

E G (h−b k2)

h

b l ρ − 12F l3

E bh4

EGb3 k1 (2 h−b k2)

2h l2
√

E G (h−b k2)

h

0 0 −F l2−b3 h k1

√

E G (h−b k2)

h

l2













(5.25)

Being n = k, we apply Eq. (4.4), so we have

h =
b k2
2

+

√

E2 G2 b8 k1
2 k2

2 + 4E F 2 G l4

2EGb3 k1
(5.26)

Eq. (5.26) is the analytical expression of the Fritz John necessary condition when
the buckling constraint is active and it is coincident with the expression of the buckling
boundary condition itself (see Eq. (5.21)). The equation of this set in the space of
the objective functions can be expressed as

y = y (m) = y (m (b, h))(5.27)
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In this case the derivation of y = y(m) could not be performed as the analytical
derivation is cumbersome.

The Pareto-optimal set is the portion of (5.26) limited by Eq. (5.23).
The first and second derivatives of the function can be found by applying the

chain rule

dm

dy
=

∂m

∂b

∂b

∂y
+

∂m

∂h

∂h

∂y
= −E b2 h4 ρ

3F l2
(5.28)

d2y

dm2
=

∂
(

dy
dm

)

∂b

∂b

∂m
+

∂
(

dy
dm

)

∂h

∂h

∂m
=

5E b3 h7 ρ

18F 2 l5
(5.29)

Eq. (5.28) and Eq. (5.29) show that this function is decreasing and convex for any
value of b and h. Therefore, the points belonging to the buckling boundary condition
belong to the Pareto-optimal set [5, 9]. Fig. 5.8 shows the Pareto-optimal set. In the
design variable domain, the Pareto-optimal set is composed by the curve representing
the buckling boundary condition from the point defined by Eq. (5.23) to the point
where h = hmax and then on the boundary h = hmax from this point to b = bmax.

A numerical validation is reported in Fig. 5.9.

5.4. Case #4. Three design variables, two objective functions, two
constraints. The problem proposed by Fonseca and Fleming in [11] with three design
variables has been considered.

The problem has three design variables, two objective functions and two con-
straints
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minimize

(

f1(x1, x2, x3) = 1− e−[(x1−1/
√
3)2+(x2−1

√
3)2+(x3−1

√
3)2]

f2(x1, x2, x3) = 1− e−[(x1+1/
√
3)2+(x2+1

√
3)2+(x3+1

√
3)2]

)

1
2 ≤ x1 ≤ 1

2

(5.30)

Convexity can be easily verified for the problem given by Eq. 5.30 by computing
the Hessian matrix for the two objective functions and checking thatH(f1(x1, x2, x3)) ≥
0 and H(f2(x1, x2, x3)) ≥ 0, see Step 1 in Fig. 4.1.

Eq. 4.2 (Step 2 in Fig. 4.1) can be applied to obtain the analytical expression of
the Pareto front, see Step 3 in Fig. 4.1.

(x1 − x2) (x2 − x3)
(

16x4
1 + 8x2

1 + 5
)

− (x1 − x3) (x2 − x3)
(

16x4
1 + 8x2

1 + 5
)

− (x1 − x2) (x1 − x3) (2x1 − 1)
2
(2x1 + 1)

2
= 0

(5.31)

which gives

x1 = x2 = x3 if 1
2 ≤ (x1 = x2 = x3) ≤ 1

2
x1 = 1

2 , x2 = x3 if (x2 = x3) >
1
2

x1 = 1
2 , x2 = x3 if (x2 = x3) < − 1

2

(5.32)

which has to be limited by the minima of the two objective functions taking into
account the design constraints.

The two minima have been computed, see Step 4 in Fig. 4.1.

min f1 ⇒ x1 = 1
2 , x2 = 1/

√
3, x3 = 1/

√
3

min f2 ⇒ x1 = − 1
2 , x2 = −1/

√
3, x3 = −1/

√
3

(5.33)

So the analytical expression of the Pareto-optimal front in the design variables
domain (see Step 5 in Fig. 4.1) reads

x1 = x2 = x3 if − 1
2 ≤ (x1 = x2 = x3) ≤ 1

2

x1 = 1
2 , x2 = x3 if 1

2 < (x2 = x3) ≤ 1/
√
3

x1 = − 1
2 , x2 = x3 if − 1/

√
3 ≤ (x2 = x3) < − 1

2

(5.34)



A numerical procedure has been used to validate the analytical results. The
results are shown in Fig. 5.10.
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Fig. 5.10. Analytical vs. numerical solution. Pareto-optimal set into the design variables
(x1, x2, x3) domain (top) and into the objective functions (f1, f2) domain (bottom) for the problem
5.30.

6. Conclusion. A procedure has been proposed to find -when possible- the
Pareto-optimal set in analytical form in the design variable domain. Both the ob-
jective and constraint functions are assumed to be twice differentiable and convex
or pseudo-convex. The Fritz John necessary condition for the Pareto-optimality has
been re-formulated in matrix form. This formulation has been employed to derive
a new necessary condition (the L-matrix necessary condition) that is a relaxed form
of the Fritz John one. The L-matrix condition has been applied for the analytical
derivation of the Pareto-optimal set if the number of design variables is greater than
(or equal to) the number of objective functions.



When two design variables and two objective functions define an optimization
problem, the Pareto-optimal set can be computed quite easily by applying the simple
formula derived in the paper which seems original and is based on simple partial
derivatives. If the number of design variables equals the number of objective functions,
the Pareto-optimal set in the design variables domain can be found after the product
of the constraint functions times the determinant of the Jacobian of the objective
functions.

The proposed procedure for the analytical derivation of Pareto-optimal sets ap-
pears to be quite general and can be easily applied to problems with low dimensional-
ity. Obviously a numerical check of the derived analytical Pareto-optimal set is quite
useful. Nonetheless the analytical formulation of the Pareto-optimal set provides a
strong reference for designers.

An attempt to prove the effectiveness of the proposed procedure has been per-
formed. A number of basic engineering problems have been addressed. First, the the
test problem proposed by Fonseca and Fleming with two design variables has been
solved analytically. Second, the respective radii of two spheres pressed one against the
other have been defined by mimimising both the total mass and the total deflection,
with the constraint to preserve their structural integrity. The result is that the diam-
eter of the two spheres must be the same to obtain Pareto-optimal solutions. Third,
the (constrained) dimensions of the rectangular cross section of a cantilever beam sub-
ject to bending have been defined by minimizing both the mass and the deflection,
with the constraint to preserve the structural integrity (referring to both maximum
stress and buckling). The result is that the Pareto-optimal set in the design variable
domain is defined by either the buckling or the maximum height of the rectangular
cross section. Fourth, the test problem proposed by Fonseca and Fleming with three
design variables and two inequality constraints has been solved analytically. The pro-
cedure proposed in the paper could help designers to make a best preliminary choice
at an early stage of a project.
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