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1 Introduction

An efficient way to introduce additional damping into structures
and machines is the application to these systems of a TMD, also
known as dynamic vibration absorber. The classical design proce-
dure for a TMD coupled to an undamped primary system forced
harmonically was setup by Den Hartog [1] and Brock [2]. They
derived the optimal damping and frequency parameters of the
dynamic absorber, as a function of the damper mass and on the
characteristics of the primary system.

Since then, several researchers thoroughly studied the design
and the dynamic properties of the TMDs. A summary of the opti-
mal parameters following different optimization criteria is given

in Refs. [3] and [4]. The criteria for the optimization of the
steady-state response mainly consist in H2 or H1 optimizations,
while those for the transient response aim at maximize the real
part of system eigenvalues [5]. Krenk [6] proposed a practical
approach to determine the optimal damping ratio, and he analyzed
the root locus of the coupled system to assess its free vibration
response.

Most absorber tuning procedures consider an undamped pri-
mary system. For damped primary system, several attempts have
been made to extend the analytical approach [4,7], and for lightly
damped systems approximate analytical solutions are available in
Ref. [8]. A number of studies have focused on the approximate
and numerical solutions. These include, but are not limited to,
numerical optimization schemes [9,10], frequency locus method
[11], and min–max criteria [12,13].

The design procedure for TMDs has also been extended to
multiple degrees-of-freedom absorbers (e.g., see Ref. [14]) or to
TMDs with different configurations such as sky- or ground-hook
[15,10]. The case of TMD coupled to a flexible system is dis-
cussed in Ref. [16]. Moreover, the design procedure has been
recently extended in Ref. [17] to the case of an energy harvesting
TMD, where the damper is replaced by a piezo-electric system for
energy scavenging.

In this paper, a simple explicit design procedure for a TMD
applied to an undamped system forced by a rotating unbalance is
presented. In such systems, the magnitude of forcing frequency
depends quadratically on the forcing frequency, and this feature
leads to optimal parameters that differ from classical values, as it
is shown through the paper.

The optimization procedure follows Brock’s approach for TMD
tuning [2,15], and leads to the optimal tuning parameters that
were already obtained by Puksand [18], using the frequency locus
method [11,19], for the same problem. The optimal tuning param-
eters are then analyzed for the case of damped primary system,
using a numerical analysis, and a procedure for the selection of
optimal parameters in this case is provided.

The rotating unbalance forcing is very common in rotating ma-
chinery, and a practical application of a TMD based on the results
achieved in this paper has been presented in Ref. [20].

2 Equations of Motion

The basic model of a damped TMD, connected to a primary
system and forced by a rotating unbalance, is illustrated in Fig. 1.
The figure shows the primary structure with total mass m0 (inclu-
sive of unbalance), stiffness k0, and damping c0. An unbalanced
mass mu with eccentricity r rotates at constant speed X. The
secondary system has a mass m and it is connected to the
primary structure with a spring of stiffness k and a damper with
viscosity c.

It is convenient to describe the motion of the system in terms of
the absolute motion of the primary system x and the relative
motion y of the mass of the TMD with respect to the structural
mass. With these two independent variables, the equation of
motion of the system can be written as
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where some characteristic parameters of the coupled system are
introduced, as shown below:
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Typically, in the design of a TMD, the natural circular frequency
x0 of the primary system and its damping coefficient f are given,
while the secondary system is selected choosing a value for the
mass ratio l, the frequency xd, and the damping coefficient fd.

The analysis of the system can be further generalized, if the
following nondimensional parameters are introduced:

~x ¼ x
mu

m0

r
~y ¼ y

mu

m0

r
~t ¼ Xt f ¼ xd

x0

g ¼ X
x0

(3)

where ~x and ~y are nondimensional expressions of x and y, ~t is a
nondimensional time, f is the frequency ratio, and g is the nondi-
mensional forcing frequency. Introducing these coefficients in
Eq. (1), we obtain the nondimensional form of the equation of
motion.
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where the dot symbol now represents the derivative with respect
to the nondimensional time ~tð@=@t ¼ X @=@~tð ÞÞ.

The steady-state response of the system subjected to a rotating
unbalance forcing is described by the complex nondimensional
amplitudes ~X and ~Y that take the following form:

~X ¼ ðf
2 � g2Þ þ i2fdfg½ �g2

DR þ iDI
(5)

~Y ¼ g4

DR þ iDI
(6)

with the following denominator terms:

DR ¼ g4 � ðð1þ lÞf 2 þ 4ffdf þ 1Þg2 þ f 2½ �
DI ¼ 2 �ðð1þ lÞfdf � fÞg3 þ ðfdf þ ff 2Þg½ �

(7)

We can notice that the steady-state responses of primary and
secondary system depend on the nondimensional parameters g, f,
f, fd, and l. In particular, the dependence upon the mass ratio l
always appears in the form of (1þ l). The significant difference
with respect to a constant amplitude harmonic forcing is the pres-
ence of a factor g2 in the numerator of Eqs. (5) and (6), due to the
dependence of forcing on the centripetal acceleration.

In the limit of infinite damping ratio fd or infinite stiffness k, no
relative motion y is allowed and the effect of a single primary system
with mass mþm0 is created. The frequency of the limiting situation
of a locked damper will be denoted x1, and its nondimensional
form f1. They are given by

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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¼ x0ffiffiffiffiffiffiffiffiffiffiffi
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The dependence upon the mass ratio can be then expressed with
a dependence upon the parameter f 2

1 ¼ ð1þ lÞ�1
.

In the practical design of a TMD, the mass ratio l is usually
limited and chosen by the designer, considering the overall dimen-
sions of the system. The frequency ratio f and the damping ratio
fd are then chosen as a function of l using optimality criteria. For
systems with a rotating unbalance forcing, optimal parameters dif-
fer from the classical values obtained for harmonic forcing, as it is
demonstrated in Sec. 4 and 5.

3 Dynamic Amplification Function for Undamped

Primary System

Since TMDs are in general applied to primary systems with
very low damping, in the rest of the analysis the structural damp-
ing ratio f will be neglected, because this assumption strongly
simplifies the analytical optimization of the TMD parameters. The
effects of structural damping on the dynamic response of the
system will be studied numerically in Sec. 6.

This simplification allows to write the nondimensional dynamic
amplification ~X and the square of its magnitude as

~X ¼ Aþ 2ifdB

Cþ 2ifdD
j ~Xj2 ¼ A2 þ ð2fdÞ2B2

C2 þ ð2fdÞ2D2
(9)

where A, B, C, and D are, respectively,

A ¼ g2ðf 2 � g2Þ (10)

B ¼ fg3 (11)

C ¼ g4 � ð1þ f 2f�2
1 Þg2 þ f 2 (12)

D ¼ fgð1� g2f�2
1 Þ (13)

Figure 2 shows the magnitude j ~Xj as a function of the forcing
frequency g, for frequency ratio f¼ 1, mass ratio l¼ 0.05, and for
different values of fd. We notice that, like in the standard proce-
dure of the TMD optimization, there are two neutral frequencies
ga and gb where the value of j ~Xj is independent of fd (sometimes
called “fixed points”). For fd !1, the system response tends to
a unique undamped peak of resonance at g¼ f1.

Fig. 1 Damped TMD connected to a primary system forced by
a rotating unbalance



The optimization procedure exploits the existence of the two
neutral frequencies and consists of two steps:

(1) The dynamic amplification at the two neutral frequencies is
set equal by choosing the appropriate TMD frequency f (as
explained in Sec. 4).

(2) Damping fd is then selected in order to have the maxima of
the dynamic amplification function at the two neutral
frequencies.

4 Optimal Frequency Tuning

Looking at the structure of the dynamic amplification formula
in Eq. (9), at the neutral frequencies ga and gb the following equa-
tion must hold for the magnitude to be independent of fd:

B2

A2
¼ D2

C2
) AD ¼ 6BC (14)

The use of the “þ” sign leads to the trivial solution g¼ 0. This
is the static solution when there is no forcing at all, and the system
is at rest. On the contrary, the use of the “�” sign leads to the
following quadratic equation in g2:

ð1þ f�2
1 Þg4 � 2ð1þ f 2f�2

1 Þg2 þ ð2f 2Þ ¼ 0 (15)

whose solutions g2
a and g2

b depend on the choice for the parameters
f and f1. These roots need not to be computed explicitly at this
point, but only in the form of the sum of their reciprocal,2

1
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b
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(16)

The optimal frequency parameter is determined by specifying
the value of the dynamic amplification at the neutral frequencies.
At these frequencies, the response magnitude is independent of fd,
and therefore it can be evaluated for fd !1

j ~Xja;b ¼ lim
fd!1

j ~Xja;b ¼
B

D

����
���� ¼ g2

a;b

1� g2
a;bf�2
1

�����
����� (17)

If we impose the condition j ~Xja ¼ j ~Xjb, since ga< f1< gb, we
get the following relationship:

1

g2
a
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g2
b

¼ 2

f 2
1

(18)

The tuning of the frequency parameter f follows from the
combination of Eqs. (16) and (18). The result for f is

fopt ¼ f1 ¼
1ffiffiffiffiffiffiffiffiffiffiffi

1þ l
p (19)

that is higher than the optimal classical value fclassic ¼ f 2
1 [2,6].

With this choice for f, which guarantees j ~Xja ¼ j ~Xjb, the dynamic
amplification at the neutral frequencies has magnitude

j ~Xja;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

lð1þ lÞ

s
(20)

5 Optimal Tuning for Damping

The optimal value for fd is selected in order to have a local
maximum at the neutral frequencies ga and gb, i.e.,
ðð@j ~Xj=@gÞ

��
a;b
¼ 0Þ.

This approach is quite tricky. As a matter of fact, if we try to
compute the optimal value of fd imposing that ð@j ~Xj=@gÞ

��
a;b
¼ 0,

we get a very complex expression that even standard symbolic
computation software are not able to resolve. A workaround for
this problem is to apply a perturbation method, following Brock’s
approach for the standard TMD optimization [2,15]. Instead of
computing ð@j ~Xj=@gÞ

��
a;b
¼ 0, we impose that j ~Xj2 evaluated in

g2 ¼ g2
a;b þ d has value equal to j ~Xj2a;b. We then compute the limit

for d! 0 and we solve for f2
d. Synthetically, the following system

has to be solved:

f2
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4ðD2j ~Xj2 � B2Þ
from Eq: ð9Þ
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From the previous system of equations, fd can be expressed as
a polynomial expression of d in the form

f2
d ¼

P0 þ P1dþ P2d
2 þ…

Q0 þ Q1dþ Q2d
2 þ…

(22)

where the ratio P0/Q0 is indeterminate in the form 0/0. The limit
for d! 0 can be solved applying de l’Hospital rule

lim
d!0

f2
d ¼

P1

Q1

(23)

Two different solutions are thus obtained, one for g¼ ga and
one for g¼ gb, namely,

fdj2a;b ¼
3l

4ðlþ 2Þ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2ðlþ 1Þ

r
(24)

The optimal value f2
d;opt can be selected as the mean of these

two results,

f2
d;opt ¼

f2
d;a þ f2

d;b

2
¼ 3l

4ðlþ 2Þ (25)

We notice that this parameter is larger than the standard optimal
parameter f2

d;classic ¼ ð3l=8ðlþ 1ÞÞ.

6 Analysis and Discussion of Results

The optimal values for the frequency and damping ratios as a
function of the mass parameter l are shown in Fig. 3. The choice

Fig. 2 Magnitude of ~X versus g with nonoptimal TMD parameters
(f 5 1 and l 5 0.05)

2Given a quadratic equation ax2þ bxþ c¼ 0 with solutions x1 and x2, then
1=x1ð Þ þ 1=x2ð Þ ¼ � b=cð Þ.



of such optimized parameters leads to an optimal frequency
response function of the system, as it is shown in Figs. 4 and 5.
These results report, respectively, the value of the magnitude of ~X
and ~Y as a function of the nondimensional forcing frequency g,
using differently optimized TMD parameters, when the mass ratio
l¼ 0.05 is selected.

We notice that a proper design of the TMD parameters allows
for a significant reduction of the amplitude of oscillation for the

primary system forced by rotating unbalance. This reduction is a
nonlinear function of the mass parameter and is represented in
Fig. 6, where we plot the ratio between the maxima of the fre-
quency response functions (infinity norm) obtained with classical
and optimal parameters as a function of l. Considering that practi-
cal mass ratios are about 0.05–0.10, the reduction can be about
15–18%.

These results hold if we consider a negligible structural damp-
ing f (see also Ref. [8] for standard TMD). If this parameter is
included in the analysis, a practical analytical discussion is not
possible and numerical simulations are necessary. As a matter of
fact, the two neutral frequencies ga and gb disappear and the
whole frequency response function depends on f and l, making
the presented optimization procedure not applicable. However, it
is possible to numerically evaluate the effect of f on the dynamic
amplitudes ~X and ~Y.

Considering a damping ratio for the primary system ranging
from 0% to 5%, we can numerically compute the optimal fd and f
for a given l. We use the subscript num for the numerically
optimized values.

The optimization, in case of 0 < f < flim, leads to a solution in
which the frequency and damping parameters are larger than fd;opt

and fopt, and the both show a positive trend with f.
flim is a threshold value, and if f > flim two different possible

TMD tuning strategies, namely, solutions 1 and 2, are possible.
Solution 1 follows the same trend of the solutions for f < flim,

Fig. 3 Optimal TMD parameters as a function of mass
parameter l

Fig. 4 Magnitude of ~X versus g with optimal TMD parameters,
using l 5 0.05

Fig. 5 Magnitude of ~Y versus g with optimal TMD parameters,
using l 5 0.05

Fig. 6 Ratio between the maxima of the frequency response
functions (infinity norm) obtained with classical and optimal
parameters as a function of the mass ratio

Fig. 7 Numerically optimized values of fd and f as a function of
f for l 5 0.05: solution 1 and solution 2



while solution 2 requires a fd;num ¼ 0 and frequency ratios fnum

with still a positive trend with damping, but with lower values.
For the case of l ¼ 0:05; flim ¼ 0:012, the optimized damping

and frequency ratio values, with respect to the solution with the
undamped primary system f¼ 0 are reported in Fig. 7.

The correspondent maximum amplitudes of vibration, for
l ¼ 0:05; jj ~Xnumjj1 are shown in Fig. 8. After the threshold, the
vibration values of solution 2 are significantly lower.

We can analyze the optimized frequency response functions j ~Xj

existence of such antiresonance can be foreseen in Eq. (5), where
for fd ¼ 0 we have that ~X ¼ 0 for g¼ f. Of course, this is a case
for which the primary source of energy dissipation is given by the
primary system, and it should not be classified as a standard
“primary system plus TMD”; however, this solution turns out to
be more efficient in terms of vibration mitigation.

Finally, we should highlight that the threshold (flim) is also a
function of the mass ratio l. As a final result, we present the trend of
this threshold in Fig. 10: It is clear that the presented optimization
procedure is valid also for lightly damped primary systems, and in
case of damped systems numerical investigations are necessary. The
existence of this second solution does not invalidate the optimization
procedure presented that still holds for practical values of f.

7 Conclusions

A closed-form solution for the optimal values of the parameters
of a TMD, coupled to a primary system and forced by a rotating
unbalance, has been presented.

The inertial forcing due to the rotating unbalance depends
quadratically on the forcing frequency and it leads to optimal
tuning parameters that differ from classical values obtained for
constant harmonic forcing.

Analytical results demonstrate that frequency and damping
ratios, as a function of the mass ratio, should be higher than classi-
cal optimal parameters. Indeed, for practical applications, a proper
TMD tuning allows to achieve a reduction in the steady-state
response of about 20% with respect to the response achieved with
a classically tuned damper.

The presented analytical solution, valid for an undamped pri-
mary system, has been investigated numerically for the case of
damped primary system. If the structural damping is larger than a
given threshold two solutions are possible, their performances
should be investigated numerically.

References
[1] Den Hartog, J., 1956, Mechanical Vibrations, 4th ed., McGraw-Hill, New

York.
[2] Brock, J. E., 1946, “A Note on the Damped Vibration Absorber,” ASME J.

Appl. Mech., 13(4), p. A284.
[3] Zilletti, M., Elliott, S. J., and Rustighi, E., 2012, “Optimisation of Dynamic

Vibration Absorbers to Minimise Kinetic Energy and Maximise Internal Power
Dissipation,” J. Sound Vib., 331(18), pp. 4093–4100.

[4] Asami, T., Nishihara, O., and Baz, A., 2002, “Analytical Solutions to H1 and
H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear
Systems,” ASME J. Vib. Acoust., 124(2), pp. 284–295.

[5] Bisegna, P., and Caruso, G., 2012, “Closed-Form Formulas for the Optimal
Pole-Based Design of Tuned Mass Dampers,” J. Sound Vib., 331(10), pp.
2291–2314.

[6] Krenk, S., 2005, “Frequency Analysis of the Tuned Mass Damper,” ASME J.
Appl. Mech., 72(6), pp. 936–942.

[7] Tsai, H.-C., and Lin, G.-C., 1994, “Explicit Formulae for Optimum Absorber
Parameters for Force-Excited and Viscously Damped Systems,” J. Sound Vib.,
176(5), pp. 585–596.

[8] Ghosh, A., and Basu, B., 2007, “A Closed-Form Optimal Tuning Criterion for
TMD in Damped Structures,” Struct. Control Health Monit., 14(4), pp. 681–692.

Fig. 8 Ratio of maxima jj~Xnumjj‘ as a function of f for l 5 0.05:
solution 1 and solution 2

Fig. 10 flim as a function of the mass ratio l

Fig. 9 Optimized frequency response functions j~Xnumj for solu-
tions 1 and 2, for increasing values on f. For this example, with
l 5 0.05, the threshold is f 5 0:012. Solutions 1 and 2—before
threshold, solution 1—after threshold, and solution 2—after
threshold.

for solutions 1 and 2, for increasing values on f: these functions
are reported in Fig. 9. We see that solution 1 is the evolution of
the standard solution before the threshold, while solution 2 is a
solution with an antiresonance and limited resonance peaks. The

http://dx.doi.org/10.1016/j.jsv.2012.04.023
http://dx.doi.org/10.1115/1.1456458
http://dx.doi.org/10.1016/j.jsv.2012.01.005
http://dx.doi.org/10.1115/1.2062867
http://dx.doi.org/10.1115/1.2062867
http://dx.doi.org/10.1006/jsvi.1994.1400
http://dx.doi.org/10.1002/stc.176


[9] Randall, S., Halsted, D., III, and Taylor, D., 1981, “Optimum Vibration Absorbers
for Linear Damped Systems,” ASME J. Mech. Des., 103(4), pp. 908–913.

[10] Liu, K., and Coppola, G., 2010, “Optimal Design of Damped Dynamic Vibra-
tion Absorber for Damped Primary Systems,” Trans. Can. Soc. Mech. Eng.,
34(1), pp. 119–135.

[11] Thompson, A., 1980, “Optimizing the Untuned Viscous Dynamic Vibration
Absorber With Primary System Damping: A Frequency Locus Method,”
J. Sound Vib., 73(3), pp. 469–472.

[12] Pennestr, E., 1998, “An Application of Chebyshev’s Min–Max Criterion to the
Optimal Design of a Damped Dynamic Vibration Absorber,” J. Sound Vib.,
217(4), pp. 757–765.

[13] Brown, B., and Singh, T., 2011, “Minimax Design of Vibration Absorbers
for Linear Damped Systems,” J. Sound Vib., 330(11), pp. 2437–2448.

[14] Jang, S.-J., Brennan, M., Rustighi, E., and Jung, H.-J., 2012, “A Simple Method
for Choosing the Parameters of a Two Degree-of-Freedom Tuned Vibration
Absorber,” J. Sound Vib., 331(21), pp. 4658–4667.

[15] Liu, K., and Liu, J., 2005, “The Damped Dynamic Vibration Absorbers: Revisited
and New Result,” J. Sound Vib., 284(35), pp. 1181–1189.

[16] Krenk, S., and Hogsberg, J., 2014, “Tuned Mass Absorber on a Flexible
Structure,” J. Sound Vib., 333(6), pp. 1577–1595.

[17] Ali, S., and Adhikari, S., 2013, “Energy Harvesting Dynamic Vibration
Absorbers,” ASME J. Appl. Mech., 80(4), p. 041004.

[18] Puksand, H., 1975, “Optimum Conditions for Dynamic Vibration Absorbers for
Variable Speed Systems With Rotating or Reciprocating Unbalance,” Int. J.
Mech. Eng. Educ., 3(2), pp. 145–152.

[19] Thompson, A. G., 1980, “Optimizing the Untuned Viscous Dynamic Vibration
Absorber With Primary System Damping: A Frequency Locus Method,” J.
Sound Vib., 73(3), pp. 469–472.

[20] Argentini, T., Belloli, M., Robustelli, F., Martegani, L., and Fraternale, G.,
2013, “Innovative Designs for the Suspension System of Horizontal-Axis
Washing Machines: Secondary Suspensions and Tuned Mass Dampers,” ASME
Paper No. IMECE2013-64425.

http://dx.doi.org/10.1115/1.3255005
http://dx.doi.org/10.1016/0022-460X(80)90528-3
http://dx.doi.org/10.1006/jsvi.1998.1805
http://dx.doi.org/10.1016/j.jsv.2010.12.002
http://dx.doi.org/10.1016/j.jsv.2012.05.020
http://dx.doi.org/10.1016/j.jsv.2004.08.002
http://dx.doi.org/10.1016/j.jsv.2013.11.029
http://dx.doi.org/10.1115/1.4007967
http://dx.doi.org/10.1016/0022-460X(80)90528-3
http://dx.doi.org/10.1016/0022-460X(80)90528-3
http://dx.doi.org/10.1115/IMECE2013-64425

	s1
	s2
	E1
	E2
	cor1
	l
	E3
	E4
	E5
	E6
	E7
	E8
	s3
	E9
	E10
	E11
	E12
	E13
	F1
	s4
	E14
	E15
	E16
	E17
	E18
	E19
	E20
	s5
	E21
	E22
	E23
	E24
	E25
	s6
	F2
	FN1
	F3
	F4
	F5
	F6
	F7
	s7
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	F8
	F10
	F9
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20

