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1 Introduction

Discontinuous Galerkin (DG) Interior Penalty (IP) methods were introduced in the late 70’s for 
approximating second order [34, 59, 8] and fourth order problems [15]. They were arising as a 
natural evolution or extension of Nitsche’s method [51], and were based on the observation that 
interelement continuity could be attained by penalization; in the same spirit Dirichlet boundary 
conditions are weakly imposed for Nitsche’s method. The use, study and application of DG IP 
methods was abandoned for a while, probably due to the fact that they were never proven to be 
more advantageous or efficient than their conforming relatives. The lack of optimal and efficient 
solvers for the resulting linear systems, at that time, surely was also contributing to that situation.

However, over the last ten-fifteen years, there has been a considerable interest in the devel-
opment and understanding of DG methods for elliptic problems (see, for instance, [9] and the 
references therein), partly thanks to their simplicity in handling nonmatching grids and designing 
of hp-refinement strategies. The IP and Nitsche approaches have also found some new applications; 
in the design of new conforming and nonconforming methods [11, 10, 47, 31, 49, 46] and as a way 
to handle nonmatching grids for domain decomposition [17, 40].

This has also motivated the interest in developing efficient solvers for DG methods. In partic-
ular, additive Schwarz methods are considered and analyzed in [42, 24, 3, 4, 5, 7, 16, 6]. Multigrid 
methods are studied in [44, 25, 48]. Two-level methods and multi-level methods are presented 
in [33, 26], and other subspace correction methods are considered in [14, 13, 12]. It is worth notic-
ing that, so far, most efforts have been directed to develop solvers for the h-version of the DG 
methods. Only very recently, some authors have considered the case of p and h-p discretizations.
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The first result in this direction is given in [7] where the authors study two-level non-overlapping 
Schwarz preconditioners for a class of h-p DG methods.

Still the development of preconditioners for DG methods based on Domain Decomposition 
(DD) has been mostly limited to classical Schwarz methods. Research towards more sophisti-
cated nonoverlapping DD preconditioners, such as the Bramble Pasciak Schatz (BPS), Neumann-
Neumann, BDDC, FETI or FETI-DP is now at its inception. Nonoverlapping DD methods typi-
cally refer to methods defined on a decomposition of a domain made up of a collection of mutually 
disjoint subdomains, generally called substructures. These family of methods are obviously well 
suited for parallel computations and furthermore, for several problems (like problems with jump 
coefficients) they offer some advantages over their relative overlapping methods, and have already 
proved their usefulness. Roughly speaking, these methods are algorithms for preconditioning the 
Schur complement with respect to the unknowns on the skeleton of the subdomain partition. They 
are generally referred to as substructuring preconditioners. While the theory for the conforming 
case is now well established and understood for many problems [58], the discontinuous nature of 
the finite element spaces at the interface of the substructures (in the case of Nitsche-type methods) 
or even within the skeleton of the domain partition, poses extra difficulties in the analysis which 
preclude from having a straight extension of such theory. Mainly, unlike in the conforming case, 
the coupling of the unknowns along the interface does not allow for splitting the global bilinear 
form as a sum of local bilinear forms associated to the substructures (see for instance [42] and [3, 
Proposition 3.2]). Moreover the discontinuity of the finite element space makes the use of standard 
H1/2-norms in the analysis of the discrete harmonic functions difficult.

For Nitsche-type methods, a new definition of discrete harmonic functions has been introduced 
in [36] together with some tools (similar to those used in the analysis of mortar preconditioners) 
that allow the authors to adapt and extend the general theory ([58]) for substructuring precon-
ditioners in two dimensions. More precisely, in [36, 37, 38] the authors introduced and analyzed 
BDDC, Neumann-Neumann and FETI-DP domain decomposition preconditioners for a first order 
Nitsche-type discretization of an elliptic problem with jumping coefficients. For the discretization, 
a symmetric IP DG scheme is used (only) on the skeleton of the subdomain partition, while piece-
wise linear conforming approximation is used in the interior of the subdomains. In these works, 
the authors prove quasi-optimality with respect to the mesh-size and optimality with respect to 
the jump in the coefficient. They also address the case of nonconforming meshes.

More recently, several BDDC preconditioners have been introduced and analyzed for some full 
DG discretizations [55, 28, 23], following a different path. In [55] the authors consider the p-version 
of the preconditioner for an Hybridized IP DG method [30, 41], for which the unknown is defined 
directly on the skeleton of the partition. They prove cubic logarithmic growth on the polynomial 
degree but also show numerically that the results are not sharp. BDDC preconditioners for the 
IP-DG method have been studied in [23] and [28]. In the former, the authors deal with first order 
h-discretizations; in [28], the authors consider the more challenging h-p case. In both works, the 
approach for the analysis differs considerably from the one taken in [36, 37, 38] and relies on suitable 
space decomposition of the global DG space; using either nonconforming or conforming subspaces 
together with the auxiliary space techniques studied in [27]. As a consequence the analysis of the 
BDDC preconditioner for DG discretizations can be reduced to the analysis of the corresponding 
BDDC for conforming, nonconforming or spectral methods.

In this work, we are interested in addressing h-p Nitsche-type methods and we focus on the 
original substructuring approach introduced in [21] for a conforming discretization of two dimen-
sional problems and in [22, 39] for three dimensions (see also [60, 58] for a detailed description). 
Our approach differs substantially from the one in [28, 23] and has many similarities with the 
analysis in [36, 37, 38] but we consider the case of h-p discretizations and the BPS preconditioner. 
We focus on the Bramble Pasciak Schatz (BPS) preconditioner, with the aim of filling a gap (since 
this preconditioner has not been studied for Nitsche or DG methods) but also to provide a simpler 
analysis of the substructuring preconditioner.



In the framework of nonconforming domain decomposition methods, this kind of preconditioner
has been applied to the mortar method [1, 19, 53, 54] and to the three fields domain decomposition
method [18], always considering the h-version of the methods. For spectral discretizations and the
p version of conforming approximations the preconditioner has been studied in [52, 50]. For h-p
conforming discretizations of two dimensional problems the BPS preconditioner is studied in [2].
To the best of our knowledge, this preconditioner has not been considered for Nitsche-type or DG
methods before.

In our analysis of the BPS preconditioner for an h-p Nitsche-type discretization, we use some of
the tools introduced in [36, 37], such as their definition of the discrete harmonic lifting that allows
to define the discrete Steklov-Poincaré operator associated to the Nitsche-type method. However,
our construction of the preconditioners is guided by the definition of a suitable norm on the skeleton
of the subdomain partition, that scales like an H1/2-norm and captures the energy of the DG func-
tions on the skeleton. This allow us to provide a much simpler analysis, proving quasi-optimality
with respect to the mesh size and the polynomial degree for the proposed preconditioners. Further-
more, we demonstrate that unlike what happens in the conforming case, to ensure quasi-optimality
of the preconditioners a block diagonal structure that de-couples completely the edge and vertex
degrees of freedom on the skeleton is not possible; this is due to the presence of the penalty term
which is needed to deal with the discontinuity. We show however that the implementation of the
preconditioner can be done efficiently and that it performs in agreement with the theory.

The rest of the paper is organized as follows. The basic notation, functional setting and the
description of the Nitsche-type method are given in next section; Section 2. Some technical tools
required in the construction and analysis of the proposed preconditioner are revised in Section 3.
The substructuring preconditioner is introduced and analyzed in Section 4. Its practical imple-
mentation together with some variants of the preconditioner are discussed in Section 5. The theory
is verified through several numerical experiments presented in Section 6.

Here and in the following, to avoid the proliferation of constants, we will use the notation
x . y to represent the inequality x ≤ Cy, where C > 0 might depend on the shape regularity of the
different partitions, but will be always independent of the mesh sizes, the polynomial approximation
order, and the size and number of subdomains. Writing x ' y will signify that there exists a
constant C > 0 such that C−1x ≤ y ≤ Cx.

2 Nitsche methods and basic notation

In this section, we introduce the basic notation, the functional setting and the Nitsche discretiza-
tion.

To ease the presentation we restrict ourselves to the following model problem. Let Ω ⊂ R2 be
a bounded polygonal domain, let f ∈ L2(Ω) and let{

−∆u∗ = f in Ω,

u∗ = 0 on ∂Ω.

The above problem admits the following weak formulation: find u∗ ∈ H1
0 (Ω) such that :

a(u∗, v) = f(v) for all v ∈ H1
0 (Ω), (1)

where

a(u, v) =

∫
Ω

∇u · ∇v dx f(v) =

∫
Ω

fv dx , ∀u, v ∈ H1
0 (Ω).



2.1 Partitions

We now introduce the different partitions needed in our work. We denote by TH a geometrically
conforming subdomain partition of Ω into N nonoverlapping shape-regular triangular or quadri-
lateral subdomains:

Ω =
N⋃
`=1

Ω`, Ω` ∩ Ωj = ∅ ` 6= j.

We set
H` = min

j : Ω̄`∩Ω̄j 6=∅
H`,j where H`,j = |∂Ω` ∩ ∂Ωj | , (2)

and we also assume that H` ' diam(Ω`) for each ` = 1, . . . N . We finally define the granularity of
TH by H = min`H`. We denote by Σ the skeleton of the subdomain partition TH

Σ =
N⋃
`=1

∂Ω`

and we set

Γ =
N∏
`=1

∂Ω`.

Observe that from the above definitions, we allow functions defined on Γ to be double-valued while
functions defined on Σ are singled valued. The edges of the subdomain partition that form the
skeleton will be denoted by E and we will refer to them as macro edges or, when they refer to a
particular subdomain, as subdomain edges.

For each Ω`, let
{
T `h
}

be a family of fine partitions of Ω` into elements (triangles or quadri-
laterals) K with diameter hK . All partitions T `h are assumed to be shape-regular and we define a
global partition Th of Ω as

Th =
N⋃
`=1

T `h .

Observe that by construction Th is a fine partition of Ω which is compatible within each subdomain
Ω` but which may be nonmatching across the skeleton Σ. Throughout the paper, we always assume
that the following bounded local variation property holds: for any pair of neighboring elements
K+ ∈ T `+h and K− ∈ T `−h , `+ 6= `−, hK+ ' hK− .

Note that the restriction of Th to the skeleton Σ induces a partition of each subdomain edge
E ⊂ Γ. We define the set of element edges on the skeleton Σ and on the boundary of Ω as follows:

Eoh : = {e = ∂K+ ∩ ∂K−, K+ ∈ T `
+

h ,K− ∈ T `
−

h , `+ 6= `−} ,
E∂h : = {e = ∂K ∩ ∂Ω, K ∈ Th} ,

and we set Eh = Eoh ∪ E∂h .

2.2 Basic functional setting

For s ≥ 1, we define the broken Sobolev space

Hs(TH) =
{
φ ∈ L2(Ω) : φ

∣∣
Ω`
∈ Hs(Ω`) ∀ Ω` ∈ TH

}
∼
∏
`

Hs(Ω`) ,

whereas the trace space associated to H1(TH) is defined by

Φ =
∏
`

H1/2(∂Ω`).



For u = (u`)N`=1 in H1(TH) we will denote by u|Γ the unique element φ = (φ`)N`=1 in Φ such that

φ` = u`|∂Ω`
.

We now recall the definition of some trace operators following [9], and introduce the different
discrete spaces that will be used in the paper.

Let e ∈ Eoh be an edge on the interior skeleton shared by two elements K+ and K− with outward
unit normal vectors n+ and n−, respectively. For scalar and vector-valued functions ϕ ∈ H1(TH)

and τ ∈
[
H1(TH)

]2
, we define the average and the jump on e ∈ Eoh as

{τ} =
1

2
(τ+ + τ−), [[ϕ ]] = ϕ+n+ + ϕ−n− , on e ∈ Eoh

On a boundary element edge e ∈ E∂h we set {τ} = τ and [[ϕ ]] = ϕn, n denoting the outward unit
normal vector to Ω.

To each element K ∈ T `h , we associate a polynomial approximation order pK ≥ 1, and define
the h-p finite element space of piecewise polynomials as

X`
h = {v ∈ C0(Ω`) such that v|K ∈ PpK (K), K ∈ T `h },

where PpK (K) stands for the space of polynomials of degree at most pK on K. We also assume
that the polynomial approximation order satisfies a local bounded variation property: for any pair
of elements K+ and K− sharing an edge e ∈ Eoh, pK+ ' pK− .

Our global approximation space Xh is then defined as

Xh = {v ∈ L2(Ω) : such that v|Ω`
∈ X`

h} ∼
N∏
`=1

X`
h .

We also define X0
h ⊂ Xh as the subspace of functions of Xh vanishing on Γ, i.e.,

X0
h = {v ∈ Xh : such that v|Γ = 0}.

The trace spaces associated to X`
h and Xh are defined as follows

Φ`h = {η` ∈ H1/2(∂Ω`) : η` = w|∂Ω`
for some w ∈ X`

h} ∀` = 1, . . . , N

Φh =
N∏
`=1

Φ`h ⊂ Φ.

Notice that the functions in the above finite element spaces are conforming in the interior of each
subdomain but are double-valued on the skeleton. Moreover, any function v ∈ Xh can be repre-
sented as v = (v`)N`=1 with v` ∈ X`

h.

Next, for each subdomain Ω` ∈ TH and for each subdomain edge E ⊂ ∂Ω`, we define the
discrete trace spaces

Φ`(E) = Φ`h|E .

Note that, since we are in two dimensions, the boundary of a subdomain edge E is the set of the
two endpoints (or vertices) of E, that is if E = (a, b) then ∂E = {a, b}.

Finally, we introduce a suitable coarse space LH ⊂ Φ, that will be required for the definition
of the subtructuring preconditioner:

LH = {η = (η`)N`=1 ∈ Φ : η`|E ∈ P1(E), ∀E ⊂ ∂Ω` , ∀Ω` ∈ TH} . (3)



2.3 Nitsche-type methods

In this section, we introduce the Nitsche-type method we consider for approximating the model
problem (1). In such method, first introduced in [57], weak continuity across the skeleton is enforced
in an analogous way to what is done at interelement edges in the interior penalty discontinuous
Galerkin method.

We introduce a mesh size function h ∈ L∞(Σ) defined as

h(x) =

{
hK if x ∈ ∂K ∩ ∂Ω,

min{hK+ , hK−} if x ∈ ∂K+ ∩ ∂K− ∩ Γ, K± ∈ T `
±

h , `+ 6= `−,
(4)

and a polynomial degree function p ∈ L∞(Σ):

p(x) =

{
pK if x ∈ ∂K ∩ ∂Ω,

max{pK+ , pK−} if x ∈ ∂K+ ∩ ∂K− ∩ Γ, K± ∈ T `
±

h , `+ 6= `−.
(5)

For each subdomain Ω`, we also define h` and p` as the minimum (resp. the maximum) of the
restriction to ∂Ω` of the local mesh size h (resp. the local polynomial degree function p), that is,

h` = min
x∈∂Ω`∩Γ

h(x) and p` = max
x∈∂Ω`∩Γ

p(x). (6)

Remark 2.1. A different definition for the local mesh size function h and the local polynomial
degree function p involving harmonic averages is sometimes used for the definition of Nitsche or
DG methods [36]. We point out that such a definition yields to functions h and p which are of the
same order as the ones given in (4) and (5), and therefore result in an equivalent method.

We now define the following Nitsche-type discretization [57, 17] to approximate problem (1):
find u∗h ∈ Xh such that

Ah(u∗h, vh) = f(vh) for all vh ∈ Xh , (7)

where, for all u, v ∈ Xh, Ah(·, ·) is defined as

Ah(u, v) =

N∑
`=1

∫
Ω`

∇u · ∇v dx−
∑
e∈Eh

∫
e

{∇u} · [[ v ]] ds

−
∑
e∈Eh

∫
e

[[u ]] · {∇v}ds +
∑
e∈Eh

α

∫
e

p2 h−1[[u ]] · [[ v ]] ds.

(8)

Here, α > 0 is the penalty parameter that needs to be chosen α ≥ α0 for some α0 & 1 large
enough to ensure the coercivity of Ah(·, ·).

On Xh, we introduce the following seminorms:

|v|21,TH =
N∑
`=1

‖∇v‖2L2(Ω`), |v|2∗,Eh =
∑
e∈Eh
‖p h−1/2 [[ v ]]‖2L2(e), (9)

together with the natural induced norm by Ah(·, ·):
‖v‖2h = |v|21,TH + α|v|2∗,Eh ∀ v ∈ Xh . (10)

Following [57] (see also [9]) it is easy to see the bilinear form Ah(·, ·) is continuous and coercive
(provided α ≥ α0 ) with respect the norm (10), i.e.,

Continuitiy : |Ah(u, v)| . ‖u‖h‖v‖h ∀u, v ∈ Xh

Coercivity : Ah(v, v) & ‖v‖2h ∀ v ∈ Xh.

From now on we will always assume that α ≥ α0. Notice that the continuity and coercivity 
constants depend only on the shape regularity constant of Th.



3 Some technical tools

We now revise some technical tools that will be required in the construction and analysis of the
proposed preconditioners.
We recall that, for γ being either an element edge or a macro edge or the boundary of a subdomain,
and for s ∈]0, 1[, we can define the Hs(γ) seminorm and norm by

|η|2Hs(γ) =

∫
γ

∫
γ

(η(x)− η(y))2

|x− y|2s+1
dsx dsy, ‖η‖2Hs(γ) = ‖η‖2L2(γ) + |η|2Hs(γ). (11)

For E ⊂ ∂Ω` subdomain edge, we will also consider the space H
1/2
00 (E) of function whose extension

by zero is in H1/2(∂Ω`), which we will equip with the norm

‖η‖2
H

1/2
00 (E)

= |η|2H1/2(E) +

∫
E

|η(x)|2

|x− a|2s
dsx +

∫
E

|η|2

|x− b|2s
dsx.

The following local inverse inequality holds (cf. [56], for example): for any η ∈ PpK (K) it holds

|η|Hr(e) . p
2(r−s)
K hs−rK |η|Hs(e), e ⊂ ∂K

for all s, r with 0 ≤ s < r ≤ 1. Using the above inequality for s = 0 and r = 1 and space
interpolation, it is easy to deduce that for a subdomain edge E ⊂ ∂Ω` and for all s, r, 0 ≤ s < r ≤ 1,
for all η ∈ X`

h|E it holds that

|η|Hr(E) . p
2(r−s)
` hs−r` |η|Hs(E), (12)

|η|Hr(∂Ω`) . p
2(r−s)
` hs−r` |η|Hs(∂Ω`), (13)

The next two results are a generalization to the h-p version of [21, Lemma 3.2, 3.4 and 3.5] and
[18, Lemma 3.2], see e.g., [45]. For the sake of brevity the proof is omitted.

Lemma 3.1. For all ξ ∈ Φ`h and for all ζL ∈ H1/2(∂Ω`) linear on each edge of ∂Ω` and such that
ζL(a) = ξ(a) at all vertices a of Ω`, it holds

|ζL|2H1/2(∂Ω`) .

(
1 + log

(
H` p

2
`

h`

))
|ξ|2H1/2(∂Ω`) .

Lemma 3.2. For all ξ ∈ Φ`h such that ξ(a) = 0 at all vertices a of Ω` and for all ζL ∈ H1/2(∂Ω`)
linear on each subdomain edge of ∂Ω`, it holds

∑
E⊂∂Ω`

‖ξ‖2
H

1/2
00 (E)

.

(
1 + log

(
H` p

2
`

h`

))2

|ξ + ζL|2H1/2(∂Ω`) .

3.1 Norms on Φh

We now introduce a suitable norm on Φh that will suggest how to properly construct the precon-
ditioner. The natural norm that we can define for all η = (η`)N`=1 ∈ Φh is:

‖η‖Φh
= inf

u ∈ Xh

u|Γ = η

‖u‖h , (14)



where the inf is taken over all u ∈ Xh that coincide with η on Γ. We recall that the identity
η = u|Γ is to be intended as η` = u`|∂Ω`

. Although (14) is the natural trace norm induced on Φ by

the norm (10), working with it might be difficult.
For this reason, we introduce another norm which will be easier to deal with and which, as we

will show below, is equivalent to (14). The structure of the preconditioner proposed in this paper
will be driven by this norm. We define:

‖η‖2Φh,∗ =
∑

Ω`∈TH
|η|2H1/2(∂Ω`) + α

∑
e∈Eh
‖p h−1/2[[ η ]]‖2L2(e). (15)

The next result shows that the norms (14) and (5.2) are indeed equivalent:

Lemma 3.3. The following norm equivalence holds:

‖η‖Φh
. ‖η‖Φh,∗ . ‖η‖Φh

∀η ∈ Φh

Proof. We first prove that ‖η‖Φh,∗ . ‖η‖Φh
. Let η = (η`)N`=1 ∈ Φh and let u = (u`)N`=1 such that

u|Γ = η. Thanks to the trace inequality, we have

|η`|2H1/2(∂Ω`) . |u
`|2H1(Ω`) ,

and, summing over all the subdomains Ω` ∈ TH we have∑
Ω`∈TH

|η`|2H1/2(∂Ω`) .
∑

Ω`∈TH
|u`|2H1(Ω`) = |u|21,TH .

Adding now the term α
∑
e∈Eh ‖ph

−1/2[[ η ]]‖2L2(e) to both sides, and recalling the definition of the

norms (10), (14) and (5.2) we get the thesis.
We now prove that ‖η‖Φh

. ‖η‖Φh,∗. Given η = (η`)N`=1 ∈ Φh, let ǔ` ∈ X`
h be the stan-

dard discrete harmonic lifting of η`, for which the bound |ǔ`|H1(Ω`) . |η`|H1/2(∂Ω`) holds (see

e.g. [21]) and let ǔ = (ǔ`)N`=1. Summing over all the subdomains Ω` and adding the term
α
∑
e∈Eh ‖ph

−1/2[[ η ]]‖2L2(e) we get

‖η‖Φh ≤ ‖ǔ‖h . ‖η‖Φh,∗.

4 Substructuring preconditioners

In this section we present the construction and analysis of a substructing preconditioner for the 
Nitsche method (7)-(8).

The first step in the construction is to split the set of degrees of freedom into interior degrees 
of freedom (corresponding to basis functions identically vanishing on the skeleton) and degrees of 
freedom associated to the skeleton of the subdomain partition.

Then, the idea of the “substructuring” approach (see [21]) consists in further distinguishing two 
types among the degrees of freedom associated to Γ: edge degrees of freedom and vertex degrees 
of freedom. Therefore, any function u ∈ Xh can be split as the sum of three suitably defined 
components: u = u0 + uΓ = u0 + uE + uV .

We first show how to eliminate the interior degrees of freedom and introduce the discrete 
Steklov-Poincaré operator associated to (8), acting on functions defined on Γ. We then propose a 
preconditioner of substructuring type for the discrete Steklov-Poincaré operator and provide the 
convergence analysis.



4.1 Discrete Steklov-Poincaré operator

Following [36, 37], we now introduce a discrete harmonic lifting that allows to defining the discrete
Steklov-Poincaré operator associated to (8). We also show that such a discrete Steklov-Poincaré
operator defines a norm that is equivalent to the one defined in (5.2).

Let X0
h ⊂ Xh be the subspace of functions vanishing on the skeleton of the decomposition.

Given any discrete function w ∈ Xh, we can split it as the sum of an interior function w0 ∈ X0
h

and a suitable discrete lifting of its trace. More precisely, following [36, 37], we split

w = w0 +Rh(w|Γ), w0 ∈ X0
h,

where, for η ∈ Φh, Rh(η) ∈ Xh denotes the unique element of Xh satisfying

Rh(η)|Γ = η, Ah(Rh(η), vh) = 0 ∀vh ∈ X0
h. (16)

The following proposition is easy to prove (see [36, 37]).

Proposition 4.1. For η = (η`)N`=1 ∈ Φh, the following identity holds:

Rh(η)|Ω`
= w`H + w`0,

with w`H ∈ X`
h denoting the standard discrete harmonic lifting of η`

w`H = η` on ∂Ω`,

∫
Ω`

∇w`H · ∇v`h = 0 ∀v`h ∈ X`
h ∩H1

0 (Ω`),

and w`0 ∈ X`
h ∩H1

0 (Ω`) being the solution of∫
Ω`

∇w`0 · ∇v`h =

∫
∂Ω`

[[ η` ]] · ∇v`h, ∀v`h ∈ X`
h ∩H1

0 (Ω`).

The space Xh can be split as direct sum of an interior and a trace component, that is

Xh = X0
h ⊕Rh(Φh).

Using the above splitting, the definition of Rh(·) and the definition of Ah(·, ·), it is not difficult to
verify that,

Ah(w, v) = Ah(w0, v0) +Ah(Rh(w|Γ), Rh(v|Γ))

= a(w0, v0) + s(w|Γ , v|Γ), ∀w, v ∈ Xh

where the discrete Steklov-Poincaré operator s : Φh × Φh → R is defined as

s(ξ, η) = Ah(Rh(ξ), Rh(η)) ∀ ξ, η ∈ Φh . (17)

We have the following result:

Lemma 4.2. Let Rh be the discrete harmonic lifting defined in (16). Then,

‖Rh(η)‖h ' ‖η‖Φh,∗ ∀ η ∈ Φh .

Proof. If we show that ‖Rh(η)‖h ' ‖η‖Φh , then the thesis follows thanks to the equivalence of the

norms shown in Lemma 3.3. First, we prove that ‖Rh(η)‖h . ‖η‖Φh ; let η ∈ Φh, then from the 
definition of the inf, we get that

∃u ∈ Xh : u|Γ = η such that ‖u‖h ≤ 2‖η‖Φh .



Then, we can write Rh(η) = u+ v with v ∈ X0
h, and (16) reads

Ah(v, w) = −Ah(u,w) ∀w ∈ X0
h .

Setting w = v ∈ X0
h in the above equation, leads to

Ah(v, v) = −Ah(u, v) .

Then, using the coercivity and continuity of Ah(·, ·) in the ‖ · ‖h norm we find

‖v‖2h . Ah(v, v) = |Ah(u, v)| . ‖u‖h‖v‖h .

Hence, ‖v‖h . ‖u‖h, and so this bound together with the triangle inequality gives

‖Rh(η)‖h ≤ ‖u‖h + ‖v‖h . ‖u‖h . ‖η‖Φh
.

The other inequality ‖η‖Φh
. ‖Rh(η)‖h follows from the trace theorem.

From the above result, the following result for the discrete Steklov-Poincaré operator follows
easily.

Corollary 4.3. For all ξ ∈ Φh, it holds

s(ξ, ξ) ' ‖ξ‖2Φh,∗.

Proof. Let ξ ∈ Φh then from the definition of s(·, ·), the continuity and coercivity of Ah(·, ·) and
applying Lemma 4.2 we have

s(ξ, ξ) = Ah(Rh(ξ), Rh(ξ)) ' ‖Rh(ξ)‖2h ' ‖ξ‖2Φh,∗.

4.2 The preconditioner

Following the approach introduced in [21], we now present the construction of a preconditioner for
the discrete Steklov-Poincaré operator s(·, ·). We split the space of skeleton functions Φh as the
sum of vertex and edge functions. We observe that independently of whether the two dimensional
mesh Th consists of triangles or quadrangles, the trace Φ`h of the space X`

h contains the space of
piecewise linear functions on the one dimensional mesh induced on Γ` by T `h . Therefore LH ⊂ Φh.

We then introduce the space of edge functions ΦEh ⊂ Φh defined by

ΦEh = {η ∈ Φh, η
`(a) = 0 at all vertex a of Ω` ∀Ω` ∈ TH}

and we immediately get
Φh = LH ⊕ ΦEh . (18)

The preconditioner that we consider is built by introducing bilinear forms

ŝE : ΦEh × ΦEh −→ R ŝV : LH × LH −→ R

acting respectively on edge and vertex functions. We assume that ŝE and ŝV satisfy:

ŝE(ηE , ηE) '
∑

Ω`∈TH

∑
E⊂∂Ω`

‖ηE‖2
H

1/2
00 (E)

∀ ηE ∈ ΦEh , (19)

ŝV (ηV , ηV ) '
∑

Ω`∈TH

∣∣ηV ∣∣2
H1/2(∂Ω`)

∀ ηV ∈ LH , (20)



and we define ŝ : Φh × Φh −→ R as

ŝ(η, ξ) = ŝE(ηE , ξE) + ŝV (ηV , ξV ) + q(η, ξ), (21)

where

q(η, ξ) =
∑
e∈Eh

α

∫
e

p2 h−1[[ η ]][[ ξ ]] ds ∀ η, ξ ∈ Φh . (22)

Finally, we can state the main theorem of the paper.

Theorem 4.4. Let s(·, ·) and ŝ(·, ·) be the bilinear forms defined in (17) and (21), respectively.
Then, we have:

min
`

(
1 + log

(
H` p

2
`

h`

))−2

ŝ(η, η) . s(η, η) . ŝ(η, η) ∀ η ∈ Φh .

The proof of Theorem 4.4 follows the analogous proofs given in [21, 18] for conforming finite
element approximation. We give it here for completeness.

Proof. We start proving that s(η, η) . ŝ(η, η). Let η ∈ Φh, then, η = ηV + ηE with ηE ∈ ΦEh and
ηV ∈ LH . By using Corollary 4.3, properties (19)-(20) of the edge and vertex bilinear forms, as
well as the definition of q(·, ·), we get

s(η, η) . ‖η‖2Φh,∗ =
∑

Ω`∈TH
|ηE + ηV |2H1/2(∂Ω`) + α

∑
e∈Eh
‖p h−1/2[[ η ]]‖2L2(e)

.
∑

Ω`∈TH
|ηE |2H1/2(∂Ω`) +

∑
Ω`∈TH

|ηV |2H1/2(∂Ω`) + q(η, η)

. ŝE(ηE , ηE) + ŝV (ηV , ηV ) + q(η, η),

and hence
s(η, η) . ŝ(η, η) ∀ η ∈ Φh .

We next prove the lower bound. We shall show that

ŝ(η, η) . max
`

(
1 + log

(
H` p

2
`

h`

))2

s(η, η) ∀ η ∈ Φh . (23)

For η ∈ Φh, we have η = ηV + ηE with ηE ∈ ΦEh and ηV ∈ LH . Then, from the definition of
ŝ(·, ·) we have

ŝ(η, η) = ŝE(ηE , ηE) + ŝV (ηV , ηV ) + q(η, η)

'
∑

Ω`∈TH

∑
E⊂∂Ω`

‖ηE‖2
H

1/2
00 (E)

+
∑

Ω`∈TH

∣∣ηV ∣∣2
H1/2(∂Ω`)

+ α
∑
e∈Eh
‖p h−1/2[[ η ]]‖2L2(e).

Appling Lemma 3.2 with ξ = ηE and ζL = ηV , we obtain

∑
E⊂∂Ω`

‖ηE‖2
H

1/2
00 (E)

.

(
1 + log

(
H` p

2
`

h`

))2

|η|2H1/2(Ω`),

which implies

ŝE(ηE , ηE) .
∑

Ω`∈TH

(
1 + log

(
H` p

2
`

h`

))2

|η|2H1/2(∂Ω`).



To bound ŝV (ηV , ηV ), we apply Lemma 3.1 with ζL = ηV and ξ = η, and we get

ŝV (ηV , ηV ) .
∑

Ω`∈TH
|ηV |2H1/2(∂Ω`) .

∑
Ω`∈TH

(
1 + log

(
H` p

2
`

h`

))2

|η|2H1/2(∂Ω`),

and hence

ŝE(ηE , ηE) + ŝV (ηV , ηV ) .
∑

Ω`∈TH

(
1 + log

(
H` p

2
`

h`

))2

|η|2H1/2(∂Ω`).

Adding now the term α
∑
e∈Eh ‖ph

−1/2[[ η ]]‖2L2(e) to both sides and recalling the definition of q(·, ·)
we have:

ŝ(η, η) = ŝE(ηE , ηE) + ŝV (ηV , ηV ) + q(η, η)

. max
`

(
1 + log

(
H` p

2
`

h`

))2
( ∑

Ω`∈TH
|η|2H1/2(∂Ω`) + α

∑
e∈Eh
‖ph−1/2[[ η ]]‖2L2(e)

)

= max
`

(
1 + log

(
H` p

2
`

h`

))2

‖η‖2Φh,∗.

Finally, using the norm equivalence given in Corollary 4.3, we obtain (23) and the proof of the
Theorem is completed.

As a direct consequence of Theorem 4.4 we obtain the following estimate for the condition
number of the preconditioned Schur complement.

Corollary 4.5. Let S and P be the matrix representation of the bilinear forms s(·, ·) and ŝ(·, ·),
respectively. Then, the condition number of P−1S, κ(P−1S), satisfies

κ(P−1S) . max
`

(
1 + log

(
H` p

2
`

h`

))2

. (24)

Unfortunately, the splitting (18) of Φh is not orthogonal with respect to the ŝ(·, ·)-inner product
given in (21), and therefore the preconditioner based on ŝ(·, ·) is not block diagonal, in contrast to
what happens in the full conforming case. Furthermore the off-diagonal blocks in the preconditioner
cannot be dropped without loosing the quasi-optimality. The reason is the presence of the q(·, ·)
bilinear form in the definition (21), and the fact that the two components in the splitting (18) of
Φh scale differently in the seminorm that q(·, ·) defines. In fact, it is possible to show that, if for
some constant κ(h), it holds

‖ηV ‖2Φh,∗ ≤ κ(h)‖η‖2Φh,∗ ∀η = ηV + ηE ∈ Φh, (25)

then such κ(h) must verify κ(h) & H/h, which implies that, if we were to use a fully block diagonal
preconditioner based on the splitting (18) of Φh an estimate of the form (23) would no be longer
true. In order to show this, consider linear finite elements on quasi uniform meshes with meshsize
h in all subdomains, and let η = (η`)N`=1 be the function identically vanishing in all subdomains
but one, say Ωk, and let ηk be equal to 1 in a single vertex of Ωk and zero at all other nodes. With
this definition, we have |[[ η ]]| = |ηk| on ∂Ωk and [[ η ]] = 0 on Σ\∂Ωk. Then, by a direct calculation,
and recalling the definition of the seminorm | · |∗,Eh in (9), we easily see that

|η|2∗,Eh ' 1, but |ηV |2∗,Eh '
Hk

hk

or equivalently

q(ηV , ηV ) ' Hk

hk
, q(η, η) ' 1. (26)



Therefore the energy of coarse interpolant ηV exceeds that of η by a factor of Hk/hk. Hence,
bounding ηV alone in the ‖ · ‖Φh,∗-norm would result in an estimate of the type (25)

q(ηV , ηV ) . ‖ηV ‖2Φh,∗ . κ(h)q(η, η), (27)

which in view of (26) would imply

κ(h) &
Hk

hk
.

Remark 4.1. We point out that the lack of the block-diagonal structure of the preconditioner
associated to ŝ(·, ·) defined in (21), will not affect its computational efficiency, see Section 6.

5 Realizing the preconditioner

We start by deriving the matrix form of the discrete Steklov-Poincaré operator s(·, ·) defined
in (17). We choose a Lagrangian nodal basis for the discrete space Xh, and we take care of
numbering interior degrees of freedom first (grouped subdomain-wise), then edge degrees of freedom
(grouped edge by edge and in such a way that the degrees of freedom corresponding to the common
edge of two adjacent subdomains are ordered consecutively), and finally the degrees of freedom
corresponding to the vertices of the subdomains.

We let ni, ne and nv be the number of interior, edge and vertex degrees of freedom, respectively,
and set n = ne + nv Problem (7) is then reduced to looking for a vector u ∈ Rni+n with u =
(ui,ue,uv) solution to a linear system of the following formAii Aie Aiv

AT
ie Aee Aev

AT
iv AT

ev Avv

ui

ue

uv

 =

Fi

Fe

Fv

 .

Here, ui ∈ Rni (resp. Fi ∈ Rni) represents the unknown (resp. the right hand side) component
associated to interior nodes. Analogously, ue,Fe ∈ Rne and uv,Fv ∈ Rnv are associated to edge
and vertex nodes, respectively. We recall that for each vertex we have one degree of freedom for
each of the subdomains sharing it. For each macro edge E, we will have two sets of nodes (some

of them possibly physically coinciding) corresponding to the degrees of freedom of Φ`
+

h (E) and of

Φ`
−

h (E).

As usual, we start by eliminating the interior degrees of freedom, to obtain the Schur comple-
ment system

S

(
ue

uv

)
= g,

with

S =

(
Aee −AT

ieA
−1
ii Aie Aev −AT

ieA
−1
ii Aiv

AT
ev −AT

ivA
−1
ii Aie Avv −AT

ivA
−1
ii Aiv

)
, g =

(
FE −AT

ieA
−1
ii Fi

FV −AT
ivA

−1
ii Fi

)
.

The Schur complement S represents the matrix form of the Steklov-Poincaré operator s(·, ·). Re-
mark that in practice we do not need to actually assemble S but only to be able to compute its 
action on vectors.

In order to implement the preconditioner introduced in the previous section we need to represent 
algebraically the splitting of the trace space given by (18). As defined in (3), we consider the space 
LH of functions that are linear on each subdomain edge, and introduce the matrix representation 
of the injection of LH into Φh. More precisely, we let Ξ = {xi, i = 1, . . . , ne, ne + 1, . . . , ne + nv}



be the set of edge and vertex nodes. For any vertex node xj , j = ne + 1, . . . , ne + nv , let ϕj(·) be
the piecewise polynomial that is linear on each subdomain edge and that satisfies

ϕj(xk) = δjk j, k = ne + 1, . . . , ne + nv.

The matrix RT ∈ Rn×nv realizing the linear interpolation of vertex values is then defined as

RT (i, j − ne + 1) = ϕj(xi), i = 1, . . . , ne, j = ne + 1, . . . , ne + nv.

Next, we define a square matrix R̃T ∈ Rn×n as

R̃T =

(
Ie RT

0 Iv

)
,

Ie ∈ Rne×ne and Iv ∈ Rnv×nv being the identity matrices. Let now S̃ be the matrix obtained after
applying the change of basis corresponding to switching from the standard nodal basis to the basis
related to the splitting (18), that is

S̃ = R̃SR̃T =

(
S̃ee S̃ve

S̃Tve S̃vv

)
. (28)

Our problem is then reduced to the solution of a transformed Schur complement system

S̃ ũ = g̃, (29)

where ũ = R̃−Tu and g̃ = R̃g.

The preconditioner P. The preconditioner P that we propose is obtained as matrix counterpart of
(21). In the literature it is possible to find different ways to build bilinear forms ŝE(·, ·), ŝV (·, ·)
that satisfy (19) and (20), respectively. The choice that we make here for defining ŝE(·, ·) is the

one proposed in [21] and it is based on an equivalence result for the H
1/2
00 norm.

We revise now its construction. Let l0(·) denote the discrete operator defined on Φ0
`(E) asso-

ciated to the finite-dimensional approximation of −∂2/∂s2 on E. It is defined by:

〈l0ϕ, φ〉E = (ϕ′, φ′)E ∀φ ∈ Φ0
`(E), (30)

where the prime superscript refers, as usual, to the derivative ∂/∂s with respect to the arc length
s on E. Notice that, since l0(·) is symmetric and positive definite, its square root can be defined.
Furthermore, it can be shown that for all ϕ ∈ Φ0

`(E)

‖ϕ‖
H

1/2
00 (E)

' (l
1/2
0 ϕ,ϕ)

1/2
E ,

see [21]. Then, we define

ŝE(ηE , ξE) =
∑

Ω`∈TH

∑
E⊂∂Ω`

(l
1/2
0 ηE , ξE)E ∀ ηE , ξE ∈ Φ0

`(E). (31)

For ηE ∈ Φ0
`(E) we denote by ηE its vector representation. Then, it can be verified that, for each

subdomain edge E ⊂ ∂Ω`, we have (see [20] pag. 1110 and [35])

(l
1/2
0 ηE , ηE)E = ηE

T
K̂Eη

E

where K̂E = M
1/2
E (M

−1/2
E REM

−1/2
E )1/2M

1/2
E , and where ME and RE are the mass and stiffness

matrices associated to the discretization of the operator −d2/ds2 (in Φ`0(E)) with homogeneous 
Dirichlet boundary conditions at the extrema a and b of E.



Observe, that for each macro edge E shared by the subdomains Ω`+ and Ω`− , K̂E is a two by
two block diagonal matrix of the form

K̂E =

(
K̂+
E 0

0 K̂−E

)
,

where K̂±E are the contributions from the subdomains Ω`± sharing the macro-edge E. Due to

the small dimension of K̂E , its computation can be performed by classical techniques such as the
singular values decomposition (SVD), without influencing the efficiency of the whole process also
for relatively high values of p.

As far as the vertex bilinear form ŝV (·, ·) is concerned, we choose ([21, 60]):

ŝV (ηV , ηV ) =
∑

Ω`∈TH

∫
Ω`

∇(H`η`) · ∇(H`η`) dx, (32)

where H(·) denotes the continuous harmonic lifting. We observe that if the Ω`’s are rectangles, for
η ∈ LH we have that H`η` is the Q1(Ω`) polynomial that coincides with η` at the four vertices of
Ω`. Computing ŝV (ηV , ξV ) for ηV , ξV ∈ LH is therefore easy, since it is reduced to compute the
local (associated to Ω`) stiffness matrix for Q1(Ω`) polynomials.

Remark 5.1. A similar construction also holds for quadrilaterals which are affine images of the
unit square, and for triangular domains. In fact, if Ω` is a triangle then for η ∈ LH we have that
H`hη` is the P1(Ω`) function coinciding with η` at the three vertices of Ω`. If Ω` is the affine image
of the unit square, we work by using the harmonic lifting on the reference element.

The preconditioner P can then be written as:

P=


KE1

0 0 0 0
0 KE2

0 0 0

0 0
. . . 0 0

0 0 0 KEM
0

0 0 0 0 Pvv

+ Q̃ , (33)

where for each macro edge Ei,

KEi =

(
(K̂+

Ei
)1/2 0

0 (K̂−Ei
)1/2

)
.

In (33) Pvv is defined as the matrix counterpart of (32) whereas

Q̃ = R̃QR̃T , Q̃ =


QE1

0 0 Q̃E1V

0 QE2
0 Q̃E2V

0 0
. . .

...

Q̃T
E1V

Q̃T
E2V

· · · Q̃vv,


is the matrix counterpart of (22). Then P has the following structure

P=


KE1

+ QE1
0 0 0

0
. . . 0 0

0 0 KEM
+ QEM

0

0 0 0 Pvv + Q̃vv

+


0 0 0 Q̃E1V

0
. . . 0

...

0 0 0 Q̃EMV

Q̃T
E1V

· · · Q̃T
EMV 0,

 .

(34)



In view of definition (32) and of Remark 5.1, we observe that the coarse preconditioner Pvv + Q̃vv

is a standard discontinuous Galerkin problem defined on a coarse mesh with P1 (respectively Q1)
elements in the case of triangular (respectively quadrilateral) subdomains. The global matrix P
is a low-rank perturbation of an invertible block diagonal matrix. From (34) it can be easily seen
that P has an “arrow” structure that makes it particularly well suited for direct methods. Indeed
it is possible to show that for matrices with such a structure, LU decomposition has minimum
fill-in and therefore is particularly efficient. The action of P−1 can therefore be easily computed,
see e.g. [29, pag. 86] and [32, sec. 2.7.4, p. 83].

The preconditioner P?. For comparison we introduce a preconditioner P? with the same block
structure of P but with the elements of the non-zero blocks coinciding with the corresponding
elements of S̃. We expect this preconditioner to be the best that can be done within the block
structure that we want our preconditioner to have. In order to do so, we replace the S̃ee com-
ponent of S̃ with the matrix obtained by dropping all couplings between the degrees of freedom
corresponding to nodes belonging to different macro edges, and use the resulting matrix as precon-
ditioner. More precisely, for any subdomain edge Ek of the subdomain partition, k = 1, . . . ,M ,
let Jk ∈ Rne×ne be the diagonal matrix that extract only the edge degrees of freedom belonging to
the macro edge Ek, i.e.,

Jk(i, j) =

{
1 if i = j and xi ∈ Ek
0 otherwise

i, j = 1, . . . , ne.

Then, we define

P̃ee =
m∑
k=1

JTk S̃eeJk

This provides our preconditioner

P? =

(
P̃ee S̃ev

S̃Tev S̃vv

)
. (35)

Building this preconditioner implies the need of assembling at least part of the Schur complement;
this is quite expensive and therefore this preconditioner is not feasible in practical applications.

Remark 5.2. Note that we cannot drop the coupling between edge and vertex points, i.e. we
cannot eliminate the off-diagonal blocks QEiV ,Q

T
EiV

. Indeed, as already pointed out at the end of
Section 4.2, with the splitting (18) of Φh it is not possible to design a block diagonal preconditioner
without losing quasi-optimality. In Section 6 we will present some computations that show that the
preconditioner

PD =

(
P̃ee 0

0 S̃vv

)
, (36)

is not optimal.

6 Numerical results

In this section we present some numerical experiments to validate the performance of the proposed 
preconditioners.

We set Ω = (0, 1)2, and consider a sequence of subdomain partitions made of N = 4` squares,
` = 1, 2, . . ., cf. Figure 1(a) for ` = 1, 2, 3, 4. For a given subdomain partition, ` = 1, 2, . . ., we have 
tested our preconditioners on a sequence of structured and unstructured triangular grids made of 
n = 2 ∗ 4r elements with r = `, ̀  + 1, . . .. Notice that the corresponding coarse and fine mesh sizes 
are given by H ≈ 2−`, ` = 1, 2, . . ., and h ≈ 2−r, r = `, ` + 1, . . ., respectively.



In Figure 1(a) we have reported the initial structured grids, on subdomains partitions made by
N = 4s squares, s = 1, 2, 3, 4. Figure 1(b) shows the first four refinement levels of unstructured
grids on a subdomain partition made of N = 4 squares.

(a) Initial structured grids.

(b) First three refinement levels of unstructured triangular grids on a subdomain partition made of N = 4 squares.

Figure 1: Top: initial structured grids on subdomains partitions made by N = 4` squares, ` =
1, 2, 3, 4. Bottom: first four refinement levels of unstructured grids on a subdomain partition made
of N = 4 squares.

We solved the (preconditioned) linear system of equations by the Preconditioned Conjugate
Gradient (PCG) method with a relative tolerance set equal to 10−9. The condition number of
the (preconditioned) Schur complement matrix has been estimated within the PCG iteration by
exploiting the analogies between the Lanczos technique and the PCG method (see [43, Sects. 9.3,
10.2] for more details). Finally, we choose the source term in problem (1) as f(x, y) = 1, and set
the penalty parameter α equal to 10.

We first present some computations that show the behavior of the condition number of the
Schur complement matrix S, cf. (5). In Figure 2 (log-log scale) we report, for different subdomains
partitions made by N = 4` squares, ` = 1, 2, 3, 4, 5, the condition number estimate of the Schur
complement matrix S, κ(S), as a function of the mesh-size 1/h. We clearly observe that κ(S)
increases linearly as the mesh size h goes to zero.

Next, we consider the preconditioned linear system of equations

P−1S̃ ũ = P−1g̃,

and test the performance of the preconditioners P and P? (cf. (33) and (35), respectively). 
Throughout all our tests, the action of the preconditioner was computed with a direct solver. 
In the first set of experiments, we consider piecewise linear elements (p = 1), and compute the 
estimated condition number when varying the number of subdomains and the mesh size. Table 1 
shows the behaviour of the estimated condition number when increasing the number of subdomains
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Figure 2: Condition number estimate of the Schur complement matrix S versus 1/h on different
subdomains partitions made by N = 4` squares, ` = 1, 2, 3, 4, 5. Structured (left) and unstructured
(right) triangular grids. piecewise linear elements (p = 1).

Table 1: Preconditioner P (top) and P? (bottom). Condition number estimates and ratio between

the condition number of the preconditioned system and (1 + log(H/h))
2

(between parenthesis).
Structured triangular grids, piecewise linear elements (p = 1).

Preconditioner P

N ↓ n→ n = 128 n = 512 n = 2048 n = 8192 n = 32768
N = 16 3.11 (0.74) 4.88 (0.65) 7.50 (0.64) 10.84 (0.64) 14.79 (0.64)
N = 64 - 3.30 (0.79) 5.25 (0.70) 8.00 (0.68) 11.42 (0.67)
N = 256 - - 3.35 (0.81) 5.36 (0.72) 8.16 (0.70)
N = 1024 - - - 3.37 (0.81) 5.39 (0.72)

Preconditioner P?

N ↓ n→ n = 128 n = 512 n = 2048 n = 8192 n = 32768
N = 16 2.26 (0.54) 4.04 (0.54) 7.01 (0.60) 11.00 (0.65) 15.83 (0.68)
N = 64 - 2.42 (0.58) 4.49 (0.60) 7.85 (0.67) 12.28 (0.72)
N = 256 - - 2.47 (0.59) 4.60 (0.62) 8.07 (0.69)
N = 1024 - - - 2.48 (0.60) 4.63 (0.62)

N and the number of elements n of the fine mesh. In Table 1 we also report (between parenthesis) 
the ratio between the condition number of the preconditioned system and (1 + log(H/h))

2
. These 

results have been obtained on a sequence of structured triangular grids like the ones shown in 
Figure 1(a). Results reported in Table 1 (top) refers to the performance of the preconditioner P, 
whereas the analogous results obtained with the preconditioner P? are shown in Table 1 (bottom).

We have repeated the same set of experiments on the sequence of unstructured triangular grids 
(cf. Figure 1(b)). The computed results are shown in Table 2. As before, between parenthesis we 
report ratio between the condition number of the preconditioned system and (1 + log(H/h))

2
. As 

expected, a logarithmic growth is clearly observed for both preconditioner P and P?.

Next, once again with p = 1, we present some computations that show that the precondi-
tioner PD defined in (36), i.e., the block-diagonal version of the preconditioner P?, is not optimal 
(cf. Remark 5.2). More precisely, in Table 3 we report the estimated condition number of the



Table 2: Preconditioner P (top) and P? (bottom). Condition number estimates and ratio between

the condition number of the preconditioned system and (1 + log(H/h))
2

(between parenthesis).
Unstructured triangular grids, piecewise linear elements (p = 1).

Preconditioner P

N ↓ n→ n = 128 n = 512 n = 2048 n = 8192 n = 32768
N = 16 2.87 (0.69) 4.69 (0.63) 7.35 (0.63) 10.68 (0.63) 14.62 (0.63)
N = 64 - 3.05 (0.73) 5.01 (0.67) 7.75 (0.66) 11.13 (0.66)
N = 256 - - 3.09 (0.74) 5.08 (0.68) 7.89 (0.67)
N = 1024 - - - 3.11 (0.75) 5.11 (0.68)

Preconditioner P?

N ↓ n→ n = 128 n = 512 n = 2048 n = 8192 n = 32768
N = 16 1.84 (0.44) 3.24 (0.43) 5.51 (0.47) 8.44 (0.50) 12.00 (0.52)
N = 64 - 2.01 (0.48) 3.77 (0.50) 6.35 (0.54) 9.76 (0.58)
N = 256 - - 2.04 (0.49) 3.90 (0.52) 6.58 (0.56)
N = 1024 - - - 2.05 (0.49) 3.93 (0.53)

Table 3: Preconditioner PD. Condition number estimates and ratio between κ(PDS̃) and Hh−1

(between parenthesis). Structured (top) and unstructured (bottom) triangular grids, piecewise
linear elements (p = 1).

Structured triangular grids

N ↓ n→ n = 128 n = 512 n = 2048 n = 8192 n = 32768

N = 16 11.51 (4.07) 23.19 (4.10) 47.40 (4.19) 95.21 (4.21) 190.69 (4.21)
N = 64 - 11.58 (4.09) 23.03 (4.07) 47.16 (4.17) 95.02 (4.20)
N = 256 - - 11.55 (4.08) 22.96 (4.06) 47.12 (4.16)
N = 1024 - - - 11.44 (4.04) 22.88 (4.04)

Unstructured triangular grids

N ↓ n→ n = 128 n = 512 n = 2048 n = 8192 n = 32768

N = 16 9.45 (3.34) 18.63 (3.29) 39.13 (3.46) 75.38 (3.33) 148.93 (3.29)
N = 64 - 8.93 (3.16) 18.30 (3.24) 38.88 (3.44) 78.82 (3.48)
N = 256 - - 8.80 (3.11) 17.85 (3.15) 38.59 (3.41)
N = 1024 - - - 8.75 (3.10) 17.64 (3.12)

Table 4: Condition number estimates κ(S) and CG iteration counts (between parenthesis). Carte-
sian grids.

N = n p = 2 p = 3 p = 4 p = 5 p = 6

N = 4 5.1e+1 (5) 2.7e+2 (8) 6.2e+2 (13) 1.4e+3 (18) 3.4e+3 (28)
N = 16 3.2e+2 (22) 8.4e+2 (42) 2.0e+3 (69) 4.6e+3 (101) 1.1e+4 (153)
N = 64 1.2e+3 (90) 3.2e+3 (150) 7.6e+3 (231) 1.8e+4 (312) 4.3e+4 (446)
N = 256 4.7e+3 (195) 1.3e+4 (294) 3.0e+4 (462) 7.0e+4 (634) 1.7e+5 (886)

D

preconditioned system for decreasing values of H and h. Table 3 also shows (between parenthesis) 
the ratio between κ(PDS̃) and Hh−1. We can clearly observe that on both structured and unstruc-

tured mesh configurations, the ratio between κ(PDS̃) and Hh−1 remains substantially constant as 
H and h vary, indicating that the preconditioner P is not optimal.



Table 5: Preconditioner P (top), P? (bottom). Condition number estimates and ratio between the

condition number of the preconditioned system and
(
1 + log(p2)

)2
(between parenthesis). Carte-

sian grids.
Preconditioner P

N = n p = 2 p = 3 p = 4 p = 5 p = 6

N = 4 7.14 (1.25) 9.04 (0.88) 12.06 (0.85) 14.15 (0.79) 16.48 (0.78)
N = 16 9.24 (1.62) 9.93 (0.97) 15.25 (1.07) 15.99 (0.90) 20.25 (0.96)
N = 64 10.03 (1.76) 10.14 (0.99) 16.34 (1.15) 16.57 (0.93) 21.53 (1.02)
N = 256 10.24 (1.80) 10.19 (1.00) 16.61 (1.17) 16.71 (0.94) 21.84 (1.04)

Preconditioner P?

N = n p = 2 p = 3 p = 4 p = 5 p = 6

N = 4 1.88 (0.33) 2.56 (0.25) 3.75 (0.26) 4.64 (0.26) 5.70 (0.27)
N = 16 4.60 (0.81) 5.23 (0.51) 8.71 (0.61) 9.38 (0.53) 12.25 (0.58)
N = 64 6.18 (1.09) 6.03 (0.59) 10.35 (0.73) 10.79 (0.61) 14.33 (0.68)
N = 256 6.55 (1.15) 6.25 (0.61) 10.83 (0.76) 11.20 (0.63) 14.94 (0.71)

Finally, we present some computations obtained with high-order elements. As before, we con-
sider a subdomain partition made of N = 4` squares, ` = 1, 2, . . ., (cf. Figure 1(a) for ` = 1, 2, 3).
In this set of experiments, the subdomain partition coincides with the fine grid, i.e., H = h , and
on each element we consider the space of polynomials of degree p = 2, 3, 4, 5, 6 in each coordinate
direction. Table 4 shows the estimated condition number of the non-preconditioned Schur com-
plement matrix and the CG iteration counts. We have run the same set of experiments employing
the preconditioners P and P?, and the results are reported in Table 5 . We clearly observe that,
as predicted, for a fixed mesh configuration the condition number of the preconditioned system
grows logarithmically as the polynomial approximation degree increases.

Finally, we compare the performance of the proposed preconditioner with that of the nonover-
lapping Schwarz preconditioner Pad analyzed in [7] (cf. also [6]) for h-p -discontinuous Galerkin
finite element methods. More precisely, we define

Pad =

N∑
`=1

RT
` A−1

` R` + RT
0 A−1

0 R0.

Here, for ` = 1, . . . , N , the subdomains local solvers are defined as the restriction of the global
bilinear form onto Xh

` , i.e., A` = R`AR`
T , being R`

T the extension by zero operator. For the coarse 
solver, we define the coarse space X0 as the space of piecewise discontinuous bilinear functions 
defined on each subdomain Ω`, denote by R0

T the classical injection operator from X0 onto Xh, and 
set A0 = R0AR0

T . As shown in [7], we expect that the condition number of the preconditioned

system behaves as κ(PadA) . p2Hh−1. We ran the same set of experiments as the previous 
one (that is the subdomain partition coincides with the fine grid), employing the nonoverlapping
Schwarz preconditioner Pad. The numerical results are reported in Table 6. together with the 
ratio between κ(PadA) and p2 (between parenthesis). Comparing these results with the analogous 
ones shown in Table 5, we can conclude that, for high order polynomial approximation degrees, 
the preconditioner P is more efficient than the nonoverlapping Schwarz solver.



Table 6: Nonoverlapping Schwarz preconditioner Pad. Condition number estimates and ratio be-
tween the condition number of the preconditioned system and p2 (between parenthesis). Cartesian
grids.

N = n p = 2 p = 3 p = 4 p = 5 p = 6

N = 4 15.58 (3.9) 36.68 (4.1) 101.26 (6.3) 160.09 (6.4) 230.70 (6.4)
N = 16 28.30 (7.1) 64.13 (7.1) 117.27 (7.3) 183.50 (7.3) 264.34 (7.3)
N = 64 31.52 (7.9) 70.60 (7.8) 128.12 (8.0) 200.20 (8.0) 288.35 (8.0)
N = 256 32.28 (8.1) 71.89 (8.0) 130.42 (8.2) 203.69 (8.1) 292.14 (8.2)
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