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1 Introduction

Computational simulations of flow through explicit porous 
microstructures allow for the detailed investigation of the 
way variations in pore wall geometry and pore network 
topology influence flow and transport at both microscopic 
and macroscopic scales. These numerical simulations can 
complement laboratory experiments to provide additional 
insights into how the rich pore-scale physics influence 
continuum-scale behaviors observed in both natural and 
industrial porous materials [32]. A recent review by Blunt et 
al. [9] describes the most common approaches to simulate 
flow and transport at the pore-scale that are currently in use, 
including, e.g., pore network models, particle based meth-
ods, and direct numerical simulations of flow. Although the
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differences between these approaches are considerable, they
all require a representation of an explicit pore structure. In
particular, when performing a direct numerical simulation
of flow and transport, a detailed mesh representation of the
pore space is needed to numerically integrate the governing
equations [40].

Two approaches are chiefly used to obtain porous
microstructures, and the choice of which is selected depends
on the objectives associated with the problem of inter-
est. The first method consists of imaging a given physical
sample of a porous medium using X-ray tomography or
corresponding techniques to obtain an explicit rendition
of the detailed geometry of the sample pore space. Two-
dimensional slices of microstructures are obtained with
these techniques, reconstructed into a three-dimensional
gray scale volume, and then segmented into a binary rep-
resentation of the pore space that is comprised of a solid
and a void phase [33, 44]. While this approach provides
high-resolution images of an actual rock sample, its use-
fulness in characterizing effective properties driving flow
and transport at a continuum scale is somewhat limited.
This is primarily because the number of realizations that
can be obtained and studied is constrained by the avail-
ability of rock samples, the costs of imaging, and errors
that arise in image processing [18, 23]. An approach that
can be employed to quantify the way the uncertainty
associated with pore-scale geometry propagates to esti-
mates of such effective continuum scale properties and
their associated uncertainty relies on the generation of
multiple random pore spaces that are drawn from popu-
lations with specified geometrical and topological prop-
erties. In contrast to the imaging of a real rock sample
where only a single geometry is obtained, stochastic gen-
eration produces numerous pore-structures which are sta-
tistically equivalent and can be used in conjunction with
efficient flow solvers to determine the effect of particu-
lar geometric observables on effective flow and transport
properties.

Stochastic methods for generating porous microstruc-
tures differ according to their computational efficiency and
the number of parameters that can be controlled. In general,
there are three classes of stochastic pore space genera-
tion methods that are commonly used. The first prescribes
particular attributes, such as porosity or grain distribution,
and randomly places geometric objects, such as cubes or
spheres, into a domain until target values of those attributes
are obtained [5, 12, 28, 37, 43]. The second-generation
method relies on statistical quantities obtained from images,
e.g., two-point correlation functions or linear path function-
als, obtained from images of real pore spaces to reconstruct
samples with similar characteristics [4, 8, 24, 27, 29, 31,
46]. The third class of methods is based on thresholding ran-
dom fields where an n-dimensional correlated topography is

thresholded to produce an (n − 1)-dimensional pore struc-
ture [22, 25, 42].

Characterization of the extent at which randomly gener-
ated pore spaces can be considered as representative of a
particular rock sample depends on the metrics employed to
compare the virtual sample against its physical counterpart.
Typically, comparisons of patterns of geometric observ-
ables, e.g., porosity and specific surface area, macro-scale
flow parameters, e.g., permeability, or autocorrelation func-
tions are used to validate the representativeness of a virtual
sample, and thereby to assess the quality of the genera-
tion method. Recently, Guadagnini et al. [13] observed scale
dependence of statistics of geometric characteristics, i.e.,
porosity (φ) and specific surface area (SSA), in millime-
ter scale samples of natural porous media. Following typical
procedures employed in statistical scaling analyses, these
authors (a) consider scaling of increments, or changes, in
these geometric observables across a set of length scales,
ranging from the (micron) resolution scale up to the (mil-
limeter) scale of the rock sample, and (b) ground their
analysis on the computation of order q sample structure
functions (statistical moments of absolute increments) of
φ and SSA. They document the occurrence of (a) appar-
ent power-law scaling behavior of such sample structure
functions over a range of lags within the analyzed digitized
porous media images, as well as (b) extended power-law
scaling, assessed via extended self-similarity (ESS), the lat-
ter appearing to be an intrinsic property associated with the
statistical scaling behavior of both porosity and SSA at the
scale of investigation. Siena et al. [38] then show that statis-
tical scaling of Lagrangian velocities computed numerically
within the same rock samples takes place within the same
range of separation scales (or lags) as for φ and SSA. The
proper reproduction of these scaling behaviors and attributes
provides another key metric that can be used to judge a
generator’s ability to produce realistic samples. In particu-
lar, the estimate of the Hurst coefficient, which is typically
employed as an indicator of the degree of roughness (i.e.,
tendency for large and small values to alternate mildly or
rapidly in space or time) of a target quantity and is related
to its fractal dimension, serves as a quantitative measure by
which to compare virtual and physical media.

In this paper, we analyze scale statistics of porosity and
specific surface area of pore spaces generated according to
the method of Smolarkiewicz and Winter [42] and Hyman
and Winter [22]. The generation method consists of thresh-
olding a correlated random topography, which is generated
by convolving a random field with a prescribed kernel that
determines the correlation structure of the topography, to
produce a three-dimensional structure composed of inter-
connected pores embedded in an impermeable solid phase.
Hyman andWinter [22] provide a rigorous theoretical inves-
tigation of the method that is complemented by an extensive



set of detailed numerical simulations on the way the genera-
tion parameters of the method control pore space geometric
observables, namely: φ; SSA; and mean curvature. These
authors also provide extensions of the method to generate
pore spaces with anisotropy and multiple pore structures.
Virtual pore spaces generated using this particular method
were used to investigate the influence of porosity on trans-
port properties [19], porosity, and mean hydraulic radius on
permeability [20], pore wall geometry, and network topol-
ogy on local mixing [21], pore size distributions on in-pore
fluid velocity distributions [41]. Proper characterization of
the way key statistics of geometric observables, such as φ

and SSA, are affected by scale can be critical in applica-
tions involving the need to quantify the effect of uncertain
random pore space geometry on effective properties such
as medium permeabilities which can be obtained through
upscaling approaches.

The extent to which existing generation methods can
reproduce statistical scaling of geometric observables found
in real media, and the way such scaling manifestation
can be quantitatively linked to the generation parameters
is still unexplored. The objective of this work is to pro-
vide such analysis upon relying on the generation method
of Smolarkiewicz and Winter [42] and focusing on scale
dependence of statistics of incremental values of poros-
ity and SSA. Our analysis is grounded on the method of
moments and extended self-similarity, following the works
of Guadagnini et al. [13], Guadagnini et al. [14], Riva et al.
[35, 36], and Siena et al. [39].

Section 2.1 describes the generation procedure for creat-
ing the virtual pore structures. The theoretical basis under-
pinning our analyses, the method of moments (M), and
extended self similarity (ESS), are discussed in Section
2.2. An example is provided in Section 3 to illustrate the
application of M and ESS in the context of a stochasti-
cally generated porous microstructure. The dependence of
observed power-law scaling of q-order structure functions is
then related to the generation parameters in Section 4.1, and
the dependence of the estimated Hurst coefficient character-
izing φ and SSA on the generation parameters is explored
computationally in Section 4.2. We conclude with a few
remarks in Section 5.

2 Experimental data and theoretical basis

A description of the adopted generation procedure to pro-
duce virtual pore spaces is first provided. A complete treat-
ment of the method including statistics and look up tables
for average (expected) values of three of the four Minkowski
functionals for a porous sample [16, 17], i.e., porosity, specific
surface area, and mean curvature, along with topological
properties, local and global connectivity, are provided in

Hyman and Winter [22]. Only a brief description of the
method, and the influence of the generation parameters
on porosity and specific surface area, is provided here for
completeness. After describing the generation method, the
theoretical underpinnings of the statistical scaling method
of analysis are provided. For this purpose, we follow
Guadagnini et al. [13] closely and refer the interested reader
there for a complete treatment of the subject along with
additional references. The section concludes with an example
of application of the method of moments and extended self
similarity on a porous medium sample.

2.1 Generation procedure

The generation of these microscopic pore structures is based
upon level set percolation [2, 3] where locations in a ran-
dom correlated topography T are mapped into the void/solid
phase depending upon the height of the topography at each
location. First, every node on a three-dimensional regular
grid with uniform spacing δx is assigned an independent
identically distributed random value sampled from a con-
tinuous uniform distribution on the closed interval [0, 1],
u(x). Next, this random field is convolved with a symmetric
Gaussian kernel, k(x), to generate the isotropic correlated
random topography, T = k ∗ u. The Gaussian kernel has an
intrinsic length scale λ which dictates the correlation length
in the topography. The central limit theorem ensures that
values of T (x) are normally distributed [22]. Thresholded
Gaussian fields have also been used to generate pore spaces
with specific correlation structures by [1, 34, 45]. In those
applications, the kernel is selected to reproduce the desired
correlation structure.

After T is created, a level threshold, γ ∈ [0, 1], is applied
to T to determine which nodes are in the void space and
which are in the solid matrix. If the value at a node is
greater than γ , then the node is placed in the solid matrix;
nodes with values below γ are placed in the void space.
Intuitively, as γ increases so does the volume of the void
space in the porous medium. The result of applying this
technique is a statistically stationary pore space in the sense
that the finite-dimensional probability distributions of pore
space membership are invariant with respect to translation
in space.

The two generation parameters, λ and γ , control the cor-
relation structure of the topography and volume of the pore
space. Larger values of λ increase the width of the Gaussian
kernel, which increases the correlation length in the topog-
raphy, and results in wider pores once the level threshold, γ ,
is applied. As γ increases, more of the topography is below
the level threshold and is mapped into the void space. Thus,
as γ increases so does the porosity. Porosity (φ), the ratio
of pore volume over total volume, depends linearly on γ at
intermediate values, 0.40 ≤ γ ≤ 0.60. Hyman and Winter



Fig. 1 a Horizontal cross section of pore space sample, black indicates solid matrix and white void space. Directional profiles of porosity (φ) (b)
and specific surface area (SSA) (c). Colors indicate different coordinate axes

[22] show that over the entire range of threshold values, the
porosity is determined via a complementary error function
which depends upon both γ and λ. The specific surface area
(SSA), the total interstitial area (per unit volume) between
the pore space and the solid matrix, depends nonlinearly on
both γ and λ. Small values of λ create a more rugged topog-
raphy, which results in numerous narrow pores with higher
surface area than topographies generated with larger corre-
lation lengths, which produce realizations with wider pores.
At a fixed value of λ, the values of SSA are nearly symmet-
ric about γ = 0.50, rising with γ increasing from 0.40 to
0.50, and decreasing when γ increases from 0.50 to 0.60.

The grid resolution, δx, determines the spatial resolution
of the pore structure. Most of the samples used in this study
are unit volumes of L3 and δx = L/N , where N is the

number of voxels in one spatial dimension. This generality
allows for the method to be used at a wide range of spatial
scales, and the presented results hold for arbitrary spatial
resolutions. When a sample is not a unit volume, it is clearly
noted.

2.2 Method of moments and extended self similarity

We investigate power-law scaling of order q sample struc-
ture functions, defined as

S
q
N(si) = 1

N(si)

N(S)∑

n=1

|�yn(si)]q , (1)

Fig. 2 Structure functions of order q = 1, 2, 3 for porosity (φ) (a) and
specific surface area (SSA) (b) parallel to x1. Power-law fits are deter-
mined by maximizing the coefficient of determination R2. Dashed
lines indicate the range of lags where power-law scaling is observed.
In a low to mid-range of lags, which extends for about a decade within

the observation window of the investigated domain, each structure
function scales as a power of lag, a feature which has also been
observed in imaged real rock samples at the millimeter scale by
Guadagnini et al. [13]



Fig. 3 Dependence of S
q+1
N on

S
q
N for q = 1, 2, 3 for porosity

(φ) (a) and specific surface area
(SSA) (b) parallel to x1.
Regression lines are fitted to the
curves are shown in red. The
linear relationship between the
sequential structure functions
reveals that Sq

N exhibits extended
power-law scaling at all lags

where y(x) is a realization of a random field Y (x) defined
on a continuum of points x in a one-dimensional setting.
Here, Y (x) is either φ or SSA calculated for volumes of
planar extent L × L and unit voxel thickness, parallel to the
three Cartesian axis, xi for i = 1, 2, and 3, and �yn(si) =
y(xi,n+si)−y(xi,n) is an increment of y(xi) calculated over
a lag (si) between two points along the direction xi , N(si)

being the number of such increments. Power-law scaling as
a function of lag is defined as

S
q
N(si) ∝ s

ξi (q)
i (2)

where the power or scaling exponent, ξi(q), can vary with
direction xi , and is independent of si .

Using these structure functions, we identify and analyze
power-law scaling of φ and SSA through the method of
moments (M) and extended self-similarity (ESS) for virtual
samples generated using the method mentioned above, cf.
Siena et al. [39] for details and references about M and ESS.

Fig. 4 Directional dependence of ξi(q), x1 (red diamonds), x2 (black
squares) , x3 (grey circle) on q obtained through ESS for porosity
(φ) (filled markers) and specific surface area (SSA) (empty markers).
Linear fits and R2 values are also provided for φ (solid line) and
SSA (dashed line). No significant directional dependence is observed
because the underlaying topography is isotropic. The slope of the lin-
ear regression lines provides an estimate for the Hurst coefficient. The
estimated Hurst scaling exponents for this sample, Ĥφ = 0.89 for φ

and ĤSSA = 0.75 for SSA, are close to those reported by [13] for
natural samples of sandstone

In the method of moments, the sample structure functions
(1) are inferred for a set of lags and a series of qi values
i = 1, 2, . . . , n. The structure function S

qj

N is plotted against
si on a log-log scale. A linear, or near-linear dependence of
log S

qj

N on log si is usually obtained within an intermediate
range of lags, sI < si < sII , where the upper and lower
limits sI and sII are defined theoretically or, more com-
monly, empirically. The power ξi(qj ) (j = 1, 2, . . . , n) is
the slope of this linear regression. Benzi et al. [7] and Benzi
et al. [6] introduced ESS as an empirical procedure to extend
power-law scaling at all separation scales by observing that

Sn
N(si) ∝ Sm

N(si)
βi (n,m), (3)

where βi(n, m) = ξ(n)/ξ(m) is the ratio between the
scaling exponents of Sn

N(si) and Sm
N(si).

A theoretical basis for Eq. 3 has been given in the context
of (a) the one-dimensional Burger equation [10], (b) Gaus-
sian random fields constituting a sample from a truncated
fractional Brownian motion (tfBm), or truncated fractional
Gaussian noise (tfGn) [39], and (c) sub-Gaussian random
processes subordinated to tfBm or tfGn [15, 30]. The latter
fields constitute mixtures of Gaussian fields with random
variance and are consistent with typical power-law scaling
at intermediate lags and with ESS at all lags.

3 Example of scaling of porosity and specific
surface increments

A sample realization of a pore space is generated using an
intrinsic length scale

√
λ = 0.025 and level threshold of

γ = 0.45. The unit cube is discretized using 2563 vox-
els. Figure 1a shows a horizontal cross section of the pore
space sample; Fig. 1b, c depict the profiles of porosity φ

and specific surface area SSA for the sample realization in
all three primary directions, x1, x2, and x3. These direc-
tional profiles are calculated following [13] and relying on
the algorithms of [11]. As a reference, the bulk porosity
of the sample is ≈ 0.32 and the specific surface area is
0.0953 δx−1.



Fig. 5 Length of lags where
power-law scaling of structure
functions (1) for porosity (φ) (a)
and specific surface area (SSA)
(b) plotted as functions of

√
λ,

the intrinsic length scale of the
Gaussian kernel. Different level
thresholds, γ , are denoted by γ

= 0.4 (red solid), γ = 0.5 (black
dots) , γ = 0.6 (gray,
dot-dashed). A linear model for
porosity and a power-law model
for SSA are shown in blue

The Lillie test indicates that the empirical probability dis-
tributions of porosity and SSA are most likely Gaussian,
this hypothesis is not rejected at the 5 % significance level.
The same holds for the distributions of their incremental val-
ues at diverse lags. These results are also confirmed for a
wide range of generation pairs, 0.005 ≤ √

λ ≤ 0.035 and
0.40 ≤ γ ≤ 0.60 (details not provided).

Absolute increments of φ and SSA are computed for lags
si ≤ 128. Thus, the number of samples employed for
the evaluation of each structure function (1) ranges from
255 to 128, ensuring that a sufficient number of samples
is obtained for an estimation of the structure functions.
Figure 2a shows the logarithm of the structure functions
of order q = 1, 2, and 3 for porosity and Fig. 2b
shows the same quantities for SSA, both computed par-
allel to the x1 plane, plotted against the logarithm of
lag s1. Dashed lines in the figures indicate the approxi-
mate maximum range of lags s1 where power-law scaling
behavior can be observed, sI < s1 < sII . The
lower and upper scaling bounds, respectively indicated as
sI and sII , are computed in two steps. First, a possi-
ble value for sII is determined by finding the smallest
(directional) lag value such that the second derivative of the
spline interpolant of the structure function is below a user-
prescribed tolerance. Using this value as an initial guess, a

search is performed to determine the values of sI and sII

which maximizes the coefficient of determination (R2) of
the linear regression. In all of the cases shown, R2 is greater
than 0.98.

As described in Section 2.2, the method of moments (M)
uses the plots of log S

qj

N for j = 1, 2, . . . , n against log si to
determine a linear relationship between the two (Fig. 2) over
the range sI < s1 < sII . The scaling exponent, ξ(q), is
estimated as the slope of the regression line over this region.
We found sI = 2 and sII = 17 for φ and sI = 2 and sII =
15 for SSA in this example. The results suggest that in a
low to mid-range of lags, which extends for about a decade
within the observation window of the investigated domain,
each structure function scales as a power of lag, a feature
which has also been observed in imaged real rock samples at
the millimeter scale by Guadagnini et al. [13]. The width of
these scaling regions depends upon the intrinsic length scale
of the Gaussian kernel, λ; this dependence is systematically
explored in Section 4.1.

Figure 3 depicts the dependence of log(Sq+1
N ) on

log(Sq
N) which is obtained through application of ESS

to the quantities displayed in Fig. 2 for φ (a) and SSA

(b) computed along the x1 direction. The linear rela-
tionship between sequential structure functions reveals
that S

q
N exhibits extended power-law scaling at all lags.

Fig. 6 Average estimated Hurst
coefficient for incremental
values of porosity (φ) (a) and
specific surface area (SSA) (b).
A nonlinear model of the form
Ĥ (γ, λ) =
a(γ − 0.5)2 + b log(

√
λ) + c

fits the surfaces well.
Parameters for the model are
provided in Table 1



Regression lines which are fitted to the curves are also
depicted in Fig. 3, together with the associated expres-
sions and coefficient of determination, (R2). The latter
is always at least 0.97.

A symmetric Gaussian kernel is used in the construction
of the example topography and therefore the topography,
and the induced pore space, is isotropic and stationary.
Hence, there should not be directional dependence of ξi(q)

on xi . Indeed, this is observed by plotting ξi(q) (i = 1, 2, 3)
against q for the sample realization. Values of ξi(q) are
computed using values of q ranging from 0.1 ≤ q ≤ 1
in increments of �q = 0.1 and then from 1 ≤ q ≤ 4 in
increments of �q = 0.5 for all three directions. All of the
values are plotted against q and for ξi(q) (i = 1, 2, 3) in
Fig. 4 for both φ (filled markers) and SSA (empty markers).
The pore topography can be rendered anisotropic by using
an asymmetric kernel in the convolution. This anisotropy
will then be observed in the range of lags associated
with power-law scaling and in the slope of the regression
line (not shown). By varying the kernel in this manner,
the anisotropy that has been observed in natural samples
[13] can be created.

A linear relationship between the scaling exponent ξ and
q is observed for both φ and SSA that persists over the
entire sampled space of q values. When the scaling expo-
nent ξ(q) is linearly proportional to q, Y (x) is typically
interpreted as a (mono-fractal) self-similar random process
with Hurst exponent H [13] (and references therein). The
slope of the linear regression lines provides an estimate for
the Hurst coefficient. The estimated Hurst scaling exponents
for this sample, Ĥφ = 0.89 for φ and ĤSSA = 0.75 for
SSA, are close to those reported by [13] for natural samples
of sandstone.

4 Dependence of statistical scaling on generation
parameters

The generation parameters, the intrinsic length scale of
the kernel λ and the level threshold γ , determine the
volume and structure of the pore space. Therefore, they
also determine the statistical scaling of φ and SSA. In
this section, we determine empirical relationships between
the generation parameters and (a) the length of the
range of lags where power-law scaling of the sample
structure functions is observed and (b) the estimated
Hurst coefficient.

4.1 Power-law scaling length

The range of lags where power-law behavior of the sam-
ple structure functions is observed (delimited by the dashed
vertical lines in Fig. 2) depends upon the intrinsic length

scale of the kernel λ and the level threshold γ . To quan-
tify this dependence, 1350 samples with dimensions 256 ×
256 × 2048 are generated using 0.005 ≤ √

λ ≤ 0.035
with �

√
λ = 0.005 and 0.40 ≤ γ ≤ 0.60 with �γ =

0.10. The structure functions are computed in the x3 direc-
tion, with s3 ≤ 1024. This results in large sample sizes,
ranging from 2047 to 1023 elements for the set of lags
considered, and leads to accurate estimates of the structure
functions. The average values of the length of the inter-
val of lags, �s = sII − sI , where power-law behavior is
observed along with error bars are plotted against

√
λ for

three selected values of γ in Fig. 5a for φ and Fig. 5b for
SSA.

With regard to porosity, a linear relationship between√
λ and �s is observed, the results appearing to be insen-

sitive to the level threshold γ . A linear model �s(
√

λ) =
m

√
λ + b where m = 401.4 (379.2, 423.6) and b =

1.754 (1.26, 2.25) fits the data well (here and in the fol-
lowing, values in parenthesis indicate bounds of nominal
95 % confidence intervals). The linear model depicted in the
figure is associated with values of R2 = 0.99. In contrast,
the length of the interval of lags where structure functions of
SSA exhibit power-law scaling depends nonlinearly on both√

λ and γ (Fig. 5b). A power-law model captures the non-
linear dependence of �s on

√
λ, and is plotted along with

the data as a solid blue line. The model �s(
√

λ) = a(
√

λ)b

where m = 123.3 (65.19, 181.3) and b = 0.68 (0.56, 0.81)
fits the data well, being associated with R2 = 0.91. As noted
in Section 2.1, the expected value of SSA is a nonlinear
function of γ and is symmetric about γ = 0.50. Con-
sistent with this, it can be seen that the average values of
�s obtained for γ = 0.4 and γ = 0.6 and depicted in
(Fig. 5b) are virtually indistinguishable. On the other hand,
our results show that values obtained for γ = 0.5 are visibly
lower.

4.2 Estimated Hurst coefficient

Here, we analyze the way the estimated values of the
Hurst scaling exponent [26] observed for φ and SSA are
related to the model generation parameters. We do so
by quantifying the dependence on the model generation
parameters of average values of estimations for the Hurst
coefficients for porosity (Ĥφ) and specific surface area
(ĤSSA) over a large set of virtual samples. As noted in
Section 1, the Hurst exponent provides an indication of the
type of spatial dependence of the increments of given quan-
tities, and is therefore of particular interest in stochastic
analyses of flow and transport in porous media.

The mean and variance of Ĥ estimates are compu-
tationally determined by generating a total of 166,656
independent realizations of virtual media and computing the
associated Hurst scaling coefficients; the slope of the linear



Table 1 Computationally
determined average values
(subscript μ) of the Hurst
coefficient for porosity (φ) and
specific surface area (SSA)
along with variance of sample
sets (subscript σ 2; values are
· 10−3)

γ : 0.40 γ : 0.50 γ : 0.60√
λ φμ SSAμ φμ SSAμ φμ SSAμ

0.0050 0.13 0.13 0.16 0.06 0.14 0.13

0.0150 0.62 0.51 0.66 0.35 0.62 0.52

0.0250 0.79 0.64 0.81 0.54 0.79 0.64

0.0350 0.87 0.70 0.87 0.62 0.86 0.70

√
λ φσ 2 SSAσ 2 φσ 2 SSAσ 2 φσ 2 SSAσ 2

0.0050 4.72 4.18 5.83 1.56 4.99 4.57

0.0150 8.41 9.81 5.33 1.06 9.81 8.01

0.0250 3.95 9.89 4.09 9.48 4.51 7.92

0.0350 3.37 7.12 3.48 8.52 3.05 8.43

regression line for the scaling exponent ξ as a function of q

is used as an estimate for the Hurst coefficient. Generation
pairs comprised of 31 values of 0.005 ≤ √

λ ≤ 0.035 and
21 values of 0.40 ≤ γ ≤ 0.60 are used. For each generation
pair, 256 independent realizations are generated. Here, only
values calculated for the direction x1 are reported because
the other two directions provide statistically identical val-
ues, cf. Section 3. Ĥ are provided in Fig. 6a for porosity
and Fig. 6b for SSA. Average values and variances of the
sample set at selected generation pairs are listed in Table 1.
Estimates Ĥ depend nonlinearly on both the intrinsic length
scale of the kernel λ and the level threshold γ . For both φ

and SSA, at a fixed γ , the Ĥ coefficient increases logarith-
mically with rising values of

√
λ. At a fixed level of λ, the

Hurst coefficient exhibits a quadratic trend with a vertex at
γ = 0.50. The surface of Ĥφ , is a convex function of γ ,
while the surface ĤSSA, is a concave function of γ .

The three parameter model,

Ĥ (γ, λ) = a(γ − 0.5)2 + b log(
√

λ) + c , (4)

provides high fidelity estimates of the average estimated
Hurst scaling coefficient for both φ and SSA. Model param-
eter values are estimated using maximum likelihood estima-
tions and are listed in Table 2, along with the corresponding
nominal 95 % confidence bounds, and standard goodness
of fit criteria (SSE: sum of squared errors, RMSE: root

mean squared error). An alternative model formulation that
included an interaction term of the kind (γ

√
λ)d did not

increase the accuracy of the corresponding estimates, the
estimated value of the additional parameter d being essen-
tially zero. Two of the parameter values in our proposed
empirical model, namely the coefficient of the logarithm of√

λ (b) and the constant term (c), are quite similar for Ĥφ

and ĤSSA. However, one can note that the leading coeffi-
cients of the quadratic terms are notably different in both
magnitude and sign to capture the concavity of the surface
describing the Hurst coefficient in the generation parameter
space.

5 Conclusions

Our works leads to the following major conclusions.

1 By computing order q structure functions (statisti-
cal moments of absolute increment) of porosity and
specific surface area of three-dimensional stochasti-
cally generated porous microstructures, we demon-
strate that the generation method of Smolarkiewicz
and Winter [42] and Hyman and Winter [22] quali-
tatively and quantitatively reproduces salient features
of statistical scaling behavior observed in real rock
samples.

Table 2 Empirical model for
the maximum likelihood
estimates of the Hurst
coefficient Ĥ : Ĥ (γ, λ) =
a(γ − 0.5)2 + b log(

√
λ) + c

along with nominal confidence
intervals and goodness of fit
metrics (SSE sum of squared
errors, R2 coefficient of
determination RMSE root
mean squared error)

Coefficients 95 % confidence bounds: Goodness of fit:

a = −2.75 (−3.52, −1.99) SSE: 0.69

Porosity (Ĥφ ) b = 0.39 (0.38, 0.39) R2: 0.98

c = 2.22 (2.20, 2.24) RMSE: 0.03

a = 11.37 (10.89, 11.85) SSE: 0.27

SSA (ĤSSA ) b = 0.30 (0.29, 0.31) R2: 0.99

c = 1.66 (1.64, 1.67) RMSE: 0.020



2 The observed linear variation of the scaling exponent
ξ(q) for the range of q values analyzed is consistent
with the nature of the generation method, which creates
Gaussian random fields that are thresholded to produce
the pore spaces. This observation is also consistent with
numerical results of Guadagnini et al. [14].

3 The order q sample structure functions are computed
across a variety of generated pore spaces and for a
wide range of combinations of the generation parame-
ters scale as a power of the separation distance or lag
over an intermediate range of lags. Extended power-
law scaling, also termed extended self-similarity (ESS),
appears to be an intrinsic property of the virtual media
we generate and analyze. These results are consistent
with observations based on the analysis of millimeter
scale natural rock samples imaged at the micron-scale
resolution.

4 The length of the range of lags where power-law scaling
is observed and the Hurst coefficient can be controlled
by the generation parameters of the method. We provide
empirical relationships to guide the generation of ran-
dom pore spaces associated with given values of these
two quantities.

5 Our results show that the generation method is capa-
ble of rendering pore space geometries characterized by
distributions of porosities and SSA which can be anti-
persistent (with a tendency of large and low values to
alternate rapidly in space, in a rough rather than smooth
manner) or persistent in space, respectively associated
with values of the Hurst coefficient that are lower
or larger than 0.5 for the Gaussian systems analyzed.
While in their analysis of real rock samples, Guadagnini
et al. [13] show that that φ and SSA are generally asso-
ciated with a mild to strong persistent behavior, varying
in a smooth fashion, i.e., with a tendency for large and
small values to alternate mildly over space, it has to be
noted that the analysis of statistical scaling of geometric
observables at such small scalesO(μm) are still in their
infancy. As such, the ability of having a virtual pore
space generation procedure with such a broad range of
generation capabilities can be critical for applications
involving the analysis of fluid flow and solute transport
in complex natural pore spaces.

Remark Our ability of rendering virtual pore samples
displaying scale-dependence of statistics of geometric char-
acteristics of the kind which has been documented for
imaged pore spaces of real rocks [13] depends on the par-
ticular generation methodology employed. Here, we have
demonstrated that (a) the approach we adopt can lead
to the generation of a population of samples displaying
such scaling patterns, and (b) the generation parameters
contain information about the way one can reproduce in the

population of the generated samples the width of the range
of lags where such scaling is manifested in the real medium.
Samples generated using other approaches, or even other
kernels in the convolution to create the correlated random
topography, may or may not exhibit such scaling. A com-
parison of the type of scale dependence of statistics of
geometric characteristics is another measurement by which
one can judge the representativeness of a synthetic sample.

All of the virtual samples analyzed in this work are pro-
duced using a symmetric Gaussian kernel to construct the
random topography. The resulting pore spaces are isotropic,
and thus there is no directional dependence observed for
the scaling exponent ξ(q) or the Hurst coefficient. To cap-
ture the anisotropy which might be seen in some natural
samples, an anisotropic kernel can be used in the genera-
tion procedure, as described in [22]. We further note that
real pore spaces might exhibit multiple pore structures with
pores of various sizes and orientations, a feature which can
be included in the generation, as discussed in Hyman and
Winter [22], but was not done here for simplicity and clarity.
However, in doing so, two pore spaces with different Hurst
coefficients are merged. Thus, it might be possible to create
pore spaces whose Hurst coefficient does not scale linearly
over the range of q values considered using these pore
spaces. Exploring and determining how the generation pro-
cedure can control this non-linearity is the subject of ongo-
ing research. Finally, it should be possible to use colored
noise for the generation of the underlying random field and
create topographies that are non-Gaussian. This extension
of the method is also the subject of ongoing research.
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