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1 Introduction

During the last two decades, radio frequency (RF) circuits 
have conquered a large portion of the electronic market and 
‘mobile’ devices are largely used everyday. One of the key 
aspects in designing a ‘good quality’ RF device is reduction 
of noise. Effects of noise have been deeply studied from 
different points of view and new numerical algorithms to 
efficiently simulate noise in electronic circuits have been 
developed and made available in commercial circuit 
simulators. When applicable, a successful method to 
simulate noise is based on two sequential steps. The first 
determines the periodic steady-state large-signal solution 
(e.g. through shooting or harmonic balance methods [1]) of 
the circuit with the noise sources turned off. The second 
linearises the equations describing the circuit around the 
periodic orbit, thus leading to a linear time-varying system 
(variational model) [2]. Noise sources are then turned on 
and their effects are transferred to the circuit output.
In commercial simulators, such as, for example, 

SPECTRE™ by CADENCE, this analysis is referred to as 
periodic noise analysis (PNOISE) [3–5]. However, there are
at least two cases (each one violating one of the 
assumptions for the two steps) in which this approach 
cannot be successfully applied.
First, modern RF circuits are made up of both ‘analogue’ 

blocks, modelled through differential algebraic equations
(DAEs), and ‘digital’ blocks, modelled through boolean 
functions and maps or behavioural elements that generate 
discontinuous signals. This mixed analogue/digital approach 
is dictated by the fact that these circuits are usually made 
up of a very-large number of elements mainly located in 
their digital part, thus making a transistor-level simulation
(i.e. as analogue circuits described by DAEs) often
unfeasible. Mixed analogue/digital circuits are described by
non-smooth systems and consequently their variational
models are not defined. In principle, it is thus not possible
to resort to PNOISE to determine the effects of noise
sources. Second, there are circuits that do not admit a
steady-state solution, for example, a fractional ΔΣ
phase-locked loop (PLL) with dithering or pulled oscillators
[6]. In both cases, one has to resort to time-domain
(large-signal) noise analysis, where contributions by noise
sources to the circuit electrical variables are computed
during the numerical solution, without need for a periodic
steady-state. At the end of this simulation, waveforms can
be processed to extract the power spectral density (PSD) of
noise.
This approach has three main drawbacks. The first one is

the numerical noise floor, which can hide the effects of the
noise sources. This prevents the successful application of
time-domain noise analysis to low-noise circuits, that are
obviously the real target of the RF design. This point is
discussed in [7] by focusing on a basic oscillator example
to show the limits of circuit simulators because of
numerical tolerances of the used iterative algorithms (see
also [8, 9]). The ‘random walk’ of the large signal
solution caused by numerical errors constitutes the noise
floor, and characterises the relative accuracy of the
simulator with respect to the effect of noise sources; noise
sources leading to effects below the noise floor are
completely hidden.
The second drawback is the relative numerical inaccuracy

of the large-signal simulation with respect to variational
approaches, which cannot be directly applied to
non-continuous vector fields.



Fig. 1 Schematic representation of the relaxation oscillator

Two different working configurations are considered; the former has the
switch S closed and the controlled source injects the current Ao = z/R.
The latter has S open and the capacitor C charges/discharges trough the
voltage-controlled current source Ao (see text)
Cẋ(t)+ 1

R
(x(t)− z(t)) = 0,

ż(t) = 0

⎧⎨
⎩ (1)

The third (more involved) phenomenon is concerned with 
the fact that – in circuits not admitting a periodic 
steady-state – noise PSD cannot be accurately determined 
by resorting to standard fast Fourier transform (FFT) 
methods. A common approach consists in determining the 
time sequence of threshold crossings of a noisy large-signal 
solution. This sequence is then post-processed to compute
the Welch’s periodogram [10]. However, linear multi-step 
methods used to transform the DAEs modelling the 
analogue part of the circuit into non-linear algebraic 
equations contribute to the noise floor of simulators through 
time warping, that is, they distort time and thus corrupt 
accuracy of the threshold crossing time instants [8]. This
can make useless the adoption of the Welch’s periodogram 
to avoid biasing of standard FFT.
In summary, on the one hand, to analyse the effects of 

noise sources on a mixed analogue/digital circuit, a 
time-domain noise analysis tool is needed to compute the 
noise PSD, since PNOISE is not applicable; on the other 
hand, the noise floor of the simulator introduced by the 
time-domain large-signal algorithm can almost completely 
hide noise effects of the circuit. A variational approach 
would allow to reduce this problem since, in general, the 
numerical accuracy of a DAE solution is relative to its 
order of magnitude, but it must be extended to switching 
DAEs modelling mixed analogue/digital circuits not 
admitting a periodic solution.
This paper is concerned with the practical problem of 

simulating noise in mixed analogue/digital circuits with 
behavioural description of some digital parts. To this end, 
three ingredients (already known individually but, at the 
best of the authors’ knowledge, never combined to this end) 
are ‘cooked’ together to solve the above cited drawbacks. 
The saltation matrix allows extending the variational model 
to mixed analogue/digital circuits and then reducing the 
noise floor [11–14]. To extract the PSD of noise, the 
Thomson’s multitaper method (MTM) is used, which –
with respect to Welch’s periodogram – has the advantage of 
a lower biasing in the estimation, because of the use of 
orthogonal tapers. Noise is characterised through one 
simulation run only, thus gaining numerical efficiency 
without giving up numerical accuracy.
The numerical simulations reported in this paper are 

validated by experimental measurements on a commercial 
fractional ΔΣ PLL.

2 A glimpse to the noise floor: warping

One of the main contributions to the noise floor is because of 
the warping of the solution introduced by linear multi-step 
integration methods [8, 15], largely used in circuit 
simulators [9]. The time warping effect consists in a 
modification of the period of an oscillator because of the 
finite integration time step used in linear multi-step 
integration methods [15]. To show how warping affects 
time-domain noise simulation methods, consider the 
relaxation oscillator shown in Fig. 1. Assume the S switch 
closed, so that the voltage-controlled current source injects 
a current Ao = z/R. The circuit is modelled as an impact 
system described by: two ordinary differential equations 
(ODEs)
the impact condition defined by the manifold

k(x, z) = x− t
z

2
= 0 (2)

and the reset rule [16]

z(t+) = −z(t−) (3)

Assume to start the numerical solution of (1) from the initial
conditions x0 =−zo and zo. The voltage x(t) across C oscillates
between the two values −zo/2 and +zo/2. The T/2 working
period of this oscillator is determined by the time interval
between two consecutive applications of the map (3). By
assuming that circuit elements are noiseless and computing
the time instants of map application, the standard deviation
of the time intervals between two consecutive map
evaluations is expected to be σ = 0, that is, the oscillator is
not affected by jitter and the PSD of phase noise is null
[17]. This expectation is wrong, since warping introduces
variations in the time instants of map application. These
variations depend on the integration time step and,
paradoxically, by varying it from cycle to cycle to
accurately obtain the time instant of map application, the
value of the working period of the relaxation oscillator
changes. This results in σ≠ 0 and in an increased noise
floor of the simulator, which can be ‘confused’ with
oscillator jitter.
The oscillator shown in Fig. 1 was simulated with

SPECTRE™ by CADENCE by performing a time-domain
noise analysis. All elements were noiseless, therefore in
principle the result should not be affected by any noise.
The comparator was implemented as a VERILOGA

module and the κ(x, z) manifold crossings were accurately
computed by resorting to the ‘cross()’ function with a time
accuracy of 1 ns; the working period of the oscillator is
some seconds and more than 30 000 manifold crossings
were computed. The obtained variance σ2 = 1.3859 × 10−8

clearly points out that the oscillator is affected by ‘artificial’
jitter (warping), well above the ‘cross()’ function accuracy.
When the switch S in the circuit of Fig. 1 is open, C is

charged by a constant current. Since linear multi-step
integration methods are of order 1 or larger, they exactly
integrate this current. In other words, they do not introduce
any warping when the simulator varies the integration time
step to accurately meet the time instant of the manifold
crossing. The same simulation performed by using
SPECTRE resulted in σ2 = 1.3851 × 10−12, which is well
below the previous value.
To further corroborate the above statements, the ‘phase

noise’ spectrum was computed by resorting to the PSD



Fig. 2 Phase noise PSDs of the oscillator shown in Fig. 1 
computed by the psd function of MATLAB

Time samples from which we derived PSDs were computed through a 
time-domain noise simulation by SPECTRE. Peaks reveal the presence of a 
periodicity in the choice of the integration time step from working cycle to 
working cycle of the oscillator. Gray curve: S closed; black curve: S open. 
x-axis: frequency offset from the fundamental, y-axis: dB [W/Hz]
estimate of a signal using Welch’s overlapped segment 
method available in MATLAB [10]. This is a standard 
procedure adopted by RF circuit designers. The obtained 
PSDs with S closed (i.e. with time warping) and open (i.e. 
without time warping) are shown in Fig. 2. It can be easily 
appreciated that there is a drop of about 90 dB in the noise 
floor of the simulator when warping effects are removed.
In conclusion, the noise floor of standard time-domain 

noise analysis can strongly limit its applicability, since 
warping can easily hide effects because of low-noise sources.
We remark that σ ≠ 0 with S open since other numerical 

noise sources contribute to the final results. By simulating 
the circuit of Fig. 1 with the approach presented in the next 
sections, the PSD at node z was 0, being the circuit 
noiseless. These results are omitted from Fig. 2 since they 
correspond to −∞ dB.

3 The method

This section describes the main ingredients of the proposed 
method, which allows to reduce the noise floor because of 
both warping (since the method is not based on 
zero-crossing detection) and numerical inaccuracies (owing 
to its variational nature). For the interested reader, the 
modified nodal analysis (MNA) formulation is briefly 
summarised in Appendix 1, together with the related 
variational model. The derivation of the linear time-varying 
stochastic equations modelling the effects of 
small-amplitude noise sources is sketched. It is shown how 
the saltation matrix can be used to extend the variational 
model of the circuit to the transient noise simulation of 
mixed-signal circuits [11]. The PSDs of the noisy electrical 
variables are then computed by resorting to the Thomson’s 
MTM, since it is less biased than the Welch’s periodogram, 
thus allowing to resort to a single simulation run.
3.1 Stochastic variational model

In [11] the variational model (see Appendix 1) has been used 
to implement a noise simulator in time-domain, which is able 
to produce the noise variance and correlation of circuit 
variables as a function of time. In principle, all circuits that 
can be simulated by the transient analysis in a circuit 
simulator can be handled. The basic idea is that the 
homogeneous linear time-varying differential equation (see 
Appendix 1, (11)) is forced by a vector η of P standard 
white Gaussian stochastic processes [18], modelling the P
‘small amplitude’ noise sources that are assumed to affect 
the original circuit. The circuit stochastic variational model
is then

j̇(t) = J (t)j(t)+ D(t)h(t) (4)

where D(t) [ RS×P is a time-varying matrix reflecting the
contribution of η on each one of the S equations of the
variational model. Equation (4) can be rewritten in
differential form as

djt = J (t)jtdt + D(t)htdt︸︷︷︸
dW t

, jt0 = c (5)

where jt is a random variable defining the stochastic process
j = {jt, t > t0} and W = {Wt, t > t0} is a Wiener process [18].
Since (5) is a stochastic differential equation (SDE) in a
‘narrow sense’, (In general a linear SDE takes the form djt
= α(t, jt)dt + β(t, jt)dWt, where α(t, jt) = a1(t)jt + a2(t) and
β(t, jt) = b1(t)jt + b2(t). Whenever b1(t) = 0 the SDE is said
to be linear in a ‘narrow sense’.) its solution can be derived
as [19]

jt = Fv0
(t, t0)c+

∫t
t0

Fv(t)(t, t)D(t)︸






︷︷






︸
F(t)

dW t (6)

where v0 = v(t0) and Φv(t)(t, t) is the fundamental transition
matrix (see Appendix 1) computed from t to t along a
large-signal trajectory v originating from v(t) at t. The
‘integral’ in (6) is a vector whose entries are sums of
stochastic integrals where a deterministic function is
integrated with respect to a Wiener process. Equation (6) is
a stochastic process representing the evolution (at first order
in the noise intensity) of a small perturbation relative to the
noise-free large-signal solution.

3.2 From analogue to mixed-signal circuits: the
saltation matrix

The main limitation of the simulator presented in [11], apart
from its computational cost, is that Fv0

(t, t0) must exist for
any t≥ t0 and in general this is not true for mixed-signal
circuits. Indeed, to guarantee the existence of Fv0

(t, t0), it is
mandatory that J(t) is continuous and this is not the case
for mixed-signal circuits.
In [12] a unified simulation framework was presented,

which allows to manage mixed-signal circuits described by
an index-1 DAE. In particular it was shown that, by
resorting to the saltation matrix linear operator [20], it is
possible to extend to this extremely large class of circuits
several techniques commonly employed to study smooth
analogue circuits [21].
To understand how this linear operator is defined and how

it must be used, in the following we assume to deal with an
ODE (A complete description of the DAE case can be
found in [12].).
Consider the v(t) reference trajectory shown in Fig. 3 that,

starting from v0 at t = t0, hits the κ(v, t) = 0 time varying
manifold at v1 for t = t1. This manifold divides the state
space in two regions where the dynamics is ruled by two
different vector fields, say fl(v, t) and fr(v, t) on the left and
on the right of the manifold, respectively. By perturbing
the initial point by Δv0, the perturbed trajectory hits
the manifold at v2 with time delay Δt with respect to the
unperturbed one, since for t = t1 it is still in v4. In Δt the
reference trajectory evolves from v1 to v3 with the vector



Fig. 3 Example of a trajectory hitting a manifold
field fr(v, t). It can be shown that there exists a matrix
S [ RN×N such that, at first order, v2 − v3 = Dv+ =
SDv− = S(v4 − v1). In the literature, S is referred to as
‘saltation matrix’. If one is interested in evaluating the
fundamental matrix of the system from v0 to v3, S is
necessary to match Fv0

at the discontinuity boundary
(where the Jacobian of the vector field is not defined),
that is, Fv0

(t1 + Dt, t0) = Fv1
(t1 + Dt, t1)SFv0

(t1, t0). The
explicit formula for S (see [20]), which is defined provided
that the reference trajectory hits the manifold transversally, is

S = 1N +
f l(v1, t1)− f r(v1, t1)
[ ]

hT
v

hT
v f l(v1, t1)+ ht

(7)

where hT
v = ∇vk(v, t)

∣∣
v1,t1

, hT
t = ∂k(v, t)

∂t

∣∣∣∣
v1,t1

, and 1N is the
N ×N unit matrix.
The saltation matrix can be basically viewed as a

‘correction factor’ matching the fundamental matrix before
and after each discontinuity event occurring at time tk. In
other words, it gives Fv0

t+k , t0
( )

in terms of Fv0
t−k , t0
( )

as

Fv0
t+k , t0
( )

= SkFv0
t−k , t0
( )

(8)

The saltation matrix is well known when dealing with
piecewise-smooth ODEs, and has been successfully applied
in the modelling and simulation of mixed analogue/digital
circuits [13, 14].
It is important to point out that the insertion of saltation

matrices in the evolution of Fv0 
(t, t0) makes its entries 

exhibit stepwise discontinuities. This is not an issue in
defining the stochastic integrals in (6), since the 
deterministic functions involved need just to be 
square-integrable [22]. To summarise, when implementing 
the extended method to perform transient noise analysis of 
mixed analogue/digital circuits, during the large-signal 
time-domain analysis of the noiseless circuit, the matrix
Fv0 

(t, t0) is computed by taking also into account crossings 
that cause switching of the vector field or resetting of state
variables. Each time this happens, a proper saltation matrix 
is computed and inserted in the matrix product chain that
leads to Fv0 

(t, t0), to regularise the variational model.

3.3 Phase noise spectrum estimation: the MTM

One of the most widely employed methods for estimating the 
phase noise (or jitter) PSD is based on the computation of 
the threshold-crossings of a circuit electrical variable. The
Welch’s periodogram is usually applied to the time-series of 
the differences between two consecutive threshold-crossings 
[10, 23]. In large-signal time-domain approaches, this method 
suffers from inaccuracies, mainly because of the time-warping 
effect described in Section 2. Furthermore, if the variational 
model is used, the threshold-crossing technique cannot be
used, since, when the variational solution is added to the
noiseless large-signal solution, numerical errors can hide the
effects of noise. To overcome these problems, the following
method is employed. During the time-domain analysis, (6) is
computed on a mesh T of evenly-spaced time points. The
resulting set of samples, representing a single realisation of
the stochastic process modelling additive noise effects in the
circuit, is hence processed by Thomson’s MTM [24]. By
working on the T mesh, MTM estimates the PSD of the
stochastic solution using multiple orthogonal windows of this
single realisation, thus avoiding large biasing and hence the
need of performing several simulations. The variational
problem (12) is solved by adopting a variable step-size
method controlling the integration time step in order make
available the accurate Fv0

(t, t0) fundamental matrix at the
time points belonging to T .

3.4 Noise sources

In circuit simulators, complex elements (such as MOSFETs) are
implemented through ‘built-in’ sub-circuits. Generally speaking,
each element in these sub-circuits (e.g. the parasitic gate, source
and drain resistors and the channel of MOSFETs) may generate
coloured noise, thus requiring a ladder RC filter to shape the
output of a corresponding white noise generator [25]. This
increases the number of circuit equations to be simultaneously
solved. In this paper, coloured noise (in particular f α noise
with −2 < α < 0) generation relies on the approach proposed
and developed in [25, 26], but the colouring ladder RC
analogue filter required by each coloured noise source is
replaced by a lead-lag digital filter. This filter is usually made
up of no more than Q = 15 sections depending on the
required bandwidth of the corresponding noise source. In
case a coloured noise source is modulated by the current
flowing in a time-varying device, the output of the digital
filter is modulated accordingly. From a numerical
standpoint, this approach requires that each flicker noise
generator adds a number Q of ‘digital’ state variables. The
main advantage is that they are not handled and solved
together with the circuit electrical variables, thus increasing
the numerical efficiency. Digital filters are automatically
initialised by the simulator before starting the time-domain
noise analysis, as described in [27]. In the proposed
implementation, during time domain noise simulations the
output of these bank of coloured noise generators
(potentially one for each element constituting the built-in
sub-circuits) is ‘automatically’ sampled at each time point
of T , thus the final user does not look after that. This was
done by extending the code of the built-in models handled
in our simulator, such as, for example, the well-known
BSIM3 and BSIM4 MOSFET models.

4 Results

The proposed method is applied to a commercial real-world
device, a fractional PLL, modelled as mixed analogue/
digital system, and the obtained results are compared with
experimental data.

4.1 Experimental setup

The experiments were conducted by using the PLL
implemented on the UG-369 evaluation board by ANALOG
DEVICES, that mounts the AD4151 PLL and the
ROS-1800 + voltage controlled oscillator (VCO). The



Fig. 5 PSD of the ros-1800 + VCO computed by the time-domain
noise analysis of SPECTRE and by the proposed approach

Black dotted curve corresponds to the measured PSD; the almost overlapping
grey curve labeled as ‘b’ is the result from PNOISE after having fitted the
VCO parameters. Curve labeled as ‘a’ is the noise floor of SPECTRE
which is above the measured PSD. See the main text for a description of
the other curves
frequency measurements were performed through the
spectrum analyser E4440 of AGILENT TECHNOLOGIES.
The time measurements were obtained through the
oscilloscope LeCroy Waverunner LT584. The device was
configured as a fractional PLL characterised by a VCO
working at 1775.2 MHz, with a reference frequency of 25
MHz, and a frequency ratio N = 70 + (26/125), where the
fractional part is obtained by means of a 12-bit ΔΣ modulator.

4.2 PLL and VCO models

The block schematic of the circuit used to model the PLL is
shown in Fig. 4. The ΔΣ fractional divider was
implemented as a digital block through the VERILOG
language. As reported in the data-sheet, the MASH ΔΣ
modulator is characterised by 12 bits, the accumulator size
is 125 (i.e. it generates a carry signal when its content
exceeds 125), and the input value k (see Fig. 4) is equal to
26. The N division factor sets to an average value of
70.208, corresponding to an average working frequency of
the VCO of 1755.2 MHz. A detailed description of the
blocks composing the PLL and of the parameter values can
be found in [28].
The VCO was modelled as a ‘polar oscillator’ that

generates a pure sinusoidal waveform [29], taking into
account its phase noise and its input-output characteristic.
This choice was dictated by the fact that the netlist and
models of the VCO and PLL were not available and thus
they were substituted by macro-models. More specifically
the VCO output noise was simulated by an equivalent
unique noise source whose PSD was fitted to experimental
measurements. The independent voltage source ηf
connected to the VCO shown in Fig. 4 does this by
injecting equivalent white Gaussian noise, that is, an
equivalent Gaussian random number generator was
automatically linked to this element by the simulator. To
characterise noise, we resorted to the shooting and PNOISE
analyses of SPECTRE, which are applicable in this case
since the oscillator admits a periodic steady-state solution.
By turning ηf on and varying its magnitude, the
root-mean-square error (RMSE) between the measured PSD
Fig. 4 Schematic implementing the model of the fractional
commercial PLL AD4151 used as test bench
Blocks inside the dashed box are modelled as digital elements through the 
verilog language. The other elements are modelled as analogue devices. 
Fixed parameters: C1 = 6.8 nF, C2 = 120 nF, C3 =  C4 = 4.7 nF, R1 = 120 Ω, 
R2 =  R3 = 75  Ω, Au = Ad = 2.25 mA, Kvco = 47 MHz, fref = 25 MHz
of noise (black dotted curve in Fig. 5) and the simulated
one obtained by PNOISE (grey solid curve ‘b’) was
minimised. A PSD of −168 dBm led to a good fitting.
4.3 VCO simulation

Several simulations were performed, whose results are shown
in Fig. 5 (The circuit simulator PAN, developed by the
authors and used derive the reported results, is available at
the URL: http://brambilla.ws.dei.polimi.it.). A first
time-domain noise analysis was carried out with SPECTRE
by setting the noisefmax = 3 GHz transient analysis option –
since the VCO generates a pure sinusoid and thus it does
not show harmonics – and turning off ηf to determine the
noise floor. The noisefmax = 3 GHz statement turns on
random number generators and injection of noise in the
circuit and defines their bandwidth. More than 16000
threshold crossings were computed and then a Welch’s PSD
was performed. The obtained PSD of the noise floor is the
black solid curve ‘a’, to be compared with the experimental
one (black dotted curve). The simulated noise floor is at
least 12 dB ‘higher’ than the measured phase noise. This
means that the time-domain noise analysis of SPECTRE is
not reliable in this case. The VCO phase noise was
measured till 1 MHz since this is the usual upper limit of
the offset frequency in practical applications, as reported
also on the data-sheet of the VCO. Simulated curves were
continued up to about 1 GHz which is consistent with the
value of noisefmax.
To further evidence the inaccuracy of SPECTRE, a second

time-domain noise analysis was performed with ηf on (the
same command syntax as for SPECTRE was implemented
in our simulator); the corresponding result is the grey curve
‘c’. As expected, it is above the noise floor, with an error of
about +20 dB.
A noise analysis was then carried out by using the proposed

approach (using the Thomson’s MTM for PSD estimation);
the result is the black curve ‘d’, which exhibits a very good
match with respect to the experimental dotted curve.



As a further check, the magnitude of ηf was artificially 
increased (so that the expected result by SPECTRE should 
be well above the noise floor), a time-domain noise analysis 
was performed with SPECTRE, the PSD was computed
through MTM and finally the obtained result (grey curve ‘e’) 
was compared with the corresponding one (dashed grey
curve ‘f ’) by PNOISE. The good matching between the two 
results is evident.
Fig. 7 Traces are described from the upper to the lowest which
corresponds to describe them from the lightest grey to black

a Large-signal PSD at the output of the VCO
b Measured PSD
c PSD at the output of the charge pump
d PSD at the output of the fourth order filter, that is, at the input of the VCO.
x-axis: right offset frequency from the VCO working frequency; y-axis: PSD
[W/Hz]
4.4 PLL simulation

A time-domain simulation with the noise source turned off (to 
bring vw(t) close to its average value) and a time-domain noise 
simulation with the proposed approach were performed for 
200 μs. This corresponds to simulate about 3 50 000 working 
cycles of the VCO and ensures an offset frequency of a few 
kHz from the fundamental at 1755.2 MHz in the PSD of the 
PLL noise. The noisy time-domain waveform obtained with
the proposed approach was processed by the Thomson’s 
MTM and the resulting PSD is shown in Fig. 6 (black curve)
[24]. In the same figure, the experimental measure (light grey 
curve) is also shown. A good match between the two curves 
can be appreciated; the error in the PLL bandwidth (25 kHz) 
is less than 1 dB. For frequency offsets larger than 1 MHz, 
the experimental PSD sets to the noise floor of the spectrum 
analyser, that is about −150 dB. The simulated PSD 
correctly falls with a slope of −20 dB/dec.
To obtain the results reported in Fig. 6, the total CPU time, 

for simulation performed on an INTEL I7/2600, 16 byte 
RAM running LINUX-MINT, was 237 s.
One apparently problematic aspect is that the simulated 

results in Fig. 6 does not show any spur because of the 
ΔΣ modulator. In the experimental curve, spurs appear 
at 200 kHz (= fref/125) and harmonics. We remark that spurs 
are a large-signal effect, therefore they do not appear in the 
simulated result. The spectrum analyser does not distinguish 
among PSD of noise and of spurs and thus shows also the 
latter. Therefore a large-signal noiseless simulation of the 
fractional PLL (Of course, we already have the large-signal 
noiseless simulation of 200 μs, but to appreciate the spurs 
we need a much longer simulation.) has to be performed to 
reproduce spurs. This is not trivial, in general, since the
Fig. 6 Simulated (black curve) and the measured (light gray curve) 
PSDs of the fractional PLL used as test vehicle
Average fundamental frequency of the VCO is 1755.2 MHz. The PLL 
bandwidth is 25 kHz, as reported in the data-sheet. x-axis: right offset 
frequency from the VCO working frequency; y-axis: PSDs[W/HZ]
simulator can be affected by a large noise floor that can
hide spikes because of spurs.
Fig. 7 shows the results of this long-lasting large-signal

noiseless simulation. As expected, spikes appear at 200 kHz
and at harmonics in the PSD at the output of the charge
pump (curve ‘c’). The spikes are attenuated in the PSD at the
output of the fourth-order filter (dark grey curve ‘d’) that
connects the charge pump to the input of the VCO. The
noise floor of the simulator can be easily identified and
fortunately it is well below the values of the spikes. This
does not happen to the PSD at the output of the VCO (curve
‘a’), which is affected by a very large noise floor well above
the measured PSD of noise (curve ‘b’). Spikes because of
spurs are still visible but their amplitudes are incorrect.

5 Conclusions

In this paper a method was proposed for efficient non-Monte
Carlo transient noise analysis of mixed analogue/digital
circuits. With respect to the approaches commonly used in
commercial simulators, some key ingredients are used: the
saltation matrix for handling circuits described by
non-smooth vector fields, a variational model for reducing
the noise floor effects, and the Thomson’s MTM for efficient
estimation of the noise spectrum. These features allow
reliable noise characterisation by employing only one
simulation run, thus considerably reducing the computational
cost without affecting the accuracy of the results.
The proposed test bench (a fractional ΔΣ PLL) points out

an excellent matching between simulations and experiments
for the described method, and, at the same time, shows the
limits of widely used commercial simulators.
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8 Appendix 1: MNA formulation and
variational model

The well-known MNA yields the following set of equations

F(v̇(t), v(t), t) = dq(v(t))

dt︸


︷︷


︸
h(v̇(t),v(t))

+ı(v(t))+ Au(t) = 0 (9)

where 0 [ RS is the null column vector, t is time, v [ RS is a
vector of ground-referenced node voltages, q:RS � RS and
ı:RS � RS are functions mapping v to vectors whose
entries are, respectively, sums of capacitive charges and
resistive currents at a node, u [ RU is a vector of given
inputs, and A [ RS×U is an incidence matrix reflecting the
contribution of u on each one of the S nodal current
balances (Formulation (9) holds if the circuit includes also
inductors and components that are not voltage controlled. In
this case, the entries of q are capacitive charges and
inductive fluxes and the entries of v are ground-referenced
node voltages and branch currents. In this paper, this case
will be neglected since a transformation, based on the
insertion of ideal transformers and gyrators [30] always
exists, which allows one to properly reformulate the
problem avoiding this situation.).
Equation (9) is a DAE, since, in general, it is not

completely solvable for the derivatives of v(t). A smooth
analogue circuit is well-posed if its MNA formulation leads
to a semi-explicit index-1 DAE [31], where (i) it is possible
to separate the dynamical variables (those appearing in (9)
together with their time derivatives) from the algebraic
ones, and (ii) the algebraic variables can be obtained from
the dynamical ones by resorting to the implicit function
theorem.
In the following, without lack of generality, (9) will be

assumed to be an index-1 DAE. Since a given circuit
admitting an index-1 DAE description can be transformed
in an equivalent one admitting an ode description [30], we
will focus on the ODE case.
The homogeneous linear time-varying system corresponding

to linearisation of (9) around a solution vs(t) can be



[
∂h(v̇, v)

∂v

∣∣∣∣ v(t) = vs(t)

v̇(t) = v̇s (t)︸










︷︷










︸
B(t)

+ ∂ı

∂v

∣∣∣∣ v(t) = vs(t)

v̇(t) = v̇s (t)︸







︷︷







︸
G(t)

]
j(t)

+ ∂h(v̇, v)

∂v̇

∣∣∣∣ v(t) = vs(t)

v̇(t) = v̇s (t)︸










︷︷










︸
C(t)

j̇(t) = 0

(10)

where j(t) is a small perturbation whose evolution is
computed with respect to vs(t) from an initial condition
j(t0) = j0. If all the capacitors of the circuit are linear, in
(10) C(t) is a constant matrix and B(t) is a null matrix.
Since it has been assumed that (9) is an ode, C(t) is not
singular and it is then possible to recast (10) as

j̇(t) = −C−1(t)[B(t)+ G(t)]︸











︷︷











︸
J (t)

j(t) (11)

written as
 In general, (11) is solved in parallel with (9), since its
solution provides the time evolution of the fundamental
transition matrix Fv0

(t, t0). One has then to solve the
extended problem

h(v̇(t), v(t))+ ı(v(t))+ Au(t) = 0
Ḟv0

(t, t0) = J (t)Fv0
(t, t0)

v(t0) = v0
Fv0

(t0, t0) = 1S

⎧⎪⎪⎨
⎪⎪⎩ (12)

where 1S is the S × S identity matrix. For instance, if the
circuit admits a T-periodic steady-state solution Ω and one
is able to find an initial condition v0 belonging to Ω
(usually this is done in time domain by shooting methods
[32, 33]), the solution of (12) provides the monodromy
matrix Fv0

(T + t0, t0) whose eigenvalues (the Floquet
multipliers) can be used to study the stability of Ω [34].
Moreover, the numerical evaluation of Fv0

(t, t0) is crucial

whenever one is interested in periodic small-signal
analysis (PAC) and PNOISE or to compute phase noise
in oscillators [35].


	1 Introduction
	2 A glimpse to the noise floor: warping
	3 The method
	4 Results
	5 Conclusions
	6 Acknowledgments
	7 References



