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Merging fluid and solid granular behavior†

Dalila Vescovi∗a‡ and Stefan Ludinga

Simple homogeneous shear flows of frictionless, deformable particles are studied by particle sim-
ulations at large shear rates and for differently soft, deformable particles. The particle stiffness
sets a time-scale that can be used to scale the physical quantities; thus the dimensionless shear
rate, i.e. the inertial number I (inversely proportional to pressure), can alternatively be expressed
as inversely proportional to the square root of the particle stiffness. Asymptotic scaling relations
for the field variables pressure, shear stress and granular temperature are inferred from simula-
tions in both fluid and solid regimes, corresponding to unjammed and jammed conditions. Then
the limit cases are merged to unique constitutive relations that cover also the transition zone in
proximity of jamming. By exploiting the diverging behavior of the scaling laws at the jamming
density, we arrive at continuous and differentiable phenomenological constitutive relations for the
stresses and the granular temperature as functions of the volume fraction, shear rate, particle stiff-
ness and distance from jamming. In contrast to steady shear flows of hard particles the (shear)
stress ratio µ does not collapse on a function of the inertial number, indicating the need for an
additional control parameter. In the range of particle stiffnesses investigated, in the solid regime,
only the pressure is rate independent, whereas the shear stress exhibits a slight shear rate- and
stiffness-dependency.

1 Introduction
In the recent past, the flow of granular materials has been the
subject of many scientific works; this is due to the large number
of natural phenomena (i.e., landslides and debris flows) and in-
dustrial processes involving solid particles flowing. Granular ma-
terials can behave very differently depending on both the micro-
mechanical properties of the particles and the macroscopic char-
acteristic of the system (i.e., geometry, gradients of velocity, den-
sity). In particular, granular systems, as well as other soft matter
such as suspensions of soft particles or polymers, foams, or emul-
sions, can behave like fluids, meaning that they yield under shear
stress, or like solids able to resist applied stresses without deform-
ing.1 Granular materials exhibit solid-like behavior if the particles
are packed densely enough and a network of persistent contacts
develops within the medium, resulting in a jammed mechanically
stable structure of the particles. On the other hand, when the
grains are widely spaced and free to move in any direction, in-
teracting only through collisions, the medium is unjammed and
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behaves like a fluid.
As a consequence, a key question concerns how to model the
transition from fluid- to solid-like behavior and vice-versa? This
transition is reflected in the relation between stresses and defor-
mation rates, that is the rheology. Jammed structures can show a
rate independent behavior, but in unjammed granular systems the
stresses are proportional to the square of the strain rate (Bagnold
scaling2). In the proximity of jamming, a continuous transition
between the two extreme regimes takes place, for which the cor-
rect rheology is still not fully understood.3

Numerical simulations performed by using perfectly rigid spheres
(i.e., infinite stiffness)4,5 have shown that pressure, shear stress
and granular temperature (defined as the mean squared veloc-
ity fluctuations, representing a measure of the degree of agita-
tion of the system) diverge when the density approaches jam-
ming, as predicted by the kinetic theory of granular gases.6–8 As
a consequence, jammed flows of rigid particles are not possible
at constant volume. In contrast, numerical results with soft par-
ticles9–11 show that steady, constant volume flows are possible
also at densities above jamming. Their softness allows the parti-
cles to deform and to attain steady shear at very dense, jammed
configurations. Experiments performed on concentrated suspen-
sion12 of hard and rigid particles have revealed different physical
processes in the straining and the flow behavior of hard and soft
spheres suspension, in particular in the unsteady regime, due to
the development of permanent contacts of the particles in the case

Journal Name, [year], [vol.],1–13 | 1



of deformable spheres at large volume fractions.
Although several constitutive models have been proposed in the
literature to account for the softness of the particles,11,13–16 most
of them have some important limitations. In particular, most of
them match of the limits of fluid- and solid-like behavior and
many do not provide continuous and differentiable equations for
all the variables of the system (i.e., pressure, shear stress and
granular temperature). Many models are not able to quantita-
tively predict steady shear flows at all densities.
For a collection of particles, the jamming transition occurs in the
limit of zero confining pressure at the critical volume fraction νJ

(where, for a granular material composed of identical particles,
the local volume fraction ν is defined as the ratio of the local ma-
terial density to the particle density, and the subscript J refers to
the jamming transition). Recently, several authors have shown
that, under homogeneous steady shearing, stresses and granular
temperature can be expressed as asymptotic power-law relations
of the shear strain, if scaled by powers of |ν−νJ|, the distance to
jamming.17–20 However, different authors report different critical
exponents in the solid (jammed) and fluid (unjammed) regimes,
both numerically11,17,18 and theoretically.19 The critical expo-
nents, as well as the jamming volume fraction, are affected by
several parameters: the polydispersity of the system,21,22 the fric-
tion of the particles, the force contact model adopted in the simu-
lations (linear spring or Hertzian) and the ratios of relevant time-
scales like the inverse shear rate or square root of the particle stiff-
ness per mass. Even though the jamming density is known to be
pressure-, and material- as well as protocol-dependent, see Ref.3

and references therein, for the purpose of scaling we have to work
with a constant νJ. Jamming transition and scaling of quantities
with respect to the distance from jamming are also very popular
subjects in the fluid-dynamics and statistical-mechanics commu-
nity. In particular, complex fluids composed of a dispersion of one
material in a continuous phase show a transition from mechan-
ically solid-like to fluid-like states, similarly to granular systems,
when the shear stress is increased above some critical value, the
yield stress.23 Emulsions, colloids, foams, gels and suspensions of
(soft) particles or polymers belong to this category. By perform-
ing experiments on different kinds of yield-stress fluids, Paredes
et al. 23 and Dinkgreve et al. 24 have found that, by appropriate
scaling with the distance to jamming, such kind of complex fluid
systems allowed a data collapse onto universal power-law rela-
tions of the shear strain, in the fluid-like and solid-like regimes.
The presence of the “continuum phase”, i.e. the liquid in which
droplets or particles are dispersed, leads to critical exponents for
the case of complex fluids which differ from those of dry collec-
tions of soft particles, especially in the fluid-like state, but the
intrinsic rheology is actually surprisingly analogous.
This work focuses on the simple shear flow of an ideal granular
material, composed of identical, frictionless spheres, under steady
conditions, at constant volume. A series of Discrete Element
Method simulations are performed in order to investigate the role
of particle stiffness in a wide range of volume fractions, both well
below and above jamming. The goal is to propose phenomeno-
logical constitutive relations for granular materials merging di-
lute and dense flow conditions. First, we analyze our numeri-

cal results to derive appropriate scaling laws in both unjammed
and jammed states, far from the jamming transition (with special
functional forms that are needed further on). Then, we use the
scaling laws that collapse the data in either solid or fluid regimes
to postulate a phenomenological model for the stresses and the
granular temperature. In particular, the two regimes are merged
in a unique function which is (i) continuous and differentiable at
any point and (ii) able to predict the behavior even close to the
jamming transition.
This paper is organized as follows: in Section 2 we describe the
simulation method and the flow configuration; in Section 3 the
difference between rigid and soft particles granular systems are
discussed in terms of the µ− I rheology25 and the jamming den-
sity is evaluated based on the behavior of the coordination num-
ber as function of volume fraction and particles stiffness. Section
4 is devoted to the scaling relations obtained from the numeri-
cal data; in Section 5 the merged constitutive model is presented
and compared with numerical results; in Section 6 we discuss
the comparison of the proposed model with the rheologies pro-
posed by Chialvo et al. 11 , Berzi and Jenkins 16 , Singh et al. 26

and Paredes et al. 23 ; in particular, the model in23 was proposed
for emulsion-type systems, and is here revised to adapt to the
case of dry assemblies of soft spheres, according to our numerical
data. Finally, the results are summarized and concluding remarks
are given in Section 7.

2 DEM numerical simulations

V
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V

Fig. 1 Sketch of the constant-volume simple shear flow configuration.
A granular material composed of frictionless, soft particles is homoge-
neously sheared at constant shear rate γ̇, with flow in horizontal direction
(walls move in opposite horizontal directions with velocity V = γ̇H/2), by
using Lees Edwards boundary conditions. Colors indicate speed, from
blue (zero velocity of the particles in the core of the domain) to red (max-
imum velocity of the particles at the boundaries).

Simple shear flows are homogeneous if the horizontal velocity of
the medium is linearly changing along a line perpendicular to the
shearing direction and the kinematic variable which affects the
problem is its first spatial derivative, the shear rate, γ̇, that is then
constant along the flow depth. The other variables governing the
problem are the volume fraction ν (or density, or concentration,
defined as the fraction of volume occupied by the spheres), the
pressure p, the shear stress s and the granular temperature T .
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The latter is defined as one third of the mean squared particle
velocity fluctuations and represents a measure of the degree of
agitation of the system, as introduced in the framework of kinetic
theories of granular gases.6,27–30

We have performed DEM numerical simulations of steady sim-
ple shear flow of frictionless spheres to investigate the role
of the particle stiffness k, especially at large volume fraction.
The simulations and the coarse-graining presented in this pa-
per, were undertaken using the open-source code Mercury-DPM
(www.mercurydpm.org).31,32 The simulations are done under
constant volume with a uniform shear in a rectangular box of
dimensions L×L×H, respectively in x, y and z directions (Fig. 1).
The shear is applied using Lees-Edwards33 periodic boundary
conditions in the z direction and periodic boundary conditions
are employed in the x and y directions. In all simulations, we use
2000 particles of diameter d, density ρp, i.e., mass mp = ρpπd3/6,
and fix the height of the computational domain as H = 20d, be-
fore we compute the x− and y− size L accordingly to the cho-
sen volume fraction ν . The system is sheared applying a con-
stant velocity gradient (shear rate) γ̇ = ∂ux/∂ z with mean flow
ux in the x direction only. We use a linear spring-dashpot model,
then the normal force between particles at contact is computed
as fn = knδ + γnδ̇ , with overlap δ .34,35 γn is the damping co-
efficient and is related to the normal coefficient of restitution:

γn =

√[
4mpkn (logen)

2
]
/
[
π2 +(logen)

2
]
. In the simulations, we

use normal coefficient of restitution en = 0.7, tangential coeffi-
cient of restitution et =−1, interparticle friction coefficient µ = 0
and normal spring stiffness kn = k. The collision time can be ana-

lytically obtained as
√

ρpπd3
[
π2 +(logen)

2
]
/(12k). Simulations

have been performed by systematically changing both the volume
fraction ν , ranging from 0.2 to 0.68, and the particle stiffness k,
this last such that the dimensionless quantity k/

(
ρpd3γ̇2) ranges

from 103 to 107.
At large volume fraction (i.e., ν > 0.64) and large particle stiff-
ness (i.e., k/

(
ρpd3γ̇2) ≥ 105), we observed crystallization of the

monodisperse systems, which results in non-homogeneous flows
such as shear bands. To avoid crystalline structures, in such sit-
uations we use slightly polydisperse systems, with mean particle
diameter d and uniform polydispersity w = 1.2, where w is the
ratio of the maximum to the minimum particle diameter. Such a
small value of the polydispersity does not affect significantly the
measured quantities, and, in particular, does not vary so much
the critical volume fraction.22

Here and in the following, we use standard notation to refer to di-
mensional variables, whereas the star is adopted to denote quan-
tities scaled using the particle diameter d, density ρp and stiff-
ness k. Then, the scaled granular temperature, pressure, shear
stress and shear rate are given, respectively, as: T ∗ = T dρp/k,

p∗ = pd/k, s∗ = sd/k and γ̇∗ = γ̇

√
ρpd3/k. We also introduce

three time scales: the microscopic relaxation time scale asso-
ciated with the transversal motion of a particle submitted to a
pressure p: tm = d

√
ρp/p; the macroscopic time scale associated

with the shear rate parallel to the flow: tγ = 1/γ̇; and the time
scale associated with the particles deformability (contact dura-

tion): tc =
√

ρpd3/k.

3 Influence of the particle stiffness
A convincing yet simple phenomenological model, which has
been used frequently in the literature in the last years, is the
µ − I rheology.25,36,37 According to this model, only three
dimensionless variables are relevant for steady shear flows of
granular materials: the volume fraction ν , the stress ratio µ = s/p
and the inertial number I. The inertial number represents the
ratio between the microscopic relaxation and the macroscopic
shear time scales: I = tm/tγ = γ̇d

√
ρp/p.∗ On the planes ν − I

and µ− I, data obtained on different flow configurations collapse
in the limit of rigid particles.38 Two main assumptions at the
basis of the µ − I rheology are: (i) perfectly rigid particles
and (ii) homogeneous flow (local rheology). Under these two
assumption, tm and tγ are the only time scales influencing the
problem. When the particles are soft (‘softness’ effect11) and/or
the flow is not homogeneous (‘non-local’ effects39), the standard
µ− I laws fail because different mechanisms come into play.
In the case of non-homogeneous flows, boundaries affect the
system and flow gradients cannot be neglected anymore. In such
situations, Kamrin and Koval 39 have proposed a new “diffusive”
state parameter, the granular fluidity, with a diffusive evolution
equation, to account for some non-locality (see also Ref.40,41).
On the other hand, when the particles are not perfectly rigid,
contacts are not instantaneous but take a finite time tc during
which a part of the energy, the elastic potential energy fraction,
is stored14 due to the persistent deformations of the particles.
When a steady flow is unjammed and sheared very slowly, rigid
and deformable particles exhibit very similar behavior, controlled
only by tm and tγ , because tc is much smaller than either; when
the transition to the solid, jammed phase takes place (and this
happens only to soft spheres), the time scale associate to the
particles deformability tc (contact duration) starts to influence
the system, and softness effects appear. In this work, we
investigate homogeneous steady shear flow of soft particles, but
still can disregard non-local effects.
In Fig. 2 we plot the stress ratio (a) and the volume fraction
(b) versus the inertial number, measured from our simulations,
for different values of the dimensionless particle stiffness
k/
(
ρpd3γ̇2), that corresponds to

(
tγ/tc

)2 (or, equivalently, γ̇∗−2).
In particular, we use k/

(
ρpd3γ̇2) ranging from 103 to 107 (cir-

cles). Also plotted in Fig. 2 are the numerical results of Otsuki
and Hayakawa 19 , who adopted more rigid particles having
k/
(
ρpd3γ̇2) from 2 ·106 to 2 ·1012 (squares, here we consider their

data obtained using 20000 monodisperse spheres), and those of
Mitarai and Nakanishi 4 and Peyneau and Roux 42 , which were
performed using rigid particles (triangles). Note that in our
simulations and in Ref.4 the coefficient of normal restitution is
0.7, whereas in Ref.19 and Ref.42 it is very close to zero. This,
however, does not affect the main features of the plots on the
µ− I and ν− I planes, as discussed next.

∗Note that some authors define the inertial number using the bulk density ρ = ρpν

instead of the particle density: Ib = γ̇d
√

ρp/p = γ̇d
√

ρpν/p = I
√

ν
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Fig. 2 Stress ratio (a) and volume fraction (b) versus the inertial num-
ber, for different values of the dimensionless particle stiffness. Circles,
squares and triangles represent, respectively, our simulations, the nu-
merical measurements of Otsuki and Hayakawa 19 and the data for rigid
particles obtained by Mitarai and Nakanishi 4 and Peyneau and Roux 42 .

As predicted by the µ − I rheology, in the case of infinitely hard
particles, for vanishing I, the stress ratio tends to a constant,
asymptotic value, often interpreted as the yield stress ratio. At
the same time, the volume fraction saturates to the rigid-limit
jamming value (here νJ = 0.634 as detailed in the following).
In the case of deformable particles, the data deviate from the
rigid limit curves and behave very differently depending on the
softness. Data with large stiffness agree with the rigid limit
data in a large range of inertial numbers and deviate for very
slow shear conditions (i.e., very low I due to either small γ̇

and/or large p). For decreasing I and constant stiffness, on the
µ − I plane, Fig. 2(a), curves do not saturate but continuously
decrease; the smaller the stiffness, the larger the I when the
softness effect arises. The transition to solid overcompressed
jammed states (ν > νJ in Fig. 2b) is connected to this decrease
in the stress ratio occurring for soft spheres. Note that the
deviation from the standard µ − I rigid-particle rheology cannot
be due to non-local effects, since all simulations presented are
carried out in uniform conditions, i.e. non-homogeneous flow
data are disregarded here. Steady flows of very soft particles
are possible only at large inertial numbers: for example, for
k/
(
ρpd3γ̇2)= 105, I never reaches 10−2.

In Ref.26 and Ref.43, the authors observed a similar non-collapse
of the stress ratio with the inertial number. They performed
steady state flow simulations using soft (slightly frictional) par-
ticles in a split-bottom geometry, in which gradients in stresses
arise due to gradients in both strain rate and pressure. As a
consequence, both non-locality and softness can affect the system
and distinguishing between the two effects is not possible. In
Ref.11 homogeneous simple shear flows of deformable, frictional
particles have been carried out, and the deviation of the data
from the standard µ − I rheology was reported only at large
inertial numbers, I > 10−1. Conversely, for frictionless spheres,
we have observed deviations in the whole range of inertial
numbers investigated.

Fig. 3 shows the mean coordination number C (average number
of contacts between all particles) in our simulations plotted ver-
sus the volume fraction. As observed for frictional spheres,10 at
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Fig. 3 Coordination number versus volume fraction, for different values
of the dimensionless particle stiffness.

low volume fraction, the coordination number increases with de-
creasing particle stiffness. Decreasing stiffness is equivalent to an
increasing scaled shear rate γ̇∗. This dependency inverts at higher
volume fraction. Intuitively, when the system is unjammed the
softness makes the contact duration longer resulting in a larger
C, at a fixed density. On the other hand, when the system is
jammed very deformable particles (small stiffness) allow to reach
denser configurations than more rigid particles for a fixed value
of the average number of contacts.
All the curves intersect each other at ν ∼= 0.634, where C ≈ 5. In
theory, the jamming transition occurs at the isostatic point44–46

which corresponds to a coordination number equal to 6. In non-
sheared isostatic packings, particles that do not belong to the
force network (i.e. with exactly zero contacts) do not contribute
to the coordination number. In shearing conditions, there may be
particles having a finite number of contacts for some short time,
which do not contribute to the mechanical stability of the pack-
ing. Frictionless particles with less than 4 contacts are considered
“rattlers”, since they cannot be mechanically stable and hence do
not contribute to the contact network.22,47 The “corrected” co-
ordination number C∗ has been introduced as the ratio between
the total number of contacts of the N4 particles with at least 4
contacts, and the rattler fraction is defined as φr = (N −N4)/N,
where N is the total number of particles in the system. In Ref.48,
the authors have shown that the corrected and the standard co-
ordination number are related as C = C∗(1− φr). In particular,
at jamming the corrected coordination number is 6, as in iso-
static conditions, and φr = 0.13± 0.03, then the standard coordi-
nation number results C = 5.22±0.18. This value of C is consistent
with that at which all the curves intersect and change convexity
in Fig. 3, denoting the transition between solid, jammed struc-
tures and fluid, unjammed systems. As a consequence, we assume
the corresponding value of ν to be the jamming volume fraction:
νJ = 0.634.
In general, the jamming volume fraction is not a constant (even if
pressure or density are held constant),3,49 but shows a history-,
material-, and protocol-dependence. We cannot exclude a priori
that also particle stiffness and shear rate affect the jamming den-
sity. In our simulations, variability of νJ is small relative to the
full range of data investigated, but, in general, it could make a
difference, especially for soft particles. Nevertheless, in this work
we assume, for simplicity, the jamming volume fraction to be con-
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stant and equal to 0.634.

4 Scaling plots
As previously stated, two extreme flow behaviors, commonly in-
terpreted as flow regimes, are associated with different power
laws scaling with γ̇∗: stresses scale as γ̇∗2 in the fluid, unjammed
regime, that is below the critical volume fraction (ν < νJ), but
show almost no rate dependence in the solid, jammed regime
(ν > νJ). At ν ∼ νJ, a continuous transition between the two ex-
treme regimes takes place (jamming transition).
In order to find out the scaling functions for the stresses and the
temperature, we introduce the following scaling relation for the
generic scaled quantity X∗ (with X∗ being a place-holder for ei-
ther p∗, s∗ or T ∗):

X∗νλ

|ν−νJ|α
∼

[
γ̇∗

|ν−νJ|β

]mi

, (1)

where α, β and λ are constant coefficients, whereas the exponent
mi depends on the flow regime i. In this framework, we do not
consider the scaling relation to describe the jamming transition.
Assuming i = s in the solid and i = f in the fluid regime; far from
the jamming volume fraction, Eq. (1) can be expressed as

X∗νλ =

x f
γ̇∗m

f

(νJ−ν)q f , if ν < νJ

xsγ̇
∗ms

(ν−νJ)
qs
, if ν > νJ,

(2)

where q f =
(
m f β −α

)
, qs = (α−msβ ) and x f and xs are di-

mensionless constitutive parameters, such that the γ̇∗ scaling is
encompassed by mi and the density scaling by qi.

Next, we determine the critical exponents and the constant
coefficients for the granular temperature and the stresses by
using the results obtained from our numerical simulations with
frictionless spheres. The constant coefficients are very sensitive
to both the critical volume fraction νJ and the range of scaled
shear rate γ̇∗ analyzed.11,19 In our simulations, the scaled shear

rate ranges from 10−4 to 10−2 (γ̇∗ =
[
k/
(
ρpd3γ̇2)]−1/2) and,

for all the quantities, we find good collapses using νJ = 0.634,
the jamming volume fraction obtained in the previous Section.
The extrapolated values of the coefficients for the stresses and
the granular temperature resulting from our DEM results are
reported in Tab. 1. The values in Tab. 1 are estimated by fitting
our numerical data, and are quite similar to those obtained in
Ref.18 for bidisperse mixture of frictionless particles.

Table 1 Scaling exponents appearing in Eq. (1) for pressure, shear
stress and granular temperature, as inferred from the numerical simu-
lations

X∗ α β λ m f ms q f qs

p∗ 6/5 9/5 1 2 0 12/5 6/5
s∗ 6/5 8/5 1/2 2 1/6 2 14/15
T ∗ 2 3/2 2 2 1 1 1/2

Then, the resulting relations for the scaled pressure, shear stress

and granular temperature become, respectively:

p∗ν

|ν−νJ|6/5
∼

[
γ̇∗

|ν−νJ|9/5

]mi
p

, (3)

s∗ν1/2

|ν−νJ|6/5
∼

[
γ̇∗

|ν−νJ|8/5

]mi
s

, (4)

T ∗ν2

|ν−νJ|2
∼

[
γ̇∗

|ν−νJ|3/2

]mi
T

. (5)

10
0

10
0

p
 ν

 /
 | 

ν
 -

 ν
 |

*
6

/5
γ / |ν - ν | 
.* 9/5

J
J

10
2

10
4

10
-2

10
-4

10
4

10

10
-10

10
-8

10
-6

10
-4

10
-2

2

γ 
.*0

γ 
.*2

k /( ρ  d  γ   ) = 10
2

p

3 4.
k /( ρ  d  γ   ) = 10

2

p

3 3.

k /( ρ  d  γ   ) = 10
2

p

3 5.

k /( ρ  d  γ   ) = 10
2

p

3 6.

k /( ρ  d  γ   ) = 10
2

p

3 7.

10
0

10
-2

10
-6

10
-10

10
-8

s 
ν

  
  

/ 
| ν

 -
 ν

 |
*

1
/2

6
/5

γ / |ν - ν | 
.*

J

J

10
2

10
-4

10
0

10
4

10
-2

10
-4

γ 
.*1/6

γ 
.*2

8/5

(a) (b) 

(c) 

10
0

10
2

10
0

10
-2

10
-6

10
-8

10
-10

T 
ν

  
/ 

| ν
 -

 ν
 |

*
2

2

γ / |ν - ν | 
.* 3/2

J

J

10
-4

10
2

10
4

10
-2

10
-4

γ 
.*1

γ 
.*2

Fig. 4 Collapse of scaled (a) pressure, (b) shear stress and (c) granular
temperature plotted against scaled shear rate, for different values of the
(dimensionless) particle stiffness as given in the inset. Dash-dotted lines
represent the scaling laws in the unjammed regime whereas dashed lines
those in the jammed regime. The right most data are those for ν ∼ νJ and
are not supposed to collapse on the limit cases.

Figs. 4(a)-(c) show, for the three quantities, the collapse of nu-
merical data obtained using Eqs. (3)-(5), respectively, using νJ =

0.634. From Figs. 4(a)-(c), we obtain the values of the critical
exponents mi

p, mi
s and mi

T in both the fluid (unjammed) and the
solid (jammed) regime, by interpolating the collapsing curves at
small enough γ̇∗. In particular,

• when ν < νJ (fluid regime)

m f
p = m f

s = m f
T = 2;

• when ν > νJ (solid regime)

ms
p = 0, ms

s = 1/6, ms
T = 1.
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Table 2 Constant coefficients appearing in Eqs. (6)-(8) as inferred from
the numerical simulations

νJ p f ps s f ss t f ts µ f µs
0.634 0.0075 0.60 0.0105 0.12 0.0090 0.05 1.4 0.2

As a consequence, for small γ̇∗, we obtain:

p∗ =


p f

ν

γ̇∗2

(νJ−ν)12/5
, if ν < νJ,

ps

ν
(ν−νJ)

6/5 , if ν > νJ;
(6)

s∗ =


s f

ν1/2
γ̇∗2

(νJ−ν)2 , if ν < νJ,

ss

ν1/2
γ̇∗1/6 (ν−νJ)

14/15 , if ν > νJ;
(7)

T ∗ =


t f

ν2
γ̇∗2

(νJ−ν)
, if ν < νJ,

ts
ν2 γ̇∗ (ν−νJ)

1/2 , if ν > νJ.
(8)

The dimensionless constitutive parameters appearing in Eqs. (6)-
(8) can be inferred fitting the power laws in Figs. 4(a)-(c) and are
reported in Tab. 2.
We point out that:

(i) in both the extreme regimes, p∗, s∗ and T ∗ depend not only
on γ̇∗ and |ν−νJ|, but also on some power of the volume
fraction (ν−1, ν−1/2 and ν−2, respectively).

(ii) In the fluid regime, all the three quantities scale quadrati-
cally with the scaled shear rate (Bagnold scaling2), but with
different (negative) powers of (νJ−ν).

(iii) Differently from what was shown in other works, in the
jammed regime only the pressure is rate independent,
whereas the shear stress appears to scale with γ̇∗1/6 but only
in a very limited range. The granular temperature scales
linearly with γ̇∗, as already suggested in Ref.18,19.

The slight rate-dependency of the shear stress in the solid regime
becomes evident when plotting the stress ratio µ = s/p, also
known as macroscopic friction, as a function of the volume frac-
tion. As shown in Fig. 5, at small volume fraction, µ is not
much affected by the particle stiffness (i.e. by γ̇∗): the numerical
measurements of µ obtained using different particle stiffnesses
collapse together with the rigid particle data obtained by Mi-
tarai and Nakanishi 4 and Peyneau and Roux 42 , deviating only
for the most soft particles. This means that pressure and shear
stress scale with the same power (m f = 2) of γ̇∗ in the unjammed
regime. Therefore, the stress ratio in unjammed configurations of
homogeneous steadily sheared systems depends only on the vol-
ume fraction. For increasing volume fractions, the curves deviate
more and more from the rigid particle limit, already below the
jamming volume fraction, and remain well separated at ν > νJ.
Furthermore, at larger volume fractions, the separation factor is
almost the same between all the curves, and equal to ∆µ = 101/12,

suggesting that µ ∼ k/
(
ρpd3γ̇2)−1/12 ∼ γ̇∗1/6 in the solid regime.

As a consequence, pressure and shear stress must have different

asymptotic power-law relations with the scaled shear rate; when
p∗ is rate independent, s∗ turns out to be affected by γ̇∗, and thus
by k, in the jammed regime.
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Fig. 5 Stress ratio as a function of the volume fraction for different values
of the particle stiffness. Also plotted (black triangles) are the rigid particle
data obtained by Mitarai and Nakanishi 4 and Peyneau and Roux 42 .

5 Model

The goal of this Section is to propose phenomenological constitu-
tive relations for p∗, s∗ and T ∗ based on the asymptotical analysis
discussed in the previous Section. The idea is to merge the equa-
tions describing the two scaling regimes with a unique function
which must be (i) continuous and differentiable at any point and
(ii) able to predict the behaviour even at and around the jamming
transition.
In the fluid and solid regimes, pressure, shear stress and granular
temperature are given by Eqs. (6)-(8); these equations show the
same form, as summarized in Eq. (2). Both branches of Eq. (2)
can be solved explicitly for the distance to jamming:

ν−νJ =−

(
x f γ̇∗m

f

X∗νλ

)1/q f

, if ν < νJ, (9)

ν−νJ =

(
X∗νλ

xsγ̇∗m
s

)1/qs

, if ν > νJ. (10)

By defining the distance to jamming as the sum of the two right
hand side contributions of Eqs. (9) and (10), we obtain a unique
continuous and differentiable equation, valid for any value of the
volume fraction:

ν−νJ =

(
X∗νλ

xsγ̇∗m
s

)1/qs

−

(
x f γ̇∗m

f

X∗νλ

)1/q f

. (11)

Eq. (11) does not include singularities, but cannot, in general, be
solved explicitly for X∗. We can derive implicit functions which
relate pressure, shear stress and temperature to the volume frac-
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tion, through the scaled shear rate, in the same form as Eq. (11):

ν−νJ =

(
p∗ν
ps

)5/6
−

(
p f γ̇∗2

p∗ν

)5/12

, (12)

ν−νJ =

(
s∗ν1/2

ssγ̇∗1/6

)15/14

−

(
s f γ̇∗2

s∗ν1/2

)1/2

, (13)

ν−νJ =

(
T ∗ν2

tsγ̇∗

)2

−

(
t f γ̇∗2

T ∗ν2

)
. (14)

It is important to notice that the form of the merging function
Eq. (11) is general and can be used for any quantity for which
the asymptotical behavior in the fluid and solid regime is known
and which is given in the form of Eq. (2). In particular, different
values of the critical exponents of |ν−νJ| can be adopted for p∗,
s∗ and T ∗, as well as different power of the volume fraction.
Moreover, combining the asymptotical equations for p∗ and s∗,
Eqs. (6)-(7), we obtain the limit equations for the stress ratio
µ = s/p = s∗/p∗:

µ =


ν1/2µ f (νJ−ν)2/5 , if ν < νJ,

ν1/2µs
γ̇∗1/6

(ν−νJ)
4/15

, if ν > νJ,
(15)

which, following the same approach as above, results in an im-
plicit, merging function for µ:

ν−νJ =

(
µsν

1/2γ̇∗1/6

µ

)15/4

−

(
µ

ν1/2µ f

)5/2

(16)

with parameters µ f = s f /p f = 1.4 and µs = ss/ps = 0.2.

In the following Eqs. (12)-(14) and (16) are solved and compared
with the numerical results of our simple shear simulations.
Fig. 6 (a) and (b) depict the predicted scaled pressure and shear
stress, compared with the results of our numerical simulations of
simple shearing for a range of scaled shear rates from 3 · 10−4 to
3 · 10−2. Also shown are the simple shear results of Chialvo and
Sundaresan 5 (asterisks) for frictionless spheres having en = 0.7
and γ̇∗ = 10−4. The agreement is good for both variables in the
whole range of volume fractions investigated and, in particular,
in the transitional regime, i.e. around the jamming volume frac-
tion νJ = 0.634. Only at very small volume fractions (ν < 0.1)
the shear stress is underestimated by the model. In the solid,
jammed regime (ν > νJ), the measured pressure data tend to col-
lapse, in agreement with the rate independent behavior observed
in other works,11,18,19,50 as predicted by Eq. (6), except for the
softest particles (γ̇∗ ≥ 10−2). Conversely, when the contact dura-
tion gets into the order of magnitude of the shear time-scale, a
slight systematic dependence of the shear stress on the shear rate
is observed even at large volume fractions (Fig. 6b), which is well
captured by the proposed model.

In Fig. 7 (a) and (b), the (dimensional) pressure and the shear
rate are made dimensionless using the particle diameter, den-
sity and the (dimensional) shear rate γ̇. Different colors, as in

Fig. 6 Scaled (a) pressure and (b) shear stress as functions of the vol-
ume fraction for different values of the scaled shear rate γ̇∗ (or, equiva-
lently, stiffness: γ̇∗ = tc/tγ ∝ k−1/2). Symbols represent the numerical data
obtained from numerical simulations and solid lines the proposed model
Eqs. (12)-(13). The black asterisks are data from Ref. 5.
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Fig. 7 Dimensionless (a) pressure p/
(
ρpd2 γ̇2) = p∗/γ̇∗2 and (b) shear

stress s/
(
ρpd2 γ̇2) = s∗/γ̇∗2 as functions of the volume fraction for differ-

ent dimensionless particle stiffness k/
(
ρpd3 γ̇2). Symbols represent data

from the simulations and solid lines the proposed model Eqs. (12)-(13).
The black asterisks are data from Ref. 5; the black triangles are rigid data
from Ref. 4,42 and the dotted lines are Eqs. (17) and (18).

Fig. 6, indicate different values of the dimensionless particle stiff-
ness k/

(
ρpd3γ̇2), ranging from 103 to 107. The results of the nu-

merical simulations with rigid particles Ref.4,42 are added to the
figures, as well as the limit curves for rigid particles (k −→ ∞,
i.e. γ̇∗ −→ 0, black dotted lines); these equations are identical to
those of the unjammed regime in Eqs. (6)-(7) and diverge at the
jamming volume fraction:

prig

ρpd2γ̇2 =
p f

ν (νJ−ν)12/5
, (17)

srig

ρpd2γ̇2 =
s f

ν1/2 (νJ−ν)2 . (18)

The predicted curves of p/
(
ρpd2γ̇2) and s/

(
ρpd2γ̇2) for soft par-

ticles collapse on the rigid ones in the fluid, unjammed regime,
and start to deviate at different values of the volume fraction de-
pending on the particle stiffness (even for the softest particles the
deviation from the rigid limit is smaller than 15% for ν < 0.55,
for both pressure and shear stress). The softer the particles, the
lower the transition density. As observed in Fig. 6(b), the shear
stress is strongly underpredicted at very small densities, ν < 0.1,
where the factor ν−1/2 in Eq. (18) strongly affects the expression
of s, and is too small, not catching the functional behavior in the
regime where kinetic theory holds.51 However, the model allows
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for very good predictions for all the other values of volume frac-
tions.
The model predictions for the granular temperature are compared
with the numerical results in Fig. 8 in terms of T ∗ = T ρpd/k (a)
and T/

(
d2γ̇2) (b). Like for the stresses, data with different stiff-

ness collapse on the rigid curve in the fluid regime, at ν < 0.45, if
scaled with the particle diameter and the shear rate, see Fig. 8(b).
According to Eq. (8), the expression of T in the rigid case is:

T rig

d2γ̇2 =
t f

ν2 (νJ−ν)
. (19)

On the other hand, Fig. 8(a) highlights the linear rate depen-
dence (inversely proportional to k1/2) of T ∗ in the solid regime,
where the data do not collapse on a single curve (for large
volume fractions). In Fig. 8(b), for the softest particles the
deviations from the rigid limit are smaller than 15% for ν < 0.45,
whereas they are larger than 35% for 0.45 ≤ ν ≤ 0.55. Hence,
for the granular temperature, conspicuous softness effects arise
already at volume fractions smaller than for pressure and shear
stress, and are not properly reproduced by Eq. (14).
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Fig. 8 Scaled and dimensionless granular temperature (a) T ∗ = T ρpd/k
and (b) T/

(
d2 γ̇∗2

)
= T ∗/γ̇∗2 as a function of the volume fraction for differ-

ent values of the dimensionless particle stiffness or, equivalently, scaled
shear rate [See legends in Fig. 6 for (a) and in Fig. 7 for (b)]. Symbols
represent the data obtained from simulations and solid lines are the pro-
posed model Eq. (14). The black asterisks and triangles are data from
Ref. 5 and Ref. 4, respectively; the dotted line is Eq. (19).

Finally, in Fig. 9, we compare the theoretical expression for the
stress ratio Eq. (16) with the numerical measurements. The
macroscopic friction µ varies over a narrow range so we can use
a linear scale instead of a logaritmic one, differently from what
was done for the other quantities, so that the quality of the pre-
dictions can be appreciated more accurately. From Eq. (16), the
stress ratio in the rigid limit reads:

µ
rig = µ f ν

1/2 (νJ−ν)2/5 . (20)

In Fig. 9(a), the proposed model captures well the stress ratio,
especially in the transition and solid regime. Some disagreements
still remain in the fluid regime at volume fractions between 0.2
and 0.6, where the model does not capture well the slight
k-dependence of µ. Nevertheless, the disagreements are smaller
than 10% in the range of volume fractions investigated, see the
quality factor in Fig. 9(b) where µth is the theoretical prediction
of µ given by Eq. (16). At ν < 0.2, the model is unable to

reproduce the increase of µ for decreasing ν , and the stress
ratio nullifies when ν = 0, Eq. (20), in contrast with the data.
This discrepancy is due to the bad predictions in the stress ratio
at very small volume fractions, and, in particular, due to the
inappropriate exponent −1/2 of the volume fraction in Eq. (18).
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Fig. 9 (a) Numerical (symbols) and theoretical (lines, Eq. (16)) stress
ratio plotted versus volume fraction, for different values of the dimension-
less particle stiffness or, equivalently, scaled shear rate. (b) Numerical
stress ratio µ scaled by the proposed prediction µth, Eq. (16). The dis-
agreements are smaller than 10% in the fluid range of volume fraction
investigated, and are considerably better for the transitional and solid
regime.

As previously stated, the critical exponents strongly depend
on the range of scaled shear rates. Otsuki and Hayakawa 19

performed homogeneous simple shear volume-controlled sim-
ulations of monodisperse, frictionless particles having stronger
dissipation en = 0.043 and using a range of smaller γ̇∗ from
7 · 10−7 to 7 · 10−4. They found exponents different from ours
for the quantities, as well as a slightly different value of the
jamming volume fraction (0.639 in contrast to our 0.634).
Our numerical data thus do not scale with their theoretically
predicted exponents, in neither fluid nor solid states. This
discrepancy can be due to the different values of the coefficient
of restitution adopted, which highlights the sensitivity of scaling
results and exponents, in particular, to the magnitude of dissi-
pation. Furthermore, the shear stress measured by Otsuki and
Hayakawa exhibits a strictly rate-independent behavior in the
solid state, in disagreement with our dependence on γ̇∗, which,
however, encompasses both rate and softness effects. We have
previously discussed that a rate independent s∗ at ν > νJ implies
that the stress ratio is only a function of the volume fraction,
independent on γ̇∗, in contrast with what is shown in Fig. 5. On
the other hand, if we try to predict their numerical results with
our model, we do not succeed at very small γ̇∗ (or, equivalently,
very high stiffness). The choice to relate s∗, γ̇∗ and (ν−νJ)

through a power law in the solid, jammed state, while working
for our intermediate regime of stiffnesses and shear rates, is
probably not the right approach to reproduce flows in a wider
range of shear rates, including their very slow and very stiff
cases. Nevertheless, the form of the merging function proposed
is suitable with any function of the shear rate, provided that it
is proportional to some power of the distance to jamming. For
example, if in the solid regime the scaled shear stress can be
expressed as s∗ = g(γ̇∗,ν)(ν−νJ)

q, with g an arbitrary function
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of ν and γ̇∗, then the constitutive equation for s∗ simply reduces

to ν −νJ =

(
s∗

g(γ̇∗,ν)

)1/q
−

(
s f γ̇∗2

s∗ν1/2

)1/2

. The lack of numerical

data at larger stiffnesses (and small shear rates) in jammed con-
ditions, due to very long computational time required, prevents
us from finding a more appropriate relation for the shear rate in
the solid regime, tending to a rate independent behavior in the
limit of very large stiffness.

In Fig. 10 we depict, for completeness, the comparisons between
the model and the data on the planes µ − I (a) and ν − I (b),
considering curves at constant γ̇∗ (that is constant k). The vol-
ume fraction can be easily expressed as a function of I and γ̇∗ by
substituting I = γ̇∗/p∗1/2 into Eq. (12):

ν−νJ =

(
γ̇∗2ν

psI2

)5/6

−
(

p f I
ν

)5/12
. (21)

The relation between µ, I and γ̇∗ can be obtained combining
Eqs. (21) and (16), and involves also the volume fraction. Fig. 10
confirms the good agreement of the model with the data. The
discrepancies in the stress ratio at large inertial number, I > 0.3,
correspond to those at 0.2≤ ν ≤ 0.6 in Fig. 9(a), while the relation
between I and density is captured well throughout.
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Fig. 10 Stress ratio (a) and volume fraction (b) versus the inertial num-
ber, for different values of the dimensionless particle stiffness. Symbols
represent data from the simulations and solid lines the proposed model.

6 Comparison with other models

In this Section, we compare our model with other theories de-
veloped for deformable particles, from the literature. Here we
do neither consider rheologies which apply only to rigid parti-
cles, such as the µ − I model or similar,25,36,37,42 nor standard
kinetic theory based models.6,7,51 In particular, we focus on the
constitutive models proposed by Chialvo et al. 11 , Berzi and Jenk-
ins 16 and Singh et al. 26 Moreover, we consider also the model
proposed by Paredes et al. 23 derived for emulsion-like systems.
In the following, we present the four models and compare them
with ours and the numerical data.

1. Chialvo et al. 11 proposed a new definition of the scaled pres-
sure and the macroscopic friction:

p∗ =


(

p∗−1
inert + p∗−1

int

)−1
, if ν ≤ νJ,

p∗qs + p∗int, if ν > νJ,
(22)

µ = µhard−µsoft, (23)

where:

p∗inert = a1
γ̇∗2

(νJ−ν)2 , p∗qs = a2 (ν−νJ)
2/3

p∗int = a3γ̇∗1/2, µsoft =
a4

γ̇∗0/γ̇∗+1
.

p∗inert, p∗qs and p∗int define the scaled pressure in the three
regimes: fluid (named inertial in Ref.11), solid (quasi-static)
and intermediate, respectively; µsoft is the correction to the
standard µ− I rheology to account for softness effects; a1 =

0.021, a2 = 0.095, a3 = 0.099, a4 = 0.2 and γ̇∗0 = 0.1 are di-
mensionless model parameters. Furthermore, for systems of
frictionless, monodispersed particles, the authors in Ref.11

estimated the jamming volume fraction to be 0.636. The
standard µ − I rheology is here denoted as µhard and given
by

µhard = µ0 +
(µ∞−µ0)

I0/I +1
(24)

with I = γ̇∗/p∗1/2 and µ0 = 0.12, µ∞ = 0.55, I0 = 0.2 for
frictionless particles. The same expression for p∗ has been
adopted by Ness and Sun in Ref.15, where the authors
also add a stress contribution for the intermediate viscous
fluid in order to extend the rheology to non-Brownian
suspensions.
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Fig. 11 Scaled pressure p∗ (a) and stress ratio µ (b) plotted against
the volume fraction, for the proposed constitutive model (solid lines,
Eqs. (12) and (16)), and the constitutive model of Chialvo et al. 11

(dashed lines, Eqs. (22) and (23)). Symbols represent our numerical
data.

Fig. 11 depicts, for three cases k/
(
ρpd3γ̇2) = 103, 105 and

107, the comparison of the present model (solid lines) with
the theory of Chialvo et al. 11 (dashed lines), which under-
predicts the pressure and overpredicts the stress ratio in both
fluid and solid regimes. Besides the shift, the trend of the
stress ratio at small volume fractions, ν < 0.6, is qualita-
tively better captured by the model of Chialvo et al., which
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predicts the slight rate dependency of µ even in the fluid
regime (Fig. 11b).

Concerning p∗, the bad prediction of Eq. (22) is mainly due
to the powers of |ν−νJ| which govern the fluid and solid
response, which are −2 and 2/3, respectively. If we consider
only the fluid and solid regimes in the theory of Chiavo et al.,
p∗inert and p∗qs, then we can merge the two equations using our
approach:

ν−νJ =

(
p∗

a2

)3/2
−
(

a1γ̇∗2

p∗

)1/2

. (25)

The curves obtained using Eq. (25) completely overlap
with those of Chialvo et al. in Fig. 11(a) (note that the
comparison is not shown in the figure for the sake of clarity)
meaning that the two approaches result in very similiar
predictions for p∗. The form of Eq. (25) is simpler than
Eq. (22), because it (i) does not need the definition of the
intermediate regime pressure and (ii) does not require an
“if” condition to distinguish below and above the jamming
volume fraction, given that any divergence is avoided.
Anyway, the critical exponents adopted in our model (-12/5
for the fluid and 6/5 for the solid regime), together with
the extra dependence of p∗ on ν and the choice νJ = 0.634,
allow a better quantitative agreement with most of our
numerical data. Note however, that we did not fit the
parameters of Chialvo et al. to our data, so that the slight
shift must be disregarded, while the qualitative behavior
can be appreciated.

2. Berzi and Jenkins 16 have extended the standard kinetic the-
ory to account for the deformability of the particles. Their
model can be summarized as follows:

p∗ =


(

p∗−1
rig + p∗−1

def

)−1
, if ν ≤ νJ,

p∗el + p∗def, if ν > νJ,
(26)

s∗ =


(

s∗−1
rig + s∗−1

def

)−1
, if ν ≤ νJ,

s∗el + s∗def, if ν > νJ.
(27)

Similarly to Eq. (22), scaled pressure and shear stress are
given by using three contributions: rigid (subscript rig), de-
formable (subscript def) and elastic (subscript el):

p∗rig = f1T ∗, p∗el = b1 (ν−νJ) , p∗def = b2νT ∗1/2,

s∗rig = f2T ∗1/2γ̇∗, s∗el = b3 p∗el , s∗def = b4νγ̇∗.

Here, b1 = 0.6, b2 = 1.42, b3 = 0.11, b4 = 0.36 for the case
of frictionless particles having en = 0.7, whereas f1 and f2
are functions of the volume fraction and the coefficient of
restitution, derived from kinetic theory, and summarized in
Tab. 3. For frictionless particles, the authors have used νJ =

0.636. The scaled granular temperature T ∗ is computed as
solution to the balance of fluctuation energy and, in simple

shear conditions, results in:

T ∗ =

b5

[
1+b6

max
(
ν−ν f ,0

)
νrcp−ν

]
γ̇∗2, if ν ≤ νJ,

b7γ̇∗2, if ν > νJ

(28)

with ν f = 0.49, νrcp = 0.64, b5 = 0.25, b6 = 0.52 and b7 = 5.06.

Table 3 List of functions in the constitutive relations of Berzi and Jenk-
ins 16

f1 = 2(1+ en)g0ν2

f2 = 8Jg0ν2/
(

5π1/2
)

J = (1+ en)/2+π (1+ en)
2 (3en−1)/

[
96−24(1− en)

2−20
(
1− e2

n
)]

g0 = f (2−ν)/2/(1−ν)3 +2(1− f )/(νJ−ν)

f = (νJ +ν−0.8)(νJ−ν)/(νJ−0.4)2
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Fig. 12 Scaled pressure p∗ (a) and stress ratio µ (b) plotted against
the volume fraction, for the proposed constitutive model (solid lines,
Eqs. (12) and (16)), and the constitutive model of Berzi and Jenkins 16

(dash-dotted lines, Eq. (26) and ratio of Eqs. (27) to (26)). Symbols
represent our numerical data.

In Fig. 12 we show the comparison of our model (solid lines)
with that of Berzi and Jenkins (dash-dotted lines). For the
latter, the stress ratio is computed just dividing Eq. (27)
by Eq. (26). The major limitation of the theory in Ref.16

is that the stress ratio is not affected by the particle stiff-
ness (Fig. 12b). This is due to the assumption that the
scaled granular temperature scales with γ̇∗2 even at ν > νJ,
Eq. (28); this assumption, besides being in disagreement
with what is shown by the numerical data (Fig. 8a), makes
the stress ratio constant in the solid regime:

µ =
s∗el + s∗def

p∗el + p∗def
= b3,

given that the model parameters, in simple shearing, are
such that b4 = b2b3b1/2

7 . On the other hand, it must be no-
ticed that the theory of Berzi and Jenkins is generally de-
veloped for any kind of flow configurations, being described
by conservation laws of mass, momentum and fluctuation
energy and a full, more complete set of constitutive rela-
tions, including also the coefficient of restitution. Moreover,
at very low densities, ν < 0.2, the model in Ref.16 corre-
sponds to the standard kinetic theory in Ref.6 which has
been proven to quantitatively predict all the variables, and,
in particular the shear stress, differently from the model pro-
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posed here.

3. Singh et al. 26 , as rephrased in Ref.52,53, have generalized
the standard µ − I relation accounting for the influence of
the particle stiffness through the scaled pressure p∗:

µ = µhard

[
1−
(

p∗

p∗0

)1/2
]
, (29)

ν = νc

(
1− I

√
ν

I0ν

)(
1+

p∗

p∗0ν

)
, (30)

with µhard given by Eq. (24), and constant parameters p∗0 =

0.9, I0ν = 0.85 and p∗0ν
= 0.33 and νc = 0.642. Note that

the data in Ref.26 have been obtained using the ring-shear
geometry (inhomogeneous), by local coarse-graining, and
slightly frictional and polydisperse particles, which implies
a small shift in νc and some other parameters. In particu-
lar, in order to compare our results with the model of Singh
et al., here we adopt I0ν = 3.28 and νc = 0.634 suitable for
monodisperse systems. Furthermore, the additive correc-
tions in Ref.26 have been rewritten (identical in first order
approximation) as multiplicative correction terms in Ref.53

that imply an higher order non-linear correction neglected
in Ref.26. Using Eq. (30), p∗ can be computed implicitly as
function of ν and γ̇∗ (or, equivalently, k). The present theory
is compared with the model of Singh et al. in Fig. 13.

As it has been already stated, we have calibrated the pa-
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Fig. 13 Scaled pressure p∗ (a) and stress ratio µ (b) plotted against
the volume fraction, for the proposed constitutive model (solid lines,
Eqs. (12) and (16)), and the constitutive model of Singh et al. 26 (dot-
ted lines, Eqs. (30) and (29)). Symbols represent our numerical data.

rameters in the model of Singh et al. by using our numerical
results, as a consequence the model results in a good quanti-
tative agreement with the data, except for very soft particles
(k/
(
ρpd3γ̇2)= 103). As for the model of Chialvo et al. 11 , the

stress ratio predicted by the model of Singh et al. is able to
qualitatively capture the rate dependency of µ at ν < νJ.

4. Finally, Paredes et al. 23 have presented a microscopic two-
state theory for yield-stress fluids, elaborated in more de-
tail by Dinkgreve et al. 24 , to describe the transition between
jammed and unjammed states. Yield-stress fluids are com-
plex fluids composed of dispersions of one material (parti-
cles, drops or bubbles) in a liquid (or continuous phase),
whose mechanical behavior is characterized by the emer-
gence of a yield stress for volume fractions higher than some

critical value (the jamming volume fraction) and Newtonian
flow for lower volume fractions, with shear thinning in ei-
ther case for high shear rates. The measurements of the
shear stress obtained in the experiments of Paredes et al. 23

and Dinkgreve et al. 24 with different kinds of yield-stress
fluids, collapse when rescaling all data as: s∗/ |ν−νJ|α -
γ̇∗/ |ν−νJ|β , with α and β scaling parameters, similar to our
Fig. 4(b). According to this collapse, the scaled shear stress
has been found to obey: (i) the Herschel-Bulkley54 equation
when ν > νJ, with yield stress expressed as a power law in
the distance to jamming, and (ii) the Cross equation55 when
ν < νJ, where the Newtonian viscosity satisfies a power law
in |ν−νJ|. This result can be summarized as

s∗=


η0

γ̇∗m
f

|ν−νJ|m
f β−α

[
1+η0

γ̇∗(m
f−α/β )

s1 |ν−νJ|m
f β−α

]−1

, if ν < νJ,

s0 |ν−νJ|α + s1γ̇∗α/β , if ν ≥ νJ,

(31)
where s0, s1 and η0 are adjustable dimensionless parame-
ters and the coefficients α, β and m f are given in Fig. 14.
The yield stress and the Newtonian viscosity are given by
s0 |ν−νJ|α and η0γ̇∗m

f
/ |ν−νJ|m

f β−α , respectively.
As previously stated, the critical exponents, as well as the
jamming volume fraction, are material-dependent. The orig-
inal model of Paredes et al. has been derived for soft mat-
ter systems, and although it is compatible in spirit with the
granular rheology, is completely different from our granular
fluid in all quantitative numbers and exponents, especially
below jamming. As a consequence, it requires careful cali-
bration of the parameters, differently from the models pre-
viously analyzed, specifically derived for granular materials.
In particular, the exponent m f , appearing in the unjammed
phase, is measured equal to 1 for any kind of yield-stress
fluid considered. m f = 1 implies that, in the fluid regime, far
from jamming, the shear stress varies linearly with the shear
rate. This linear dependence, typical of viscous liquids, does
not apply to dry granular systems, where s∗ ∝ γ̇∗2 (Bagnold
scaling), implying m f = 2. In order to adapt the model of
Paredes et al. to dry granular systems, we use m f = 2 in
Eq. (31) and calibrate the critical exponents and the dimen-
sionless parameters of the model by collapsing our numeri-
cal data on the plane s∗/ |ν−νJ|α - γ̇∗/ |ν−νJ|β , Fig. 14. We
obtain νJ = 0.634, α = 6/5 and β = 16/5 (whereas Dinkgreve
et al. 24 have estimated, for different kinds of yield-stress flu-
ids, νJ = 0.64÷ 0.68, α = 2.04÷ 2.21 and β = 3.75÷ 3.84).
These values coincide with those reported in Tab. 1 for s∗,
in fact Fig. 14 corresponds to Fig. 4(b) unless for ν1/2 (actu-
ally this last provides a better collapse of the data in the
unjammed regime). In Fig. 14, Eq. (31) is also plotted:
the dashed line represents the Herschel-Bulkley (branch at
ν ≥ νJ) and dash-dotted line represents the Cross equation
(ν < νJ) with m f = 2. By fitting the data, we infer the di-
mensionless parameters appearing in Eq. (31): s0 = 0.08,
s1 = 0.07 and η0 = 0.015. Note that both branches of Eq. (31)
are defined in proximity of jamming ν ∼ νJ and fit well the

Journal Name, [year], [vol.],1–13 | 11



data in this region. Moreover, both the Herschel-Bulkley
equation and the Cross equation lead to the same expression
s∗ = s1γ̇∗α/β = s1γ̇∗3/4 at the jamming transition ν −→ νJ.

In Fig. 14(b) the scaled shear stress obtained with the
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Fig. 14 (a) Collapse of scaled shear stress plotted against scaled shear
rate as suggested in Ref. 23, for different values of the (dimensionless)
particle stiffness. Dash-dotted line (ν < νJ) and dashed line (ν ≥ νJ) rep-
resent the two branches of Eq. (31) where α = 6/5, β = 16/5, m f = 2,
s0 = 0.08, s1 = 0.07 and η0 = 0.015. (b) Scaled shear stress plotted against
the volume fraction, for the proposed constitutive model (solid lines,
Eq. (13)), and the model of Paredes et al. 23 (dash-dash-dotted lines,
Eq. (31)). Symbols represent our numerical data. The inset shows the
scaled shear stress predicted by Eq. (31) for the case k/

(
ρpd3 γ̇2)= 105,

plotted in linear scale, at volume fractions close to jamming.

present theory, Eq. (13), is compared with the model of
Paredes et al., Eq. (31). Since the parameters in the model
of Paredes et al. have been calibrated on the basis of our
numerical data, the agreement is very good. Nevertheless,
due to the switching conditions in the proximity of jamming,
Eq. (31) shows a wiggle at ν = νJ, as depicted in the inset of
Fig. 14(b) (where the linear scale is adopted instead of the
logaritmic one), being a function continuous but not differ-
entiable with respect to ν at the jamming volume fraction.

7 Conclusions
In this paper, we have performed DEM simulations of simple shear
flows of granular materials composed of frictionless, deformable
spheres, in order to investigate the role of particles stiffness. A
wide range of volume fractions has been analyzed to cover the
entire set of granular flow regimes, that is from fluid to solid
conditions, including the transition between the two states. The
main goal is to propose a phenomenological, constitutive model,
based on continuously and differentiably implemented equations,
which accounts for the particles’ softness over orders of magni-
tude, and predicts stresses and granular temperature at all den-
sities. The constitutive relations are given by functions which
smoothly merge the scaling relations in the fluid and solid limits
with shear rate and distance to jamming, as control parameters.
Before presenting the merging functions, we have inferred the
asymptotical scaling relations in the two regimes by separately
collapsing our DEM results for all stiffnesses, and obtained criti-
cal exponents for the distance from jamming slightly different to
those reported in other works.
In particular, we have found the shear stress to be weakly shear
rate dependent in the solid regime, varying with a rather small
power 1/6. This rate dependency, for the wide range of parti-

cle stiffnesses investigated, has been confirmed by plotting the
macroscopic friction µ (ratio between the shear stress and the
pressure, which is rate-independent) versus the volume fraction,
for which the data do not collapse. As a consequence, given that
in the solid regime the scaled shear rate affects the stress ratio, the
shear stress cannot be rate independent as the pressure is. Nev-
ertheless, due to the lack of numerical data at very large particle
stiffness (or, equivalently, scaled shear rates), in the solid regime,
we cannot conclude on the functional behavior of the shear stress
rate dependence; as a consequence, the constitutive relation must
be revised in future in order to deal with a wider range of stiff-
nesses.
Merging is done by stitching the two scaling regimes implicitly.
Independently of the scaling exponents and the rate dependency
of the shear rate, the form of the proposed merged constitutive
relations has the advantage that it does not require the definition
of additional merging functions in the transitional regime near to
the jamming volume fraction. Moreover, it does not include any
divergent quantity at the jamming volume fraction, and, as a con-
sequence, can be continuously implemented without any “if” or
switching condition in the proximity of jamming. The model can
be easily adapted to merge any kind of relations describing the
fluid and the solid regimes, provided that both are expressed as
power-law relations of the distance to jamming. The model has
been shown to quantitatively predict all flow variables in a wide
range of densities, spanning from dilute (fluid regime) to dense
(solid regime) conditions, including the transitional regime. The
comparison with other models from literature has illustrated a
better prediction of the quantities, especially in the solid regime.
The merged model does not require additional fitting parameters,
but only constant material parameters, inferred from the numer-
ical simulations in the fluid and solid limits, respectively. We ex-
pect these material parameters to be affected by other material
properties, such as dissipation (via the coefficient of restitution)
and inter-particle friction in case of frictional particles. Calibra-
tion of the constitutive model for other coefficients of restitution
and non-zero friction will be the subject of future work. Future
research can also focus on appropriate calibration of the model
parameters to deal with wet particulate systems15 and soft mat-
ter,23 such as emulsions, colloids, foams, gels and suspensions of
(soft) particles, which exhibit a jamming transition and scaling
behaviors similar to dry granular systems. Finally, in the limit
of very dilute systems, i.e., volume fractions smaller than 0.4, the
present model is not very accurate. In such conditions, the kinetic
theory of granular gases has been demonstrated to successfully
predict all the quantities. An improvement of the current model
would be to merge the relations in the lower-density fluid regime
with the kinetic theory.
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