Paper: "With or without U(K): A pre-Brexit network analysis of the EU ETS" Author: Simone Borghesi & Andrea Flori Journal: Plos One Published: September 9, 2019 Doi: https://doi.org/10.1371/journal.pone.0221587

With or without U(K): a pre-Brexit network analysis of the EU ETS

Simone Borghesi^{1,2}*, Andrea Flori³

1 FSR Climate, European University Institute, Florence, Italy

2 Department of Political and International Sciences, University of Siena, Siena, Italy
3 Department of Management, Economics and Industrial Engineering, Polytechnic
University of Milan, Milan, Italy

* simone.borghesi@eui.eu

1 Abstract

The European Emission Trading System (EU ETS) is commonly regarded as the key pillar of the European climate policy and as the main unifying tool to create a unique carbon price all over Europe. The UK has always played a crucial role in the EU ETS, being one of the most active national registry and a crucial hub for the exchange of allowances in the market. Brexit, therefore, could deeply modify the number and directions of such exchanges as well as the centrality of the other countries in this system. To investigate these issues, the present paper exploits network analysis tools to compare the structure of the EU ETS market in its first two phases with and without the UK, investigating a few different scenarios that might emerge from a possible reallocation of the transactions that have involved UK partners. We find that without the UK the EU ETS network would become in general much more homogeneous, though results may change focusing on the type of accounts involved in the transactions.

2 Introduction

The implications of Brexit are today the object of a heated debate and have gained much attention in the public opinion, both in the UK and in the rest of Europe. Among the many different consequences that Brexit could have, an important aspect concerns its impact on the EU climate and energy policies and, in particular, on the European

Emission Trading Scheme (henceforth EU ETS) that represents the cornerstone of 6 the EU policy to fight climate change. The EU ETS was in fact deployed in January 7 2005 as the first transboundary cap-and-trade scheme and nowadays covers more 8 than 11,000 installations from several emission-intensive sectors and across 31 States 9 (the 28 EU Member States plus Norway, Iceland and Liechtenstein). Overall, these 10 sectors account for about 50% of the total European CO2 emissions and 45% of all 11 GHG emissions 1. The EU ETS was originally divided in three phases: Phase I from 12 2005 to 2007, Phase II from 2008 to 2012, and Phase III from 2013 to 2020, while 13 a new Directive 2 has been recently adopted to reform the EU ETS for Phase IV 14 (2021-2030). The EU ETS represents the largest ETS in the world and has stimulated 15 the adoption of similar ETS in several other regions 3,4 (e.g., Alberta and Quebec 16 in Canada, China, Japan, Kazakhstan, South Korea, California and the Eastern part 17 of the US). 18

The possible effects that Brexit could have for the EU ETS have been mainly 19 ignored so far. Nevertheless, in our opinion, the Brexit effect on the structure and 20 effectiveness of the EU ETS deserves greater attention being of crucial importance for 21 the effectiveness of this instrument and for the future design of both the EU and UK 22 climate policies. At the moment of writing the outcome of the UK-EU negotiations 23 on the UK exit from the EU ETS appears still rather uncertain. In November 2017, 24 UK and EU agreed that UK emitters will have to surrender carbon units before the 25 scheduled Brexit date. In March 2018, negotiators reached a deal on a transition 26 period to the end of 2020, during which the UK will no longer participate in EU 27 decision-making processes but will still be subject to the single market rules 5. 28

Some timely studies have started to examine how Brexit could affect the EU-UK 29 relationships in terms of their climate and energy policies. For instance, changes in 30 the UK climate policies following the vote to leave have been found to be likely to have 31 small global economic consequences given the limited amount of UK emissions 6. 32 but still generating a surplus of allowances in the short-term, since UK companies 33 would want to sell their allowances that are no longer needed, and a tightening of the 34 system in the long term 7. In addition, studies focusing on the neighbouring states 35 that have physical energy interconnections with the UK indicate that Brexit would 36 have limited impact on gas and electricity prices both in UK and EU 8. Assuming 37 the extension of the EU ETS to non-ETS sectors in the future, numerical simulations 38 find that a hard Brexit could have a negative effect on the UK's climate policy costs 39 and a positive one on the remaining EU member states 9. As discussed in 10, 40 the impact of Brexit on the remaining 27 member states would be limited if the 41 EU accepts a weaker emissions cap. On the contrary, such impact is likely to be 42 much larger for the UK in terms of increased compliance costs with its climate policy 43 targets (estimated to range between 0.2 and 0.4 percent of its GDP), transition costs to replace the EU ETS on short notice, possible business loss as the carbon trade leaves London (that played a pivotal role as a relevant hub in the system so far), and distortions at the border due to differences between UK and EU GHG regulations.

No one has investigated so far the potential effects that Brexit could have on 48 the structure of the EU ETS itself. The UK, in fact, plays a crucial role within the 49 EU ETS, being one of the most active national registries with about 1,000 accounts 50 actively involved in the exchange of allowances in the market, facilitated also by the 51 presence of a key devoted platform for trading permits (namely, the Intercontinental 52 Exchange - ICE). Brexit, therefore, could deeply modify the number and directions 53 of such transactions as well as the centrality of the other registries operating in the 54 system. 55

To investigate these issues, the present paper examines the structure of the EU 56 ETS market with and without the UK, using network analysis instruments. Network 57 theory can potentially be used to study many environmental topics [11], such as 58 the structure of common property resources in the presence of multiple sources and 59 users [12], how social interactions affect the adoption of eco-innovation [13], the 60 stability of International Environmental Agreements when pollution has both global 61 and local effects [14], how network structure influences resource exploitation [15] 62 or global commodity trade 16 or how climate variability affects food resource 63 availability 17. Building upon 18, who analyze the network dynamics of the EU 64 ETS, and [19], who use network theory to describe the structure of the EU ETS at 65 national registry-level, in this paper we will exploit network measures to investigate 66 the impact of Brexit on the EU ETS structure proposing a few different scenarios 67 that might emerge from a possible reallocation of the transactions that are currently 68 involving UK partners. Our findings indicate that, without the UK, the EU ETS 69 would resemble a much more homogeneous network in which a small club of national 70 registries would probably replace the leading role of UK, at least with respect to 71 operations performed by pure trading accounts. 72

3 Materials and methods

3.1 Data: EU ETS transactions and account types

Data are retrieved from the European Union Transaction Log - EUTL, the European ⁷⁵ infrastructure containing all available information on the transactions under the EU ⁷⁶ ETS (http://ec.europa.eu/environment/ets/transaction.do). Transactions in ⁷⁷ the EU ETS can be categorized along at least two main dimensions: i) the type of ⁷⁸

73

the counterparts involved in the trade, and ii) the transaction type. As to the first 79 dimension, participants in the EU ETS can be either compliance liable entities that 80 refer to installations responsible for greenhouse gases emissions (named, "Operator 81 Holding Accounts" - OHAs) or voluntary accounts that operate mainly for trading 82 purposes (named, "Person Holding Accounts" - PHAs); in addition, a bundle of 83 players refers to governmental accounts through which allowances are managed for 84 compliance purposes. As to the second dimension, transactions may be distinguished 85 either in terms of internal vs. external exchanges (i.e., within the same national 86 registry or across different registries) or for the reason underlying the transaction 87 (e.g., trade, issuance, allocation, surrendering, cancellation, correction, etc.). 88

In this analysis we refer to the period from January 2005 to December 2012 in order 89 to completely include two compliance phases, namely both Phase I and Phase II of 90 the program. In this interval, EU ETS transactions amounted to 656, 735 operations 91 corresponding to 155, 823, 895, 749 transferred units (see Table 1). Total external 92 transactions were 155,555 (equivalent to about 23.68 per cent of the overall transac-93 tions) involving 14,922,967,382 units being transferred. Total internal transactions 94 were 498, 209 (75.86 per cent of all transactions) corresponding to 91, 530, 558, 100 95 units being transferred. Transactions involving OHAs and PHAs represented about 96 43 per cent of the transferred amount. In that period, UK transferred 26, 617, 737, 094 97 units and received 27, 492, 932, 700 allowances. Hence, it was responsible for more 98 than 17 per cent of the traded units as either transferring or acquiring registry. These 99 figures confirm the relevant role of UK as a very active registry within the EU ETS. 100

In that period, the EU ETS was composed by the following national registries, each 101 represented as a node in the network: AT (Austria), BE (Belgium), BG (Bulgaria), CH 102 (Switzerland), CY (Cyprus), CZ (Czech Republic), DE (Germany), DK (Denmark), 103 EE (Estonia), ES (Spain), FI (Finland), FR (France), UK (United Kingdom), GR 104 (Greece), HU (Hungary), IE (Ireland), IS (Iceland), IT (Italy), LI (Liechtenstein), LT 105 (Lithuania), LU (Luxembourg), LV (Latvia), MT (Malta), NL (Netherlands), NO 106 (Norway), PL (Poland), PT (Portugal), RO (Romania), SE (Sweden), SI (Slovenia), 107 SK (Slovakia), UA (Ukraine). We represent with a separate node the allowances 108 managed by the EC (European Commission), and we create the residual player 109 *RoW* to include: (i) non-EU countries having a marginal role in the system, such as 110 AU (Australia), JP (Japan), NZ (New Zealand), RU (Russian Federation), and (ii) 111 allowances related to CDM (Clean Development Mechanism), the Kyoto Protocol 112 mechanism providing allowances that may be traded in an ETS in exchange for 113 emission reductions projects implemented in developing countries. 114 **Table 1. Descriptive Statistics: EU ETS.** First column shows the description of each transaction type. The second column indicates the codes corresponding to the transaction type. The third column reports the number of transactions for each type. The fourth column shows the amount of transferred allowances. Source: authors' own elaborations based on the EUTL transactions data set for the first two Phases.

Explanation	Transaction Type	# of Transactions	# of Units
Issuance	code 1	321	34,848,385,716
Conversion	$code \ 2$	732	71,145,927
External Transfer	$code \ 3$	155,555	14,922,967,382
External Transfer	3-0	139,966	13,887,754,931
External Transfer - Allowance surrender	3-2	117	25,424,725
External Transfer (2005-2007)	3-21	15,472	1,009,787,726
Cancellation	code 4	1,679	6,031,053,181
Retirement	code 5	239	8,419,785,443
Internal Transfer	$code \ 10$	498,209	91,530,558,100
Internal Transfer	10-0	325,368	42,560,619,951
Internal Transfer - Allowance Cancellation (2005-2007)	10-1	3,286	76,877,305
Internal Transfer - Allowance Surrender	10-2	85,837	14,038,141,353
Internal Transfer - Issuance/Internal Transfer Art 63a	10-24	4	1,011,231
Internal Transfer - Conversion of Art. 63a Allowances	10-26	20	508,510
Internal Transfer - Allocation of Aviation Allowances	10-35	342	146,831,820
Internal Transfer - Allocation of General Allowances	10-36	291	32,173,776
Internal Transfer - Auction Delivery	10-37	24	92,201,500
Internal Transfer - Cancellation and Replacement	10-41	20	272,312,173
Internal Transfer - Allowance Issue (2008-2012 onwards)	10-52	273	10,988,834,103
Internal Transfer - Allowance Allocation	10-53	82,376	16,261,299,127
Internal Transfer - Correction to Allowances	10-55	8	4,114,611
Internal Transfer - Surrendered Allowance Conversion	10-61	164	6,851,333,407
Internal Transfer - Deletion of Allowances	10-90	14	174,319,601
Internal Transfer - Reversal of Allowance Surrender	10-92	130	19,493,569
Internal Transfer - Correction	10-93	51	1,316,081
Internal Transfer - Reversal of Allowance Cancellation	10-104	1	9,169,982
Total		656,735	155,823,895,749

3.2 Network Representation

Network theory techniques have been applied to study the features of a wide variety 116 of systems (see e.g., 20 and 21). Economic systems can be represented as a graph 117 or network G = (V, E), where V are the nodes representing the agents operating in 118 the system and E stands for the set of relationships connecting pairs of nodes. In 119 our framework, each node i in V refers to a national registry, while the directed link 120 (i, j) in E is weighted according to the number of exchanged allowances from the 121 transferring national registry i to the acquiring national registry j. The structure of 122 the network is thus summarized by the adjacency matrix W, where $W_{ij} = 0$ if there 123 is not a link from i to j, while is $W_{ij} = w_{ij}$ if such link exists and corresponds to the 124 amount of allowances w_{ij} transferred from *i* to *j*. 125

To capture differences between the two Phases, we consider network representations ¹²⁶ for the intervals 2005-07 (Phase I) and 2008-12 (Phase II), separately. We focus on ¹²⁷ either "pure trade" transactions only (i.e., external transactions, codes 3-0 and 3-21, ¹²⁸ and internal transactions, code 10-0; hereinafter, the *Trade* specification) or the entire ¹²⁹

list of transaction types which includes also, for instance, the issuance, allocation and surrendering of the allowances (hereinafter, the *All* specification). In addition, we split data according to the two main account types, thus focusing only on PHAs or OHAs.

To characterize the EU ETS we have applied topological measures of the nodes 134 and network properties for the whole graph (for details on network centrality measures 135 see 21–23, among others). Both the degree and the strength scores (and similarly 136 their in-out variants) provide a preliminary representation of the structure of the 137 network based on the amount of links, and possibly their weights, among connected 138 nodes. For instance, a node with a high in-degree refers to a registry which is able to 139 attract transactions from many other registries of the system, while a node with high 140 out-strength and low in- strength stands for a registry more active in transferring 141 allowances than in acquiring them. Betweenness, closeness and eigenvector are also 142 applied to enrich the characterization of the nodes by means of the whole configuration 143 of the network and, in particular, of the neighborhood of each node. A node with 144 a high value of betweenness suggests that it plays a role similar to an intermediary 145 between many other nodes in the network, while a high value for closeness indicates 146 that the node is likely to trade with other nodes directly. Instead, the eigenvector 147 centrality poses importance not only in the amount of incoming links (as approximated 148 for instance by the in-strength of the node), but it also considers how this node is 149 connected to its neighbourhoods. As regards the network as a whole, we compute 150 the assortativity coefficient to analyze the tendency to form connections among 151 "similar" nodes, while centralization measures are introduced to describe the extent 152 to which the cohesion of the graph is set around specific points. For instance, with 153 respect to the degree distribution, the level of centralization may vary from low values 154 corresponding to an almost complete graph to high values achieved for a star-like 155 configuration. Finally, further topological diagnostic is provided by the diameter, 156 the reciprocity and the transitivity. The first indicates a simple upper bound in the 157 connectivity of the graph, the second shows the level of symmetry in links formation, 158 while the third provides a proxy for the emergence of local clusters in the network. 159

In the EU ETS, for instance, not liable entities (i.e., PHAs) could opt to open 160 accounts in certain registries according to the presence of favourable account set up 161 requirements, fiscal advantages or the establishment of dedicated exchange platforms. 162 Overall, these aspects can affect how national registries are connected between each 163 other. More generally, since these conditions could have changed over time, they may 164 have contributed to move the EU ETS from a centralized system with a few very 165 active nodes, which were initially facilitated by infrastructure advantages, to a more 166 uniform system. 167

3.3Scenarios: with or without UK

We propose the following competing reassignment rules to study the removal of the 169 UK from the EU ETS:

- *No reassignment*: we simply remove all the links in which at least one counterpart 171 refers to UK, but we do not reassign the corresponding amount of transferred 172 allowances to the remaining nodes/registries; 173
- *Proportional reassignment*: we reassign links with UK as one of the counterpart 174 to the other national registries proportionally to the UK neighborhood. Basically, 175 UK has a set of registries from which it imports allowances (namely, its in-176 neighborhood) and another set to which it exports them (namely, its out-177 neighborhood). We allocate those links exiting from UK to registries in its 178 in-neighborhood proportionally to their respective weight in the in-strength 179 of UK, while we assign those links entering to UK to registries in its out-180 neighborhood proportionally to their respective weight in the out-strength of 181 UK. In formula, given the in-strength of UK as $s_{uk}^{In} = \sum_{i=1}^{N} w_{j,uk}$ and the link 182 from UK to a certain registry x belonging to its out-neighborhood (namely, 183 w(uk, x)), then the latter is assigned proportionally to each j registry in the 184 in-neighborhood of UK as follows: $\hat{w}(j, x) = w(j, x) + w(uk, x) \times \frac{w_{j,uk}}{s_{uk}^{In}}$, where the 185 first term on the rhs refers to the true link between j and x and the second term 186 indicates the additional flow related to the proportional reassignment of w(uk, x). 187 Similarly, for the in-flows into UK it will be: $\hat{w}(k,i) = w(k,i) + w(k,uk) \times \frac{w_{uk,i}}{S_{uk}^{Out}}$

(the notation is self-explanatory).

• Random reassignment: the reassignment of links with UK as one of the coun-190 terpart is performed randomly. This is done by generating 1000 simulated 191 realizations, where transferred allowances referred to UK are reassigned to each 192 combination of the remaining registries according to a weight that is drawn 193 from a uniform distribution. 194

For both the *Proportional* and *Random* scenarios we thus analyze a reassignment 195 which considers only transactions with UK as one of the counterpart, while those 196 transactions involving UK as both transferring and acquiring counterparts are dis-197 carded (namely, in network jargon we remove the UK self-loop). The latter, in fact, 198 refer to domestic transactions performed by UK accounts, which are therefore less 199 likely to be alternatively operated by other accounts potentially located in other 200

170

188

national registries. Fig 1 shows a representative example of the mechanism behind ²⁰¹ the proportional reassignment, which is considered as the reference scenario in the ²⁰² study. ²⁰³

Fig 1. Example: Proportional reassignment. Plot on top-left shows the neighborhood of UK: in blue those registries that transfer units to UK, in red those registries that acquire units from UK. Plot on the top-right isolates in red an outflow from UK to registry x (100 units), while in blue indicates the inflows of UK (a total of 150 units from registries A-to-G). Plots on the bottom show the mechanism behind the proportional reassignment of a link exiting from UK. Bottom-left figure reports effective links from registries in the in-neighborhood of UK to registry x; bottom-right figure explains that final links from blue nodes to the red one are the sum of the original links plus the proportional assignment of 100 units based on the weight of blue nodes in the inflows connecting them to UK.

4 Results

As shown in Table 2 the original system (specification All) is very dense, transactions ²⁰⁵ between two registries usually go in both directions, and the likelihood these nodes ²⁰⁶ are part of triangles is pretty high. Hence, the EU ETS seems a very connected ²⁰⁷ network and its nodes are likely to trade with many counterparts as both acquiring ²⁰⁸ and transferring peers. Results are very similar if we circumscribe the analysis to ²⁰⁹ the specification *Trade*. Interestingly, we also notice that despite the enlargement of ²¹⁰ the program to additional national registries (compare, e.g., #N and the diameter), ²¹¹

Phase II coincides in general with a more connected network than the one emerging in 212 Phase I. Finally, configurations arising from subsetting the system with only PHAs or 213 only OHAs as both counterparts clearly highlight that the former are more connected 214 than the latter, thus suggesting that not liable entities (i.e., PHAs) are more prone 215 to trade across national registries. This may be due to the fact that PHAs mostly 216 include brokerage firms and financial intermediaries 24, which can actually facilitate 217 transactions across different national registries and exchange platforms. By contrast, 218 OHAs seem more oriented to trade with a few counterparts, thus making the related 219 system more fragmented. 220

Table 2. EU ETS network diagnostic. Columns labels refer to: number of nodes (#N); number of edges (#E); density (dens); reciprocity (rec); transitivity (trans); diameter (d); assortativity (assort). Centralization measures are indicated with symbol $\langle x \rangle$, where x is the degree (K), the closeness (C), the betweenness (B) or the eigenvector centrality (evcent). Results refer to the period 2005-2012. Source: Authors' own elaborations.

#N	#E	dens.	rec.	trans.	d	assort.	$<\!\!K\!\!>$	$<\!\!K^{In}\!>$	$<\!\!K^{Out}\!>$	$<\!C\!>$		< evcent >	subset
35	699	0.57	0.87	0.82	3	-0.13	0.38	0.35	0.38	0.16	0.08	0.34	All
34	680	0.59	0.86	0.82	3	-0.17	0.37	0.36	0.36	0.49	0.08	0.33	Trade
25	292	0.47	0.88	0.70	2	-0.25	0.47	0.47	0.43	0.21	0.08	0.44	All_PhaseI
35	692	0.56	0.87	0.82	3	-0.13	0.39	0.36	0.39	0.16	0.08	0.34	All_PhaseII
25	291	0.47	0.88	0.70	2	-0.27	0.47	0.47	0.43	0.21	0.08	0.44	Trade_PhaseI
34	673	0.58	0.86	0.82	3	-0.16	0.38	0.37	0.37	0.49	0.09	0.33	Trade_PhaseII
22	175	0.36	0.88	0.63	3	-0.25	0.45	0.48	0.48	0.47	0.16	0.49	Trade_PhaseI_PHA
27	427	0.59	0.89	0.72	2	-0.29	0.45	0.43	0.43	0.52	0.06	0.36	Trade_PhaseII_PHA
24	132	0.23	0.59	0.57	5	0.03	0.43	0.46	0.37	0.20	0.20	0.68	Trade_PhaseLOHA
28	209	0.27	0.80	0.60	3	-0.05	0.50	0.46	0.50	0.09	0.19	0.60	Trade_PhaseII_OHA

Table 2 also shows that the EU ETS is a slightly disassortative network, meaning 221 that counterparts usually tend to be connected with nodes dissimilar in terms of 222 degree distribution, thus in line with other infrastructural networks (see e.g., 25 + 27). 223 This result is particularly evident in the PHAs specification, which is coherent with 224 the activity carried out by this group: since this set of accounts mainly refers to 225 financial intermediaries then diversification is more likely to occur and should actually 226 be put in place by PHAs. Finally, centralization scores indicate the graph-level 227 centrality for different centrality measures. Although the aforementioned centrality 228 measures provide different perspectives of node centrality, our findings seem to depict 229 the EU ETS as a more centralized network during Phase I. This reasonably reflects the 230 presence of a few very central national registries during the first years of the program, 231 while progressively the system became less polarized. For instance, Denmark and the 232 Netherlands had favourable conditions to set up accounts during the early stages of 233 the program, while other Member States such as France, Germany and the United 234 Kingdom were among the few countries in Europe with dedicated exchange platforms 235 for allowances. No less importantly, the centrality of some national registries may 236 have been heavily influenced by carbon carousel frauds such as that occurred in the 237 France's Bluenext exchange in June 2009 [28, 29], which weakened the platform and 238 contributed to its closure at the end of 2012. For instance, such episodes affected 239 transferred volumes through France, placing this node as a very active player during 240 the VAT fraud but then limiting its centrality once France changed its VAT rules in 241 2009 to respond against the fraud. 242

4.1 What would have been the EU ETS configuration without UK?

The topological investigation we will propose in this subsection offers a clear picture: ²⁴⁵ the UK was involved in a huge portion of transactions which -if not performed via ²⁴⁶ UK- would have been reassigned to the remaining registries producing a substantial ²⁴⁷ reshuffle within the EU ETS. We can only advance some hypotheses on how these ²⁴⁸ transactions might have been reassigned. We introduce three scenarios as milestones ²⁴⁹ to investigate how the EU ETS would have been without UK. ²⁵⁰

The first scenario is the one obtained by simply removing all the transactions in 251 which UK is a counterpart; this is a limit case where we assume that exchanging 252 allowances with UK is the main reason for that trade, so that dropping UK determines 253 the deletion of that transaction and the impossibility to perform the same trade 254 via a different registry. The second scenario reassigns the share of UK transactions 255 proportionally to its neighborhood; in this scenario, we hypothesize that UK plays 256 an intermediary role between some registries and that allowances passing through 257 UK can be reasonably reassigned to registries in its neighborhood according to their 258 weight in the market share of UK. The third scenario is a purely agnostic approach in 259 which, to verify whether some properties of the network are confirmed, we randomly 260 reassign the bundle of UK transactions to other registries without specific assumptions 261 about the way these allowances are reallocated. Table 3 summarizes the respective 262 estimates. 263

The first panel in Table 3 shows the scenario obtained by simply removing UK and 264 all the links in which UK is at least one of the counterpart of the transaction. Even 265 in this case we notice a few differences between the *All* and the *Trade* specifications, 266 and we confirm the increasing connectivity from Phase I to Phase II. More generally, 267 the network appears slightly less dense and connected under this scenario with respect 268 to the actual EU ETS representation reported in Table 2. Similarly, the centralization 269 measures for both the *All* and the *Trade* specifications are usually lower than those 270 computed for the original case. Interestingly, the partition based on each Phase 271 indicates that previous result is the combined effect of a rise in Phase I and a drop 272 in Phase II, thus suggesting that the central role of UK seems to have been more 273 effective during Phase II than Phase I when other national registries were very pivotal 274 as well. Also, the subset of only PHAs shows that the removal of UK increases 275 the centralization measures in both Phases, while the OHAs specification appears 276 much more stable with no substantial changes in the reported measures with and 277 without the UK (cfr. Table 2). It is well-known, in fact, the important role played 278 by a club of other national registries (e.g., Denmark, France, Germany, and the 279 Netherlands) as key market places for trading allowances thanks to the presence 280 of devoted exchange platforms and favourable set-up conditions. By dropping a 281 competitor as UK, their role is further enhanced and they emerge even more clearly as 282 very pivotal nodes, especially if we focus on PHAs which are more likely to represent 283 financial intermediaries very active across these stock exchanges. 284

The second panel in Table 3 exhibits the case corresponding to the *Proportional* 285 scenario. We assume that links to UK are assigned to each target node in the out-286 neighborhood of UK proportionally to its weight among all flows departing from the 287 UK (i.e., its weight in the UK allowance exports flow); similarly, links exiting from 288 UK are assigned to each source node in the in-neighborhood of UK in proportion to 289 its weight in the in-strength of the UK (i.e., its weight in the UK allowance import 290 flows). The network arising in this scenario is highly connected and dense. This is 291 due to the fact that UK is involved in a significant share of transactions where it plays 292 a role as a hub/intermediary between national registries otherwise poorly connected. 293 By creating links between the in- and the out-neighborhood of UK, we replace the 294 hub node represented by UK with links connecting almost every node. This occurs 295 because UK is basically connected to each Member State of the EU ETS, which 296 highlights the central role of UK in the program and explains why we get this very 297 dense configuration under the *Proportional* scenario. Furthermore, we still observe 298 the same regularities already commented about the increasing connectivity during 299 Phase II with respect to Phase I. Note also that in this scenario the assortativity 300 coefficient is often positive, meaning that transferring and acquiring counterparts 301 are here much more similar than in the original case (i.e., when connected via UK). 302 Remarkably, when we circumscribe the analysis to only PHAs, the system becomes 303 totally connected in Phase II, thus emphasizing the role of UK as a key player in 304 facilitating trades among market participants spread in the EU ETS. Finally, we 305 remark that the system without UK and with proportional reassignment is very 306 uniform as indicated by the centralization measures. 307

We also propose a basic Random scenario in which UK's links are randomly 308

reassigned to the remaining pairs of registries. Results in the third panel of Table 3309 indicate a well-connected system in line with the discussion for the *Proportional* 310 scenario. Hence, if those transactions originally performed via UK would be reassigned 311 to the remaining nodes either proportionally to their weight in the UK's neighborhood 312 or even randomly, still we will get a more uniform and connected network than the 313 actual EU ETS. A peculiar result emerges in the Random scenario if we focus on 314 only OHAs: randomization allows to bypass some kind of country-barriers that force 315 transactions for liable installations to be biased towards domestic transactions or a 316 few other registries. Finally, as expected due to the relevant amount of transactions 317 involving UK, their random reassignment is able to basically generate a network 318 configuration that is weakly structured. The removal of UK could be interpreted as a 319 shock to the system: indeed, the agnostic reassignment of the UK-related transactions 320 without any particular rule is likely to generate a significant perturbation which seems 321 able to modify substantially the original configuration of the network. 322

4.2 Winners and losers from the removal of UK

Once a very central node like UK is dropped from the system, links will be reorganized, 324 the centrality of the remaining nodes might result reshuffled, and the overall structure 325 of the system may eventually change. The topological investigation discussed in 326 the previous subsection suggests that in each of the three alternative scenarios, the 327 removal of UK's transactions significantly affects the configuration of the network. 328 This subsection discusses the topological impact at the level of single nodes to detect 329 which registries would be, eventually, more affected by such reassignment. Some 330 registries could gain positions in the centrality rankings becoming more influential 331 in the network, while others may reach even more peripheral positions once UK is 332 removed. The former can be seen as the "winners" who gain from removing the UK 333 node, while the latter are the "loosers" who, conversely, achieve even more marginal 334 roles in the system. 335

323

To perform such analysis, the first panel of Table 4 focuses on observations related 336 only to Phase II to provide a representation of the most recently concluded EU ETS 337 phase (Phase III being still on-going). It also refers to the pure Trade specification 338 because the other types of transactions, such as the issuance, allocation and sur-339 rendering of allowances, are more country-specific and affected by the relationships 340 with governmental counterparts. Instead, the second panel of Table 4 refers to those 341 transactions involving only PHAs to further verify variations in centrality scores 342 among those accounts (mainly financial intermediaries, banks, and brokers) for which 343 is easier to switch across different national registries. 344

As shown in Table 4, we note that the UK is a very central node, while the 345 club of the other key nodes usually encompasses: Denmark, France, Germany, the 346 Netherlands and sometimes Italy. Together with the UK, these registries form a core 347 of very connected nodes surrounded by a cloud of registries related to peripheral 348 countries within the EU ETS. Among the latter it is clear that the UK plays for 349 them a role as hub/intermediary between these nodes otherwise poorly connected, 350 so the removal of UK without the reassignment of its links is likely to reduce the 351 connectivity of these registries with the rest of the system. Conversely, those already 352 very central nodes usually appear even more central once the UK and its links are 353 removed. 354

The first three blocks in Table 4 refer to degree and its variants (in-degree and out-355 degree). These indicators provide a simple representation of the network configuration 356 based on a binary view which assigns links regardless the transferred amount. This 357 basic perspective is helpful for two reasons: i) it clearly indicates that Denmark, 358 France, Germany, Italy, the Netherlands and the United Kingdom are key counterparts 359 in the system being connected to almost every registry; ii) conversely, there is a cloud 360 of less central registries mostly related to geographically peripheral countries. Only a 361 few differences appear between the first and second panel of the table; however, when 362 we circumscribe the analysis to only PHAs (bottom panel), fewer active registries are 363 present and some of them, e.g. Austria, Italy or Spain, appear less active compared 364 to the configuration including the other account types (top panel). 365

A more effective representation of the EU ETS is offered by the second block of 366 the topological measures (namely, strength, in-strength and out-strength). In the 367 actual EU ETS configuration (case I), the UK is involved in a significant portion 368 of transactions, although other registries are also very active either in terms of 369 transferring or acquiring operations. France and Germany, for instance, would be the 370 most central nodes in the network once the UK is removed, while those registries in the 371 periphery would continue to play a marginal role. In the PHAs specification, the UK is 372 not the most central node and the reassignment of its links clearly identifies France as 373 the key node in the network under all the alternative scenarios. More specifically, the 374 Random scenario (case IV) penalizes very central nodes (e.g., Denmark, France, and 375 Germany) with respect to the actual EU ETS configuration, while the *Proportional* 376 scenario (case III) coincides with a gain in centrality for these registries. The latter are 377 relevant transferring and acquiring counterparts for the UK and would proportionally 378 receive the lion's share of its transactions once the UK is removed. 379

Subsequent blocks of Table 4 present centrality indicators more related to the 380 overall network and the way each node is connected to the rest of the system. 381 These measures may not be necessarily positively correlated between each other 30. 382 An example about the relationships between these centrality measures under each 383 alternative scenario is presented in S1. Closeness can be interpreted as a measure 384 of how long it will take to spread information from a certain node to all the other 385 nodes sequentially. In the first panel, the UK is among the most central nodes in 386 terms of closeness. Some geographically peripheral registries (e.g., Cyprus, Malta, 387 Iceland, and Ukraine) are more distant from the rest of the system, while in general 388 only a few links are needed to connect each node to the others. Almost all registries 389 are connected to the others on average by a couple of steps. Instead, as expected, 390 values for closeness measures would fall if we remove the UK and we do not reassign 391 the corresponding links (case II), while they would increase if we reassign them 392 proportionally to its neighborhood (case III). Overall, this finding confirms that the 393 UK facilitates connections among different parts of the EU ETS. Configurations 394 for only PHAs are dense and highly connected with the UK playing a prominent 395 role, although other registries are very central and remain so even if we drop the 396 UK without reassigning its links. Hence, within the PHAs, the system appears well 397 connected and removing the UK does not significantly reduce the distance between 398 registries. 399

Betweenness indicates how frequently a node lies along the geodesic pathways 400 connecting other nodes, thus representing an asymmetric measure of centrality. 401 The UK is the most central node in this framework, thus emphasizing its role as 402 hub/intermediary between different parts of the network. Denmark, France, Germany, 403 Italy, the Netherlands and Switzerland form a club of central nodes and they benefit 404 more than others from the drop of the UK. Their centrality scores, although higher 405 than those of most other registries, are far from the UK's value, thus supporting the 406 interpretation that the latter is the only key node in that framework. Instead, if we 407 focus on PHAs only, other nodes appear very central: Denmark, Germany, and the 408 Netherlands are, in fact, almost as central as the UK, while most of the remaining 409 nodes are peripheral. 410

Finally, we consider the eigenvector centrality. Again the club composed by Den-411 mark, France, Germany, Italy, the Netherlands and UK reach very high central scores, 412 while in the bottom part of the ranking there are those geographically peripheral 413 countries already seen in the previous centrality measures. The eigenvector is an 414 appealing indicator of centrality since it does not only consider the amount of flows 415 impacting to a certain node (as already measured, e.g., by the strength), but it also 416 consider the structure of the network and, in particular, of the nearest nodes from 417 and to which the node operates transactions. Hence, it is worth remarking that 418 central nodes in terms of eigenvector are not necessarily related to registries with high 419 inflows (see, e.g., the high values of the eigenvector centrality for Austria, Finland or 420

Slovakia). In general, removing the UK without reassigning its link causes peripheral 421 nodes to become slightly more marginal, while for more central nodes the effect is 422 spurious. In the PHAs specification, the ranking is instead more clear, especially in 423 the upper tail of the distribution. Denmark, France, Germany, and the Netherlands 424 are the most central nodes together with the UK, and the removal of the latter node 425 (without reassignment) basically decreases only the centrality scores of the remaining 426 less central nodes. *Proportional* and *Random* scenarios are almost fully connected 427 networks, thus the indicator reaches its maximum value. 428

The second panel of Table 4 is likely to represent the most plausible scenario 429 arising from the removal of the UK, since it deals with non-liable entities (namely, 430 PHAs) that can easily switch into a different national registry for trading purposes. 431 This subsection suggests that removing the UK may induce non-liable entities to 432 move from the UK to already very central registries, which are also characterized by 433 the presence of devoted exchanges for trading allowances. 434

5 Discussion

The UK has always played a pivotal role in the EU ETS: it is the second-largest GHG 436 emitter in the EU and has long been one of the most ambitious countries in terms of 437 climate policies and targets within the EU. The UK ETS was the first, multi-sector 438 emission trading program and its experience somehow inspired the EU ETS. For all 439 these reasons, if the UK decides to leave the EU ETS after Brexit, this will obviously 440 have significant impacts on the EU ETS (though these might as well be smaller than 441 those on the UK itself). 442

This study exploits network analysis tools to assess the role played by the UK 443 in the EU ETS and to compare the actual structure of the system (including the 444 UK) with the one that would have emerged without the UK under different scenarios. 445 In particular, in the (basic but probably most realistic) proportionality scenario we 446 evaluate how the structure would change if the large import and export flows involving 447 the UK registry were reassigned to its partners in proportion to their weight in the 448 UK relationships. 449

When the UK is removed from the system the structure of the network turns out 450 to change deeply. Indeed, in some of the configurations taken into account (e.g. the 451 *Trade* specification that encompasses both internal and external transactions) the UK 452 was basically an outlier. In these cases the departure of the UK would transform the 453 network from an almost star-like system (the UK being at the centre of the star and 454 its partners surrounding it) to a core-periphery structure with a club of core countries 455 (Denmark, France, Germany, Netherlands, partly Italy) becoming more central in 456

the network while the others remain at the periphery of the system. As one would 457 expect, therefore, the structure of the EU ETS is not persistent to a large shock such 458 as the UK exit from the system. However, this does not seem to apply to the network 459 composed of PHAs only. In fact, the PHAs network is already very connected and 460 more homogeneous and it is likely to remain so, with or without the UK. This reflects 461 the very nature of PHAs which, being mainly financial intermediaries, are more likely 462 to trade across national borders, thus establishing links across all nodes within the 463 PHAs network. 464

6 Supporting information

Fig. In- vs. out- strength Distributions. Plot shows the distributions of S1466 in-strength vs. out-strength in Phase II. Panel a) is the All case; b) is the Trade 467 case; c) is the Trade case for only OHAs; d) is the Trade case for only PHAs. Colors 468 refer to: the actual EU ETS (designated with purple); the *No reassignment* case (in 469 red); the *Proportional case* (in green); and the *Random* case (in blue). Only very 470 central nodes are highlighted in color, while the orthogonal dotted lines refer to UK 471 under the actual EU ETS network and are introduced as a reference point. Source: 472 Authors' own elaborations. 473

7 Acknowledgments

The authors would like to thank seminar participants at the Workshop "Post-Brexit⁴⁷⁵ EU-UK Cooperation in Climate and Energy Policy" (10 April 2018, European⁴⁷⁶ University Institute, Florence) and at the 6th World Congress of Environmental⁴⁷⁷ and Resource Economists (25–29 June 2018, Gothenburg) for helpful comments and⁴⁷⁸ suggestions on a preliminary version of this paper. The usual disclaimer applies.⁴⁷⁹

References

- 1. European Commission. EU ETS Handbook European Commission, DG Climate Action (CLIMA). 2015.
- 2. European Parliament and Council of the European Union. Directive (EU) 2018/410 of the European Parliament and of the Council of 14 March 2018 amending Directive 2003/87/EC to enhance cost-effective emission reductions

and low-carbon investments, and Decision (EU) 2015/1814 Official Journal of the European Union, 19/3/2018.

- 3. Ellerman AD, Convery FJ, De Perthuis C. Pricing carbon: the European Union emissions trading scheme. Cambridge University Press. 2010.
- World Bank, Ecofys. State and Trends of Carbon Pricing 2018. World Bank Publications. Washington, DC, 2018.
- 5. Carbon Pulse. EU, UK reach deal on transition period to the end of 2020. https://carbon-pulse.com/49217/. Published on March 19, 2018.
- Hepburn C, Teytelboym A. Climate change policy after Brexit. Oxford Review of Economic Policy. 2017;33(suppl_1), S144-S154.
- 7. European Union. The Impact of Brexit for the EU energy system. Directorate-General for Internal Policies Policy Department A: Economic and Scientific Policy, Bruxelles. 2017.
- 8. Pollitt MG, Chyong K. A Brexit and its Implications for British and EU Energy and Climate Policy. Centre on Regulation in Europe (CERRE): Brussels, Belgium. 2017.
- Babonneau FLF, Haurie A, Vielle M. Welfare implications of EU effort sharing decision and possible impact of a hard Brexit. Energy Economics. 2018;74: 470-489.
- Tol RSJ. Policy Brief—Leaving an Emissions Trading Scheme: Implications for the United Kingdom and the European Union. Review of Environmental Economics and Policy. 2017;12(1), 183-189.
- 11. Currarini S, Marchiori C, Tavoni A. Network economics and the environment: insights and perspectives. Environmental and Resource Economics. 2016;65(1), 159-189.
- Ilkılıç R. Networks of common property resources. Economic Theory. 2011;47(1), 105-134.
- Conley T, Udry C. Social learning through networks: The adoption of new agricultural technologies in Ghana. American Journal of Agricultural Economics. 2001;83(3), 668-673.

- Günther M, Hellmann T. International environmental agreements for local and global pollution. Journal of Environmental Economics and Management. 2017;81, 38-58.
- Kyriakopoulou E, Xepapadeas A. Natural Resource Management: A Network Perspective. World Congress of Environmental and Resource Economists, Gothenburg, June 25-29. 2018.
- Kharrazi A, Rovenskya E, Fath BD. Network structure impacts global commodity trade growth and resilience. PloS one. 2017;12.2: e0171184.
- 17. Dolfing AG, Leuven JRFW, Dermody BJ. The effects of network topology, climate variability and shocks on the evolution and resilience of a food trade network. PloS one. 2019;14.3: e0213378.
- Karpf A, Mandel A, Battiston S. Price and network dynamics in the European carbon market. Journal of Economic Behavior & Organization. 2018;153: 103-122.
- Borghesi S, Flori A. EU ETS Facets in the Net: Structure and Evolution of the EU ETS Network. Energy Economics. 2018;75, 602-635.
- 20. Newman MEJ. The structure and function of complex networks mixing in networks. SIAM review. 2003;45(2), 167-256.
- 21. Jackson MO. Social and economic networks. Princeton University Press. 2010.
- 22. Newman MEJ. Networks. Oxford university press. 2018.
- 23. Caldarelli G. Scale-free networks: complex webs in nature and technology. Oxford University Press. 2007.
- 24. Betz RA, Schmidt TS. Transfer patterns in Phase I of the EU Emissions Trading System: a first reality check based on cluster analysis. Climate Policy. 2016;16(4), 474-495.
- Bagler G. Analysis of the airport network of India as a complex weighted network. Physica A: Statistical Mechanics and its Applications. 2008;387(12), 2972-2980.
- 26. Chopra SS, Dillon T, Bilec MM, Khanna V. A network-based framework for assessing infrastructure resilience: a case study of the London metro system. Journal of The Royal Society Interface. 2016;13(118), 20160113.

- 27. Cotilla-Sanchez E, Hines PDH, Barrows C, Blumsack S. Comparing the topological and electrical structure of the North American electric power infrastructure. IEEE Systems Journal. 2012;6(4), 616-626.
- 28. Europol. Further investigations into VAT fraud linked to the carbon emissions trading system. Europol. 2010.
- 29. Frunza MC, Guegan D, Lassoudiere A. Missing trader fraud on the emissions market Journal of financial crime. 2011;18(2), 183-194.
- 30. Valente TW, Coronges K, Lakon C, Costenbader E. How correlated are network centrality measures?. Connections (Toronto, Ont.). 2008;28(1), 16.

Table 3. EU ETS network diagnostic: alternative scenarios. Columns labels refer to: number of nodes (#N); number of edges (#E); density (dens); reciprocity (rec); transitivity (trans); diameter (d); assortativity (assort). Centralization measures are indicated with symbol $\langle x \rangle$, where x is the degree (K), the closeness (C), the betweenness (B) or the eigenvector centrality (evcent). The first panel exhibits the No Reassignment scenario, the second panel shows the Proportional scenario, while the last panel reports the Random scenario. Results refer to the period 2005-2012. Source: Authors' own elaborations.

#N	#E	dens.	rec.	trans.	d	assort.	$<\!\!K\!\!>$	$<\!\!K^{In}\!\!>$	$<\!\!K^{Out}\!>$	$\langle C \rangle$	< B >	< evcent >	subset
No Reassignment													
34	635	0.55	0.86	0.82	4	-0.10	0.35	0.37	0.31	0.15	0.04	0.36	All
33	617	0.57	0.86	0.81	3	-0.13	0.35	0.38	0.29	0.15	0.05	0.35	Trade
24	250	0.43	0.87	0.68	2	-0.24	0.50	0.50	0.46	0.23	0.13	0.47	All_PhaseI
34	628	0.54	0.86	0.82	4	-0.09	0.34	0.35	0.32	0.13	0.06	0.36	All_PhaseII
24	249	0.43	0.87	0.68	2	-0.26	0.50	0.51	0.46	0.23	0.13	0.47	Trade_PhaseI
33	610	0.56	0.85	0.81	3	-0.12	0.34	0.36	0.30	0.13	0.06	0.35	Trade_PhaseII
21	147	0.33	0.88	0.59	3	-0.27	0.47	0.50	0.50	0.49	0.19	0.52	Trade_PhaseLPHA
26	374	0.55	0.88	0.70	2	-0.27	0.46	0.46	0.46	0.56	0.07	0.39	Trade_PhaseII_PHA
23	115	0.22	0.61	0.53	5	0.02	0.43	0.45	0.36	0.21	0.24	0.69	Trade_PhaseI_OHA
27	176	0.24	0.77	0.58	4	-0.03	0.52	0.48	0.52	0.10	0.23	0.64	Trade_PhaseII_OHA
Proportional													
34	996	0.86	0.91	1.00	2	0.44	0.08	0.08	0.08	0.03	0.03	0.09	All
33	969	0.89	0.88	1.00	2	-0.08	0.07	0.08	0.08	0.01	0.00	0.09	Trade
24	439	0.76	0.88	0.97	2	0.17	0.17	0.20	0.12	0.08	0.02	0.19	All_PhaseI
34	996	0.86	0.91	1.00	2	0.44	0.08	0.08	0.08	0.03	0.03	0.09	All_PhaseII
24	438	0.76	0.88	0.97	2	0.18	0.17	0.21	0.12	0.08	0.02	0.19	Trade_PhaseI
33	969	0.89	0.88	1.00	2	-0.08	0.07	0.08	0.08	0.01	0.00	0.09	Trade_PhaseII
21	220	0.50	0.85	0.85	3	-0.03	0.40	0.48	0.33	0.51	0.15	0.39	Trade_PhaseLPHA
26	676	1.00	1.00	1.00	1	na	0.00	0.00	0.00	0.00	0.00	0.00	Trade_PhaseII_PHA
23	138	0.26	0.61	0.67	5	0.10	0.40	0.41	0.36	0.19	0.15	0.64	Trade_PhaseLOHA
27	317	0.43	0.87	0.88	3	0.18	0.37	0.32	0.39	0.08	0.10	0.40	Trade_PhaseII_OHA
Random													
34	1122	0.97	0.97	1.00	1	na	0.02	0.03	0.00	0.00	0.00	0.03	All
33	1024	0.94	0.94	1.00	1	na	0.03	0.03	0.03	0.00	0.00	0.03	Trade
24	576	1.00	1.00	1.00	1	na	0.00	0.00	0.00	0.00	0.00	0.00	All_PhaseI
34	1122	0.97	0.97	1.00	1	na	0.02	0.03	0.00	0.00	0.00	0.03	All_PhaseII
24	552	0.96	0.96	1.00	1	na	0.02	0.04	0.00	0.00	0.00	0.04	Trade_PhaseI
33	1024	0.94	0.94	1.00	1	na	0.03	0.03	0.03	0.00	0.00	0.03	Trade_PhaseII
21	420	0.95	0.95	1.00	1	na	0.03	0.00	0.05	0.00	0.00	0.00	Trade_PhaseI_PHA
26	676	1.00	1.00	1.00	1	na	0.00	0.00	0.00	0.00	0.00	0.00	Trade_PhaseII_PHA
23	484	0.91	0.91	1.00	1	na	0.05	0.04	0.04	0.00	0.00	0.05	Trade_PhaseLOHA
27	729	1.00	1.00	1.00	1	na	0.00	0.00	0.00	0.00	0.00	0.00	Trade_PhaseII_OHA

Table 4. Network Centrality Statistics. This table reports the following scenarios: the actual *EU ETS* (I), *No Reassignment* (II), *Proportional* (III), and *Random* (IV). Data refer to Phase II. The first panel includes both internal and external transactions (*Trade* specification). The second panel refers to PHAs only. Notice that due to the presence of some registries poorly connected with the rest of the system, centrality measures for some nodes appear higher than those for the others. Source: Authors' own elaborations.

ty	≥		
entrali	=	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
sdor c	_	893 0 893 0 895 0 895 0 895 0 895 0 899 0 899 0 898 0 1000 0	723 1 723 1 723 1 723 1 721 1 721 1 721 1 722 1 722 1 722 1 722 1 722 1 722 1 722 1 721 1 722 1 72
sigenu		00 00 00 00 00 00 00 00 00 00	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
-		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
88			
eennes	=	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
betw	=	$\begin{array}{c} 0.14\\ 0.16\\$	$\begin{array}{c} 0.08\\ 0.01\\ 0.02\\ 0.00\\$
	-	$\begin{array}{c} 1.000\\ 0.036\\ 0.0208\\ 0.0208\\ 0.0203\\ 0.0203\\ 0.0203\\ 0.0203\\ 0.0217\\ 0.0217\\ 0.0217\\ 0.0217\\ 0.0223\\ 0$	$\begin{array}{c} 1.000\\ 0.036\\ 0.036\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.000\\ 0.$
	≥	$\begin{array}{c} 1.000\\ 1.$	$\begin{array}{c} 1000\\ 1$
188	≡	1,000 1,0000 1,0000 1,0000 1,00000000	1,000 1,0000 1,00000000
dosen	=	24451 24252 24252 24252 24252 24252 24252 24252 24252 24252 2444 2421 2444 2421 2444 2444	7.7714 0.641 1.7758 1.7758 1.7758 1.7758 1.962 1.962 1.962 1.962 1.962 1.962 1.595 1
	_	$\begin{array}{c} 8.805 \\ 5.733 \\ 6.673 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-	2	1011 1011	011 011 011 011 011 011 011 011 011 011
ngth	=	0006 0017 0027 0028 0028 0000 0000 0000 0000 000	0000 0000 0000 0000 0000 0000 0000 0000 0000
- stre		0006 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ont		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129 129 129 121
-	_	$\left \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
4	=	8 1 4 9 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
strengt		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
in - i	=	$\begin{array}{c} 0.001\\ 0.0013\\ 0.0013\\ 0.0023\\ 0.0023\\ 0.0001\\ 0.0003\\ $	$\begin{array}{c} 0.005\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.$
	-	$\begin{array}{c} 0.291\\ 0.006\\ 0.003\\ 0.001\\ 0.000\\ 0.$	$\begin{array}{c} 0.128\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.000\\ 0.$
	2	0.0112 0.0102 0.0102 0.0103 0.0103 0.017 0.017 0.017 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0116 0.0117 0.0000000000	0.013 0.013 0.012 0.012 0.0147 0.0147 0.0147 0.014 0.014 0.010 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.0110 0.0100 0.0100 0.0100 0.0100 0.00100 0.0010 0.00100 0.00100 0.00100000000
gth	≡	0.0017 0.0017 0.0017 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0011 0.00120000000000	$\begin{array}{c} 0.005\\ 0.005\\ 0.005\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.002\\ 0.0$
stren	=	0001 0002 0002 0002 0002 0002 0002 0002	0.002 0.001 0.002 0.002 0.002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.00000000
	_	2,234 2,0000	$\begin{array}{c} 1,128\\ 0.004\\ 0.004\\ 0.001\\ 0.003\\ 0.003\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.000\\ 0.002\\ 0.$
9	2		888888888888888888888888888888888888888
degre	=	******	* * * * * * * * * * * * * * * * * * * *
out -	=	$\begin{smallmatrix} & & & 2\\ & & & & 2\\ & & & & & 2\\ & & & &$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
-	-		
rree			ରିରିରିରିରିରିରିରିରିରିରିରିରିରିରିରିରିରିରି
- deg		えの「しのの」、 、 、 、 、 、 、 、 、 、 、 、 、 、	900524025085085050585520509095
'n.]	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
-	≥	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
ээ.	=	21 22222222222222222222222222222222222	
degr	=	4 8 8 4 4 2 4 9 4 2 5 5 7 8 - 8 2 8 8 8 7 8 7 8 4 8 4 8 4 8 9 7 8 9 8 7 5 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	8 8 2 8 8 8 8 8 9 9 9 9 1 8 8 1 8 9 8 8 8 8 8
	-	$\begin{smallmatrix} & 6 \\ & $	$\begin{smallmatrix} 55\\ 55\\ 52\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53$
		Dig	
		in in its	$\rightarrow \tilde{B}$
		Y epubl k n Coi n Coi n Coi n Coi n Coi n Coi n und n und	fingd k knydd stein a a nurg nds
des		tited I stria stria gium prus cch Rk mmark prus bruc more many sece uggary via and y via and y via and via and trent nore via via via via via via via via via via	ly P. P. stria. gium characteria gium characteria gium characteria gium characteria gium cenbul via and via via and via via via via via via via via
Να		Una Bell, Una Correction Correcti	On Uran Bell Bell Bull Bull Bull Hur Hur Hur Hur Hur Nor Nor Nor Nor Slow Ssow Ssow Ssow Ssow Ssow Ssow Ssow Ss

S1 Fig. In- vs. out- strength Distributions. Plot shows the distributions of in-strength vs. out-strength in Phase II. Panel a) is the *All* case; b) is the *Trade* case; c) is the *Trade* case for only OHAs; d) is the *Trade* case for only PHAs. Colors refer to: the actual EU ETS (designated with purple); the *No reassignment* case (in red); the *Proportional case* (in green); and the *Random* case (in blue). Only very central nodes are highlighted in color, while the orthogonal dotted lines refer to UK under the actual EU ETS network and are introduced as a reference point. Source: Authors' own elaborations.

