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This paper considers the parameter estimation for linear time-invariant (LTI) systems in an input-output setting with output error
(OE) time-delay model structure. The problem of missing data is commonly experienced in industry due to irregular sampling,
sensor failure, data deletion in data preprocessing, network transmission fault, and so forth; to deal with the identification of
LTI systems with time-delay in incomplete-data problem, the generalized expectation-maximization (GEM) algorithm is adopted
to estimate the model parameters and the time-delay simultaneously. Numerical examples are provided to demonstrate the
effectiveness of the proposed method.

1. Introduction

The advanced process control theories have enjoyed rapid
development in the past several decades to meet the grow-
ing demands of closed-loop system performances, such as
improved process safety and efficiency of plant operation,
consistent product quality, and economic optimization [1].
These control strategies have improved the process automa-
tion and stability through providing control solutions for the
process operated under the abnormal working conditions,
such as process fault [2–5], network transmission delay [6],
data packet dropouts [7], and modeling error. Generally,
the implementation of these control strategies relies on the
understanding of the process dynamics and the availability of
an accuratemathematical model of the process. In view of the
difficulties and complexities imposed by modeling using first
principle method, the data-driven modeling method, in
which the process model is retrieved from the process data,
has become a main modeling method.

Typically, the process data used in process modeling
are generated by performing an identification experiment,
in which a testing signal is designed and utilized to excite
the process. Most of the conventional parameter estima-
tion methods, such as prediction error method (PEM),

instrumental variable (IV) method, and subspace method,
assume that the identification data are sampled regularly
and recorded properly. However, this is not always true in
practical industry. For example, in the development of an
inferential model for the sulfur content in the gas oil product,
the sulfur concentration cannot be measured directly and
the lab analysis is required which takes a long time. The
process variable can be sampled in every minute, but the
sulfur concentration is only available in every twelve hours.
Another example is the industrial process with data trans-
mission through the network. The recorded process data
are corrupted by many network-induced problems, such as
transmission delay and packet dropout ormissing.Therefore,
parameter estimation with irregular data has not been exten-
sively investigated in the literature.

Time-delays are commonly encountered in various engi-
neering systems, such as chemical processes, mechanical
systems, network control systems, transmission line, and
economic systems [8]. Since the existence of time-delay
usually causes performance degradation of the inferential
model and is frequently a source of instability of the closed-
loop system, it should be handled carefully in the modeling
process. Common methods to estimate the time-delays are
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nonparametric methods (e.g., step test or correlation anal-
ysis) and grid searching method. For example, Wang and
Zhang [9] considered the robust identification problems of
linear continuous time-delay systems from step responses. A
linear regression equation was derived from the solution of
the output time response and its various-order integrals and
solved by using IV-least squares (LS)method.The parameters
of the transfer function were then recovered from the LS
solution. Weyer [10] considered to build a model for the
open water channel. The model parameters were estimated
using the grid searching method in which one model was
established for each time-delay in a range. The final model
was selected as the model which gave the best prediction per-
formance for a validation data set. The time-delay estimation
methods mentioned above are to estimate the time-delay and
model parameters in a separate way.

Missing data problem is very common in process indus-
try. A special example is the irregularly sampling system.
Many critical parameters, such as the product concentration,
steam quality, and 90% boiling point, cannot be measured
directly by using the sensors.These parameters are measured
through lab analysis, so only the slow rate data are available.
However, the process variables, such as the temperature,
pressure, and flow rate, can be measured on-line in fast rate
by using the sensors.Therefore, we can treat the data samples
between the slow rate data as missing data. Another example
is the network control system in which data transmit via the
wireless network or internet. Data missing occurs due to data
packet dropout or missing. Other reasons for missing data
are sensor fault, data recording system malfunction, and so
forth. Several methods have been reported in the literature
to handle missing data problem in system identification.
For example, F. Ding and J. Ding [11] proposed an auxiliary
model-based approach to cope with the problems of parame-
ter estimation and output estimation with irregularly missing
output data using the PEM method. The outputs of the
auxiliary model were used in the identification process. Zhu
et al. [12] considered the identification of systems with slowly
and irregularly sampled output data. The output error
method was employed to estimate the fast rate model based
on the fast input and slow output data. However, themethods
mentioned above just used part of the process data, which
may lead to information missing. Moreover, the statistical
properties of the model parameters and the process noise
cannot be given in these methods.

The work introduced in this paper aims at handling
the identification problem of the LTI systems with missing
output data in the presence of time-delay. The identification
problem is formulated under the scheme of the generalized
expectation-maximization (GEM) algorithm and the time-
delay and missing output data are handled simultaneously.
The GEM algorithm consists of expectation step (E-step) and
maximization step (M-step). In theM-step, themaximization
problem is transformed into an equivalent minimization
problem and this problem is solved by using a general
numerical optimization algorithm.

The rest of this paper is organized as follows. The prob-
lem statement is presented in Section 2. A brief revisit of
the GEM algorithm and the mathematical formulation of

the identification of LTI time-delay systems with incomplete
data set are given in Section 3. Numerical examples are pre-
sented in Section 4 to show the effectiveness of the proposed
method. The conclusions are given in Section 5.

2. Problem Statement

Consider the LTI system described by the following output
error (OE) time-delay model:

𝑦
𝑡
= 𝐺 (𝑧

−1
) 𝑢
𝑡−𝜏
+ 𝑒
𝑡
, (1)

where 𝜏 is the time-delay which is assumed to be integer
multiples of the sampling period, 𝑒

𝑡
is the Gaussian white

noise with zero mean and variance 𝜎2, and 𝑦
𝑡
and 𝑢

𝑡
are the

output and input, respectively. The transfer function 𝐺(𝑧−1)
has the following form:

𝐺(𝑧
−1
) =

∑
𝑛𝑏

𝑖=1
𝑏
𝑖
𝑧
−𝑖

1 + ∑
𝑛𝑎

𝑖=1
𝑎
𝑖
𝑧−𝑖
. (2)

Here, we assume that the model orders 𝑛
𝑎
and 𝑛

𝑏
are known

a priori and the time-delay 𝜏 is uniformly distributed in a
known range of [𝑑

1
, 𝑑
2
].

The identification data {𝑦
𝑡
, 𝑢
𝑡
}
𝑡=1,2,...,𝑁

are collected. We
denote {𝑦

𝑡
}
𝑡=1,2,...,𝑁

as𝑌 and {𝑢
𝑡
}
𝑡=1,2,...,𝑁

as𝑈. Since part of the
output data are missing completely at random (MCAR), the
output data set 𝑌 can be divided into 𝑌obs = {𝑦𝑡}𝑡=𝑡1 ,...,𝑡𝛼 and
𝑌mis = {𝑦𝑡}𝑡=𝑚1 ,...,𝑚𝛽 . Therefore, the identification problem is
to estimate the parameters 𝜃 = {𝑎

1
, . . . , 𝑎

𝑛𝑎
, 𝑏
1
, . . . , 𝑏

𝑛𝑏
}, the

noise variance 𝜎2, and the time-delay 𝜏 based on the identifi-
cation data 𝑌obs and 𝑈.

3. Parameter Estimation Using
the GEM Algorithm

3.1. GEMAlgorithmRevisit. TheGEMalgorithm is a general-
purpose iterative optimization algorithm to derive the max-
imum likelihood (ML) estimate and it has attracted great
attentions of the researcher due to its flexibility in handling
themissing data or hidden state [13]. Denote themissing data
set by 𝐶mis and the observed data set by 𝐶obs. The main idea
of the GEM algorithm is that, instead of optimizing the likeli-
hood of the observed 𝑌obs, the conditional expectation of the
complete data likelihood function with respect to themissing
data set is calculated in the E-step and the maximization
problem is solved in the M-step. The procedures of the GEM
algorithm to calculate the ML estimate can be described as
follows [13]:

E-step: given the 𝐶obs and the parameter estimate Θ𝑠 in
previous iteration, the 𝑄-function can be calculated by

𝑄 (Θ | Θ
𝑠
) = 𝐸
𝐶mis|𝐶obs ,Θ

𝑠 {log 𝑝 (𝐶mis, 𝐶obs | Θ)} , (3)

M-step: find theΘ𝑠+1 to increase𝑄(Θ | Θ𝑠) over its value
at Θ𝑠; that is,

𝑄(Θ
𝑠+1
| Θ
𝑠
) ⩾ 𝑄 (Θ

𝑠
| Θ
𝑠
) . (4)
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The E-step and M-step alternate until the relative change
of the parameter estimate between neighboring iterations is
smaller than a prespecified arbitrary small constant or the
maximal iteration number is achieved.

3.2. LTI Time-Delay System Identification withMissing Output
Using GEM Algorithm. Here, we treat the time-delay 𝜏

as a hidden state variable. The observed data set 𝐶obs is
constructed as 𝐶obs = {𝑌obs, 𝑈} and the missing data set 𝐶mis
is constructed as 𝐶mis = {𝑌mis, 𝜏}. The parameter vector Θ is
constructed as Θ = {𝜃, 𝜎2}.

Based on the Bayesian property, the likelihood function
of the complete data set can be decomposed into

𝑝 (𝐶mis, 𝐶obs | Θ) = 𝑝 (𝑌,𝑈, 𝜏 | Θ)

= 𝑝 (𝑌 | 𝑈, 𝜏, Θ) 𝑝 (𝜏 | 𝑈,Θ) 𝑝 (𝑈 | Θ) .

(5)

The term 𝑝(𝑌 | 𝑈, 𝜏, Θ) can be further decomposed into
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, . . . , 𝑦

1
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1
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𝑁
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1
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𝑁
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1
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𝑁−1
, . . . , 𝑦

1
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𝑁
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1
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=

𝑁

∏

𝑡=1

𝑝 (𝑦
𝑡
| 𝑦
𝑡−1
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1
, 𝑢
𝑁
, . . . , 𝑢

1
, 𝜏, Θ) .

(6)

Based on (1) and (2), 𝑦
𝑡
depends only on the previous input

sequence 𝑢
𝑡−1 : 1

= {𝑢
𝑡−1
, . . . , 𝑢

1
}, the time-delay 𝜏, and the

parameter vector Θ. Therefore, (6) can be rewritten as

𝑝 (𝑌 | 𝑈, 𝜏, Θ) =

𝑁

∏

𝑡=1

𝑝 (𝑦
𝑡
| 𝑢
𝑡−1 : 1

, 𝜏, Θ) . (7)

Since the time-delay 𝜏 is uniformly distributed in the
range [𝑑

1
, 𝑑
2
], the probability of 𝜏 taking any value in this

range is a constant. Since the input𝑈 ismeasurable data and it
is independent of the parameter vector Θ, the term 𝑝(𝑈 | Θ)

is a constant. Therefore, the last two terms of (5) will not
play a role in the following derivations. The complete data
likelihood function can be further written as

𝑝 (𝑌,𝑈, 𝜏 | Θ) =

𝑁

∏

𝑡=1

𝑝 (𝑦
𝑡
| 𝑢
𝑡−1 : 1

, 𝜏, Θ)𝐶
1
, (8)

where 𝐶
1
= 𝑝(𝜏 | 𝑈,Θ)𝑝(𝑈 | Θ).

Therefore, the conditional expectation of the log complete
data density 𝑄(Θ | Θ𝑠) in (3) can be written as

𝑄 (Θ | Θ
𝑠
)

= 𝐸
𝑌mis ,𝜏|𝐶obs ,Θ

𝑠 {log 𝑝 (𝑌,𝑈, 𝜏 | Θ)}

= 𝐸
𝑌mis ,𝜏|𝐶obs ,Θ

𝑠 {

𝑁

∑

𝑡=1

log𝑝 (𝑦
𝑡
| 𝑢
𝑡−1 : 1

, 𝜏, Θ) + log𝐶
1
}

= 𝐸
𝑌mis ,𝜏|𝐶obs ,Θ

𝑠 {

𝑚𝛽

∑

𝑡=𝑚1

log𝑝 (𝑦
𝑡
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+

𝑡𝛼
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log𝑝 (𝑦
𝑡
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, 𝜏, Θ) + log𝐶
1
} .

(9)

The expectation is firstly takenwith respect to the discrete
variable 𝜏; then we have
𝑄 (Θ | Θ

𝑠
)

= 𝐸
𝑌mis|𝐶obs ,𝜏,Θ

𝑠

{

{

{
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+ log 𝐶
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}
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.

(10)

The expectation is then taken with respect to the contin-
uous variable 𝑌miss, so we have

𝑄 (Θ | Θ
𝑠
) =

𝑑2

∑

𝑑=𝑑1
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𝑠
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𝑠
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𝑡
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𝑑2
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1
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(11)
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In order to calculate 𝑄(Θ | Θ
𝑠
), the unknown terms

should be calculated firstly. Consider

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

= 𝑝 (𝜏 = 𝑑 | 𝑌obs, 𝑈, Θ
𝑠
)

=
𝑝 (𝑌obs | 𝑈, 𝜏 = 𝑑,Θ

𝑠
) 𝑝 (𝜏 = 𝑑 | 𝑈,Θ

𝑠
)

∑
𝑑2

𝑑=𝑑1
𝑝 (𝑌obs | 𝑈, 𝜏 = 𝑑, Θ

𝑠) 𝑝 (𝜏 = 𝑑 | 𝑈,Θ
𝑠
)

=

∏
𝑡𝛼

𝑡=𝑡1
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𝑡
| 𝑢
𝑡−1 : 1

, 𝜏 = 𝑑, Θ
𝑠
) 𝑝 (𝜏 = 𝑑)

∑
𝑑2

𝑑=𝑑1
∏
𝑡𝛼

𝑡=𝑡1
𝑝 (𝑦
𝑡
| 𝑢
𝑡−1 : 1

, 𝜏 = 𝑑, Θ𝑠) 𝑝 (𝜏 = 𝑑)

=

∏
𝑡𝛼

𝑡=𝑡1
𝑝 (𝑦
𝑡
| 𝑢
𝑡−1 : 1

, 𝜏 = 𝑑, Θ
𝑠
)

∑
𝑑2

𝑑=𝑑1
∏
𝑡𝛼

𝑡=𝑡1
𝑝 (𝑦
𝑡
| 𝑢
𝑡−1 : 1

, 𝜏 = 𝑑, Θ𝑠)

,

∫ 𝑝 (𝑦
𝑡
| 𝐶obs, 𝜏 = 𝑑, Θ

𝑠
) log𝑝 (𝑦

𝑡
| 𝑢
𝑡−1 : 1

, 𝜏 = 𝑑, Θ) 𝑑𝑦
𝑡

= ∫𝑝 (𝑦
𝑡
| 𝐶obs, 𝜏 = 𝑑, Θ

𝑠
) log 1

√2𝜋𝜎2

× exp
{

{

{

−

(𝑦
𝑡
− 𝐺 (𝑧

−1
) 𝑢
𝑡−𝑑
)
2

2𝜎2

}

}

}

𝑑𝑦
𝑡

= −
1

2
log (2𝜋𝜎2) − 1

2𝜎2
∫𝑝 (𝑦

𝑡
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𝑠
)

× (𝑦
𝑡
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) 𝑢
𝑡−𝑑
)
2

𝑑𝑦
𝑡
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1

2
log (2𝜋𝜎2) − 1

2𝜎2
((𝜎
𝑠
)
2

+ (𝐺
𝑠
(𝑧
−1
) 𝑢
𝑡−𝑑
)
2

)

+
1

𝜎2
(𝐺 (𝑧
−1
) 𝑢
𝑡−𝑑
) (𝐺
𝑠
(𝑧
−1
) 𝑢
𝑡−𝑑
)

−
1

2𝜎2
(𝐺 (𝑧
−1
) 𝑢
𝑡−𝑑
)
2

= −
1

2
log (2𝜋𝜎2)

−
1

2𝜎2
((𝜎
𝑠
)
2

+ (𝐺 (𝑧
−1
) 𝑢
𝑡−𝑑
− 𝐺
𝑠
(𝑧
−1
) 𝑢
𝑡−𝑑
)
2

) ,

𝑝 (𝑦
𝑡
| 𝑢
𝑡−1 : 1

, 𝜏 = 𝑑, Θ)

=
1

√2𝜋𝜎2
exp

{

{

{

−

(𝑦
𝑡
− 𝐺 (𝑧

−1
) 𝑢
𝑡−𝑑
)
2

2𝜎2

}

}

}

.

(12)

Therefore, the 𝑄-function can be rewritten as
𝑄 (Θ | Θ

𝑠
)

=

𝑑2

∑

𝑑=𝑑1

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

×

𝑚𝛽

∑

𝑡=𝑚1

{−
1

2
log (2𝜋𝜎2) − 1

2𝜎2

× ((𝜎
𝑠
)
2

+ (𝐺 (𝑧
−1
) 𝑢
𝑡−𝑑
− 𝐺
𝑠
(𝑧
−1
) 𝑢
𝑡−𝑑
)
2

) }

+

𝑑2

∑

𝑑=𝑑1

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

×

𝑡𝛼

∑

𝑡=𝑡1

{−
1

2
log (2𝜋𝜎2) − 1

2𝜎2
(𝑦
𝑡
− 𝐺 (𝑧

−1
) 𝑢
𝑡−𝑑
)
2

}

+ log𝐶
1
.

(13)

In the M-step of the GEM algorithm, the unknown
parameters should be estimated to increase the𝑄-function by
solving an optimization problem. Taking the gradient of the
𝑄-function (13) with respect to the 𝜎2 and setting it to zeros,
we have

�̂�
2
=
1

𝑁

{

{

{

𝑑2

∑

𝑑=𝑑1

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

×

𝑚𝛽

∑

𝑡=𝑚1

((𝐺 (𝑧
−1
) 𝑢
𝑡−𝑑
− 𝐺
𝑠
(𝑧
−1
) 𝑢
𝑡−𝑑
)
2

+ (𝜎
𝑠
)
2

)

+

𝑑2

∑

𝑑=𝑑1

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

×

𝑡𝛼

∑

𝑡=𝑡1

(𝑦
𝑡
− 𝐺 (𝑧

−1
) 𝑢
𝑡−𝑑
)
2}

}

}

.

(14)

Substituting �̂�2 into the 𝑄-function (13), we get

𝑄 (Θ | Θ
𝑠
)

= −
𝑁

2
log (2𝜋) − 𝑁

2

−
𝑁

2
log
{

{

{

1

𝑁

[

[

𝑑2

∑

𝑑=𝑑1

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

× (

𝑚𝛽

∑

𝑡=𝑚1

((𝐺 (𝑧
−1
) 𝑢
𝑡−𝑑
− 𝐺
𝑠
(𝑧
−1
) 𝑢
𝑡−𝑑
)
2

+(𝜎
𝑠
)
2

)

+

𝑡𝛼

∑

𝑡=𝑡1

(𝑦
𝑡
− 𝐺 (𝑧

−1
) 𝑢
𝑡−𝑑
)
2

)]

]

}

}

}

.

(15)
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Based on the monotonicity of the log function, the problem
is transformed into optimizing the following cost function:

𝐽 (𝜃 | 𝜃
𝑠
)

=
1

𝑁

[

[

𝑑2

∑

𝑑=𝑑1

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

× (

𝑚𝛽

∑

𝑡=𝑚1

((𝐺 (𝑧
−1
) 𝑢
𝑡−𝑑
− 𝐺
𝑠
(𝑧
−1
) 𝑢
𝑡−𝑑
)
2

+ (𝜎
𝑠
)
2

)

+

𝑡𝛼

∑

𝑡=𝑡1

(𝑦
𝑡
− 𝐺 (𝑧

−1
) 𝑢
𝑡−𝑑
)
2

)]

]

.

(16)

Here, we introduce the variable𝑥𝜏
𝑡
denoting the noise-free

output with time-delay 𝜏. Based on (1) and (2), we have

𝑥
𝜏

𝑡
=

∑
𝑛𝑏

𝑖=1
𝑏
𝑖
𝑧
−𝑖

1 + ∑
𝑛𝑎

𝑖=1
𝑎
𝑖
𝑧−𝑖
𝑢
𝑡−𝜏
= (𝜙
𝜏

𝑡−𝜏
)
𝑇

𝜃, (17)

where 𝜙𝜏
𝑡−𝜏

= [−𝑥
𝜏

𝑡−1
, . . . , −𝑥

𝜏

𝑡−𝑛𝑎
, 𝑢
𝑡−𝜏−1

, . . . , 𝑢
𝑡−𝜏−𝑛𝑏

]
𝑇. There-

fore, the cost function can be rewritten as

𝐽 (𝜃 | 𝜃
𝑠
)

=
1

𝑁

[

[

𝑑2

∑

𝑑=𝑑1

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

× (

𝑚𝛽

∑

𝑡=𝑚1

(((𝜙
𝑑

𝑡−𝑑
)
𝑇

𝜃 − (𝑥
𝑑

𝑡
)
𝑠

)

2

+ (𝜎
𝑠
)
2

)

+

𝑡𝛼

∑

𝑡=𝑡1

(𝑦
𝑡
− (𝜙
𝑑

𝑡−𝑑
)
𝑇

𝜃)

2

)]

]

,

(18)

where (𝑥𝑑
𝑡
)
𝑠

= (𝜙
𝑑

𝑡−𝑑
)
𝑇

𝜃
𝑠. However, the cost function

(18) cannot be optimized directly due to the unmeasurable
{𝑥
𝑑

𝑡
}
𝑡=1,...,𝑁, 𝑑=𝑑1 ,...,𝑑2

. Here, we adopt the auxiliary model prin-
ciple and the auxiliarymodel can be constructed based on the
estimates obtained in the previous iteration. That is,

𝑥
𝜏

𝑡
=

∑
𝑛𝑏

𝑖=1
�̂�
𝑖
𝑧
−𝑖

1 + ∑
𝑛𝑎

𝑖=1
𝑎
𝑖
𝑧−𝑖
𝑢
𝑡−𝜏
= (𝜙
𝜏

𝑡−𝜏
)
𝑇

𝜃, (19)

where 𝜙𝜏
𝑡−𝜏

= [−𝑥
𝜏

𝑡−1
, . . . , −𝑥

𝜏

𝑡−𝑛𝑎
, 𝑢
𝑡−𝜏−1

, . . . , 𝑢
𝑡−𝜏−𝑛𝑏

]
𝑇. There-

fore, the cost function (18) with 𝜙𝜏
𝑡−𝜏

substituted by 𝜙𝜏
𝑡−𝜏

can
be optimized by using the damped Newton algorithm,

𝜃
𝑠+1
= 𝜃
𝑠
− [𝑅
𝑠
]
−1

𝐽

(𝜃
𝑠
| 𝜃
𝑠
) , (20)

where

𝐽

(𝜃
𝑠
| 𝜃
𝑠
)

=
2

𝑁

[

[

𝑑2

∑

𝑑=𝑑1

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

× (

𝑚𝛽

∑

𝑡=𝑚1

𝜙
𝑑

𝑡−𝑑
((𝜙
𝑑

𝑡−𝑑
)
𝑇

𝜃
𝑠
− (𝑥
𝑑

𝑡
)
𝑠

)

+

𝑡𝛼

∑

𝑡=𝑡1

𝜙
𝑑

𝑡−𝑑
((𝜙
𝑑

𝑡−𝑑
)
𝑇

𝜃
𝑠
− 𝑦
𝑡
))] ,

𝑅
𝑠
=
2

𝑁

[

[

𝑑2

∑

𝑑=𝑑1

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
)

𝑁

∑

𝑡=1

𝜙
𝑑

𝑡−𝑑
(𝜙
𝑑

𝑡−𝑑
)
𝑇
]

]

+ 𝜆𝐼,

(21)

where 𝜆 is a constant.
The time-delay 𝜏 can be selected as the delay in the range

with maximal posterior probability. That is,

𝜏 = argmax
𝑑

𝑝 (𝜏 = 𝑑 | 𝐶obs, Θ
𝑠
) . (22)

The E-step andM-step alternate until the convergence condi-
tion of the GEM algorithm is met.

4. Simulation Examples

4.1. A Numerical Simulation Example. Consider the follow-
ing LTI time-delay system described by the OE time-delay
model:

𝑦
𝑡
=

0.3𝑧
−1

1 − 0.7𝑧−1
𝑢
𝑡−3
+ 𝑒
𝑡
. (23)

The input data and output data are generated by simulation
and the noise 𝑒

𝑡
with zero mean and variance 0.01 is added

to the output. The input and output data are shown in
Figure 1. In the simulation, 12.5% output data are randomly
missing. The parameter range of the time-delay is set to
[1, 5]. The method proposed in this paper is used to estimate
the parameters and the time-delay. The parameter estimate
trajectories of the model parameters and the noise variance
are shown in Figures 2 and 3, respectively. The estimated
time-delay is 3 which is consistent with the true time-
delay. To further verify the effectiveness of the proposed
method, the simulations are also performed with 25% output
data missing and 50% output data missing. The estimated
parameters after 13 iterations are summarized in Table 1. It
can be seen from these figures and the table that the proposed
GEM algorithm has a good identification performance.

4.2. The Continuous Stirred Tank Reactor. The Continuous
Stirred Tank Reactor (CSTR) is a benchmark example used
to test the performances of different modeling and control
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Figure 1: The input and output data.

Table 1: Estimated parameters after 13 iterations.

True value 𝑎 = −0.7 𝑏 = 0.3 𝜏 = 3 𝜎
2
= 0.01

Proportion of missing output 𝑎 𝑏 𝜏 𝜎
2

Full data set −0.695 0.3026 3 0.0114
12.5% −0.694 0.3042 3 0.0116
25% −0.7012 0.2994 3 0.0121
50% −0.6979 0.3017 3 0.0124
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Figure 2: The estimated model parameters in each iteration.

algorithms and the first principle model of the CSTR is
described as [14]

𝑑𝐶
𝐴

𝑑𝑡
=
𝑞

𝑉
(𝐶
𝐴0
− 𝐶
𝐴
) − 𝑘
0
𝐶
𝐴
exp(−𝐸

𝑅𝑇
) ,

𝑑𝑇

𝑑𝑡
=
𝑞

𝑉
(𝑇
0
− 𝑇) −

(Δ𝐻) 𝑘
0
𝐶
𝐴

𝜌𝐶
𝑝

exp(−𝐸
𝑅𝑇
)

+

𝜌
𝑐
𝐶
𝑝𝑐

𝜌𝐶
𝑝
𝑉
𝑞
𝑐
{1 − exp( −ℎ𝐴

𝑞
𝑐
𝜌𝐶
𝑝

)} (𝑇
𝑐0
− 𝑇) ,

(24)

where the product concentration 𝐶
𝐴
and the temperature 𝑇

are output variables and the coolant flow rate 𝑞
𝑐
is the input
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Figure 3: The estimated noise variance in each iteration.

variable. The steady state values of the process variables can
be found in Gopaluni [14]. In this simulation, the CSTR is
operated at a steady state working point which is at 𝑞

𝑐
=

97 L/min, 𝐶
𝐴
= 0.0795mol/L, and 𝑇 = 443.4566K. The

task here is to build a first-order model between 𝐶
𝐴
and 𝑞

𝑐
.

The input and output data are generated through simulation
and the noise with zero mean and variance 1 × 10

−7 is
added to the output data. Since time is needed tomeasure the
concentration𝐶

𝐴
, so themeasurement delaywith 1.5minutes

is also added to the output data. The input and output data is
shown in Figure 4. In this simulation, 25% output data are
randomly missing and the parameter range of the time-delay
is set to [0.9, 2.1]. The proposed GEM algorithm is used to
estimate the unknown parameters.The estimated parameters
are 𝑎 = −0.468, �̂� = 0.0015, �̂�2 = 1.5 × 10

−7, and 𝜏 = 1.5.
The self-validation and the cross-validation results are shown
in Figures 5 and 6. It can be seen from these results that the
proposed method has a good identification performance and
the estimated model can capture the dynamic behavior of the
CSTR.
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Figure 4: The input and output data.
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Figure 5:The self-validation results.The blue line is the real process
data and the red line is the simulated output of the estimated model.
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Figure 6: The cross-validation results. The blue line is the real
process data and the red line is the simulated output of the estimated
model.

5. Conclusion

This paper considers the identification problem of LTI sys-
tems with irregular data set. The time-delay and the missing

data are commonly encountered problems in process indus-
try and the existence of these problems makes the process
modeling a challenging task.The identification problem with
incomplete data set in the presence of time-delay is formu-
lated under the scheme of the GEM algorithm and the model
parameters and the time-delay are estimated simultaneously
in this algorithm. Numerical examples are presented to
demonstrate the efficacy of the proposed method.
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