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Abstract—With the rapid growth of genomic data, the need
for scalable data mining algorithms has increased. Frequent
contiguous sequence mining is a technique that can help
biologists to better understand the function and structure of
our DNA, by capturing the common characteristics among
related sequences. Many sequence mining algorithms have been
developed over time. However, most of them suffer from scaling
issues when dealing with big data or give no warranty for the
completeness of their result. In this paper, we propose a dis-
tributed sequential pattern mining algorithm implemented on
Apache Spark. Specifically, the algorithm exploits the Apriori
Property and information about each patterns location within
the original sequence, to drastically reduce the number of
candidates at each iteration. Experimental results on real-world
datasets confirm our performance expectations, showing a
better scalability when compared to other distributed solutions.

Keywords-Big Data; data mining; bioinformatics; high per-
formance computing; sequential pattern mining; MapReduce;

I. INTRODUCTION

Nowadays, sequence pattern mining (SPM), which finds
frequent subsequences as patterns in a database of se-
quences, has become a fundamental data mining technique
for extracting interesting patterns from a variety of data
in different domains. Popular applications of SPM aim to
predict, for instance, the customer behaviour, through the
analysis of the purchased items1 or the clickstream produced
by customers while surfing a website. Other challenging
applications can be found in bioinformatics, where huge
amounts of biological sequences (e.g., DNA sequences2) can
be processed to identify, for instance, the genetic compo-
nents of a variety of diseases (e.g. cancer).

In bioinformatics, terabytes of DNA sequences can now
be generated within a few hours with the use of next genera-
tion sequencing (NGS) technologies such as Illumina HiSeq
X and Illumina Genome Analyzer. Frequently recurring
patterns, called motifs, are found inside the DNA sequences.
These sequences may be present because they have been
conserved due to some mediating important biological func-
tions. Sequence motifs are becoming increasingly important

*These authors contributed equally to this work.
1Market Basket Analysis
2DNA stands for deoxyribonucleic acid and it is made of a very long

sequence of 4 nucleotides that can be represented with the characters A
(Adenine), C (Cythosine), G (Guanine) and T (Thymine)

in the analysis of gene regulation, classification (using the
frequencies as features for unsupervised learning methods)
and also in drug design. Even thought several efficient SPM
algorithms have been developed during the years, most of
them are dated and lack of parallel implementations that suit
the needs of the modern “big data” phenomenon.

In this paper we present DLA3, a parallel and scalable
algorithm for frequent continuous pattern mining, imple-
mented on top of Apache Spark4. DLA mixes the philosophy
and scalability of the popular WordCount problem’s solution
with the efficiency brought by location-based techniques
for mining large sequence databases. Our location-based
approach keeps track of the positions of each candidate
frequent pattern within the original database of sequences.
The location information associated to frequent patterns
of length n is then used to efficiently generate candidate
patterns of length n + 1. Since the expression ”sequential
pattern mining” addresses several computational problems,
we provide an informal definition of the SPM problem
solved by our algorithm through the following statement:
given a sequence database (e.g. a database of strings) we
aim to discover frequent contiguous sub-sequences (e.g. sub-
strings), satisfying a predefined threshold.

In bioinformatics, sequences are usually defined over
small alphabets. Hence, the identification of patterns from
long genomic sequences requires flexible constraints, such
as the definition of a minimum and maximum length for the
pattern or a lower bound for the number of occurrences of
a pattern within the database.

The rest of this paper is organized as follows: in Section
I.A we present and overview of the existing SPM algorithms,
then in Section II we provide a formal definition of the
problem and the Apriori property while in Section III we
describe the algorithm in detail, providing the example of
execution on a small dataset. In Section IV we evaluate
the performance of the algorithm and compare it with
the performance of another parallel algorithm based on a
different approach. Section V draws conclusions and closes
the manuscript.

3The acronym comes from Distributed, Location-based, Apriori-based
4https://spark.apache.org/
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A. Literature review

In this Section, we review the sequential pattern mining
techniques designed for running on a single machine as
well as distribution-based and cloud-based methods. It is
possible to classify the traditional sequence mining methods
into Apriori-based and pattern growth-based algorithms.

AprioriAll [1] is a level wise search algorithm based on
the idea that as soon as an itemset is known to be infrequent,
none of its super-sets has to be considered anymore [2]. Well
known Apriori based algorithms are: GSP [3], SPADE [4],
SPAM [5]. All the above algorithms are for small datasets
that can fit in memory on a single machine and may not
be suitable for big data mining in which datasets are too
big to fit in memory or in a single node. FreeSpan [6]
and PrefixSpan [7] are pattern growth-based algorithms.
The general idea of PrefixSpan (Prefix-projected Sequential
pattern mining), is to examine only the prefix subsequences
and project only their corresponding postfix subsequences
into projected databases. In each projected database, con-
tiguous sequences are grown by exploring local length-1
frequent sequences. However, when mining long frequent
concatenated sequences, this method is inefficient.

Moreover, numerous distributed algorithms have been
proposed based on Apriori and pattern growth models [8],
[9], [10]. As a gap-constraint frequent sequence mining algo-
rithm implemented on MapReduce, MG-FSM [11] partitions
the input database in a way that allows each partition to be
mined independently using any existing frequent sequence
mining algorithm. Morever the notion of w-equivalency
w.r.t. a ”projected database”, which is used by many SPM
algorithms, is introduced. In Section IV, the performances
of MG-FSM and DLA are compared.

II. PROBLEM STATEMENT

We present the basic notions needed to clearly define the
problem of sequential pattern mining.

Consider an alphabet Σ, i.e., a finite set of symbols;
a sequence s over Σ is defined as a finite enumerated
collection of elements of Σ:

s =< s1, s2, . . . , sn >, si ∈ Σ.

The length of the sequence s, denoted as |s|, is defined as
the number of elements in the sequence.

Given two sequences s =< s1, s2, . . . , sn > and t =<
s1, s2, . . . , sm >, such that |s| = n, |t| = m and |m| < |n|,
we say that t is a sub-sequence of s or that s contains t, and
we denote it as t ⊂ s, if there exists an integer i such that:

si+j = tj for j = 1, 2, . . . ,m.

A sequence database D is defined as a finite set of pairs <
id, s >, also referred to as items, where each s is a sequence
of arbitrary length on the same alphabet Σ and each id is a
unique identifier of the corresponding sequence. Notice that

a sequence database may contain two items with the exact
same sequence.

Definition 1 (support of a sequence): Consider a
sequence database D and a sequence s on the same
alphabet. The support of the sequence s on the database D
is the number defined by the function:

sup(s,D) = |{< id, x >∈ D : s ⊂ x}|.

Thus, the support of a sequence over a database is the
number of items in the database that contain the sequence.

For a database D and a minimum support value σ,
the pattern mining is the problem of identifying all the
sequences which support on D is at least σ. Usually, the
problem is further constrained allowing only for sequences
with at least a minimum length µ, since short sequences may
appear more frequently. Sometimes, also a limitation on the
maximum sequence length is set; we denote this parameter
with α.

Definition 2 (Apriori property): Let D be a sequence
database on an alphabet Σ and s and t any two sequences
on the same alphabet. Then,

t ⊂ s =⇒ sup(t) ≥ sup(s).

In other words, if a pattern s is frequent and t is a sub-
sequence of s, then t has to be at least as frequent as s.
Conversely, if a sequence t is infrequent, all of the sequences
s such that s contains t must be infrequent.

In the algorithm we propose, we leverage this implica-
tion when we build new candidate sequences: a potentially
frequent sequence can only be made by concatenating (or
intersecting) shorter frequent sequences. This property is of
primary importance, since it helps to considerably reduce
the search space.

III. ALGORITHM DESCRIPTION

Here we describe DLA, the algorithm we propose for
sequential pattern mining. It is based on the Apriori property
and can be summarized in three iterative steps. Each iteration
of the algorithm looks for patterns of a specific length,
namely n, starting from the user-provided minimum length
µ. The algorithm proceeds as follows:

1) An initial set of candidate patterns is generated as the
set of all the sub-sequences of length µ that can be
found at least once in the database;

2) iteratively:
a) supports of candidate patterns are computed;
b) candidates whose support does not satisfy the

threshold are discarded;
c) retained candidates are used to generate candi-

dates of length n + 1 and become the input of
the next iteration;

3) the algorithm terminates when at least one of the
following conditions is met:
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• the set of candidates satisfying the support and
frequency thresholds is empty; or

• n > α, i.e. when the considered length exceeds
the user-provided maximum length.

In the above algorithm, the most critical aspect for the
performance is the generation of the next-length set of
candidates; the amount of data to be processed by the
next iteration depends on the adopted candidate generation
strategy. At this stage, we can exploit the Apriori property
which states that valid candidates for the next iteration can
only be generated as a concatenation of the candidates of the
current iteration. The correctness of the proposed strategy
comes from the Apriori property. We present three main
strategies for performing these steps of the algorithm. In
order to easily understand their functioning, we consider the
following sequence database:

seq-id seq
1 ATCT
2 GT

assuming µ = σ = 1 and that we already found the
set of candidates of length 2 satisfying the thresholds,

c2 = {AT, TC,CT,GT},

the possible strategies for candidates generation are then the
following:

• Blind: all the sub-sequences of length 2 are joined, i.e.
cB3 is obtained performing the following joins:

Joined Candidate
ATxTC ATC
TCxCT TCT
CTxTC CTC
GTxTC GTC

• Sequence-based: only couples of candidates produced
by the same sequence are joined. In this case, sequence
2 will not contribute to the generation of any new
candidate and the new set of candidates c3 is:

cS3 = {ATC, TCT,CTC}

• Location-based: only couples produced by the same
sequence and so that the position of the first candidate
immediately follows the position of the second candi-
date are joined. In this case, candidate TC will not be
joined with CT , since the former comes after the latter.
Therefore,

cL3 = {ATC, TCT}

Note that, with this approach, comparison between
strings is not necessary.

Since the location-based strategy produces only candidates
actually appearing in the sequence database, it is the strategy
that produces the minimal number of new candidates; in
particular the following property holds:

|cL3 | ≤ |cS3 | ≤ |cB3 |

DLA is an Apriori based and uses a location-based candidate
generation strategy.

A. Parallel implementation of the algorithm

The parallel implementation of the algorithm relies on
the Apache Spark framework. Apache Spark is a general-
purpose data processing engine providing high-level data
operators and making a more efficient use of memory as
compared with low-level map-reduce programming. The
programming model of Spark is based on an abstraction
called Resilient Distributed Dataset (RDD); a RDD is a dis-
tributed, fault tolerant data collection which can be processed
on large servers or clusters. In Spark, all jobs are expressed
as: creation of a new RDD, transformation of an existing
one, or combining two RDDs in a new one. The three main
operators used by our implementation are:

• flatMap: transforms an RDD producing, for each of
its entries, 0 or more entries in the output RDD. This
transformation is applied in parallel at each partition.

• reduceByKey: applies an associative binary function
to the elements of the input RDD having the same
key. The operation is first applied in parallel at each
partition, and then applied to the aggregates with the
same key in a single partition (possibly requiring data
shuffling).

• filter: discards the elements of an RDD that do not
satisfy a given condition.

As described above, our algorithm comprises a boot-
strap stage, in which the initial candidate set is generated,
followed by an iterative procedure mainly based on two
steps: support calculation, computing for each candidate its
support and filtering the ones not satisfying the imposed
conditions; and candidate generation, using the n-length
sequences to generate the (n+1)-length candidates.

The bootstrap step generates the initial candidates produc-
ing, for each sequence in the database, all the sub-sequences
of length µ associated with their respective sequence iden-
tifier and position within the sequence.

The support computing step is reduced to the well known
WordCount problem, easily carried out by the Spark frame-
work, where the pair candidate - sequence id is used as key.
At the end of this step, candidates that do not satisfy the
minimum support condition are filtered out. If the result of
the filtering is empty or the maximum length α has been
reached the algorithm terminates, otherwise retained candi-
dates are added to the results and the next step candidate
generation is performed.

The aim of the Candidate Generation is to generate
the next-length candidates starting from what survived the
filtering process. We generate the new set of candidates
as follows: if two frequent sequences were generated from
the same sequence in the database and their positions are
consecutive, then the join of the two subsequences is a new
candidate (e.g., ABC and BCD , that appear respectively at
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position 2 and 3 of the sequence AAABCDEF, generate the
next candidate ABCD).

The bootstrap step of our algorithm (Step 0) loads the
sequence database, stored as a text file which follows the
schema (ID, Sequence), and generates the initial set of
candidates of length equal to the user-provided minimum
length µ; this is done generating, for each sequence, the set
of distinct sub-sequences of length µ associated with the ID
and position in which the sub-sequence occurs in the original
sequence. When the dataset is loaded into the initial RDD, it
is horizontally partitioned in a number of partitions, namely
p, settable by the user.

B. Execution example

For the sake of clarity, we also present the execution of
our algorithm through an example on a toy dataset. We will
run the algorithm on the following sequence database:

seq-id seq
1 ATTTC
2 TCTTT

seeking for frequent sequences of minimum length
µ = 2 and minimum support σ = 2.

Bootstrap. For each sequence in the database, all the sub-
sequences of length equals to µ are generated and emitted
along with the sequence identifier and the list of position
where they are found:

sub-seq <seq-id, positions+ >
AT <1, [0]>
TT <1, [1, 2]>
TC <1, [3]>
TC <2, [0]>
CT <2, [1]>
TT <2, [2, 3]>

Iteration 1. The first iteration starts reducing by key (step
1) the RDD produced in the previous step. The result is an
RDD in which each sub-sequence appears only once and is
associated with all the sequence identifiers, and respective
positions, in which the sub-sequence occurs:

sub-seq (seq-id, positions+ )+
AT [<1, [0]>]
TT [<1, [1, 2]>, <2, [2, 3]>]
TC [<1, [3]>, <2, [2, 3]>]
TA [<2, [1]>]

The support σ of each sequence can be trivially obtained
as the number of unique identifiers associated to each entry
in the previous RDD, i.e.,:

AT σ = 1
TT σ = 2
TC σ = 2
TA σ = 1

In the next step (step 2), the previous RDD is filtered
discarding the entries that do not satisfy minimum support
and minimum frequency, returning the RDD:

sub-seq (seq-id, positions+ )+
TT [<1, [1, 2]>, <2, [2, 3]>]
TC [<1, [3]>, <2, [2, 3]>]

Since the filtered RDD is not empty, the execution moves
on with the candidate generation; step 3.1 reverts the rep-
resentation of the previous RDD, generating a new RDD
in which the key is the sequence identifier and the value
contains the associated sub-sequences with their respective
location indexes:

seq-id (sub-seq, positions+ )+
1 <TT, [1,2]>
2 <TT, [2, 3]>
1 <TC, [3]>
2 <TC, [0]>

Then, the RDD is reduced (step 3.2), so that its entries are
aggregated by sequence identifier:

seq-id (sub-seq, positions+ )+
1 [<TT, [1, 2]>, <TC, [3]>]
2 [<TC, [0]>, <TT, [2, 3]>]

Within the last flatMap of this group (3.3), we compute the
new candidates for the next iteration:

1) the list of positions represented as value in the
previous RDD is flattened and elements are sorted by
position index:

seq-id (sub-seq, positions+ )+
1 [<TT, 1>, <TT, 2>, <TC, 3>]
2 [<TC, 0>, <TT, 2>, <TT, 3>]

2) a moving window of length 2 is used to compare
position indexes and a new candidate is produced for
each pair of consecutive sub-sequences:

seq-id (sub-seq, positions+ )+
1 [<TTT, 1>, <TTC, 2>]
2 [<TCT, 0>, <TTT, 2>]

The output RDD is then flattened at step 3.3. and provided
as input to the next iteration:

sub-seq (seqID, positions+ )
TTT <1, [1]>
TTC <1, [2]>
TCT <2, [0]>
TTT <2, [2]>

Iteration 2. The algorithm then restarts from step 1 and
calculates the support value for each input sequence. Only
sequence ”TTT” survives to the filtering and is added to the
results.

Next step produces the new candidate sequences; in this
case the no pair of consecutive sequence can be joined,
therefore the next candidate set is empty.

Iteration 3. The algorithm receives an empty list of
candidates, therefore the convergence test succeed and the
algorithm terminates returning as output all the frequent
sequences identified by the previous iterations, i.e.,“TT”,
“TC” and “TTT”. Given a database of n sequences of
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Figure 1. Execution time comparison with
different minimum support threshold.

Figure 2. Execution time comparison with
different minimum support threshold.

Figure 3. Execution times in function of the
maximum allowed frequent sequence length α.

lenght l and fixed the query parameters σ and µ, under the
assumption that n� l, the time complexity of the algorithm
is O(n).

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS

We have conducted extensive experiments to verify the
performance of DLA with real world big data. We also com-
pared our algorithm with an existing MapReduce method.
The experiments were executed on Apache Spark 2.3.1 built
on Hadoop 2.7.3 and in a fully distributed cluster environ-
ment consisting of 6 machines each one contains 5 cores
of Intel(R) Xeon(R) E5-2660 2.0GHz CPU. All machines
run on Ubuntu 16.04 operating system. So as to measure
the performance of our algorithm, we used two real-world
data sets, which were publicly provided by the National
Center for Biotechnology Information(NCBI). The protein
data set was extracted by the conjunction of (1) search
category= “Protein”, (2) species= “Bacteria”, (3) organism=
“Escherichia coli”, and (4) release date=[2014/01, 2018/05].
The DNA data set was extracted by the conjunction of (1)
search category= “Nucleotide”, (2) species= “animals”, (3)
organism= “Homo sapiens” and (4) release date=[2011/1,
2018/05]. In Table I the main characteristics of the two
datasets are reported.

Table I
DATASET CHARACTERISTICS

DNA sequences Protein sequences

Average length 104 365
Maximum length 200 34 366
Total sequences 5 000 000 25 000 000
Distinct items 5 21
Total bytes 586 183 393 9 250 844 714

Firstly, we tested the impact of the pruning strategy we
adopted in DLA letting the minimum support σ vary. So as
to give more value to our results, and provide the reader
with a term of comparison, we run our algorithm against
MG-FSM [11], which represent the state of the art for the
problem of mining sequence pattern within big data. For

this experiment we used the 1 million protein sequences
as dataset. Figure 1 shows execution times with minimum
support σ from varying from 10 to 1,000. For all the various
support values DLA appears to be 10x faster that MG-FMS.

We also repeated the same experiment but using the
1M DNA dataset; in this case, as represented in Figure 2,
except for low values of support where the performances of
MG-FSM are way better, the two algorithms have similar
execution times.This result suggests that DLA performs
better than its competitors when both the alphabet is large
enough and the sequences are long, thus making the adopted
strategy for pruning the search space works at its best.

Besides the huge number of sequences and the various
minimum support values another challenge is to achieve
performance with different lengths of frequent sequences.
We tested this running our algorithm of a 2M sequence
database, fixing as parameters µ = 10 and σ = 400 (which
corresponds to the 0.02 % of the number of sequences in
the database) and varying the parameter α that indicates
the maximum allowed frequent sequence length. Results are
reported in Figure 3: as expected, execution times increases
as the maximum length grows, given that minimum support
threshold remains constant. Again for the protein dataset,
which contains very long sequences and on a large alphabet,
our algorithm clearly out-performs MG-FSM.

In the next test we want to report how the algorithm scales
with respect to the size of the of the input dataset. In order to
have dataset with different sizes we took random sampling
from the full protein dataset. For all of these 8 datasets we
run the same experiment with the very same parameters for
minimum and maximum length of the frequent sequence:
µ = 15 and α = 30 and requiring minimum support σ to
be equal to 0.02 of the number of regions for each of the
dataset. Under these circumstances, we believe our test to be
as fair as possible. Execution times are reported in Figure
4. Furthermore, we computed the slope as ∆ of execution
time / ∆ of sequences size. This represents the additional
execution time needed for processing 1k sequences more. As
can be seen in Figure 4, the blue line representing the slop
is almost constant in the seven points where we measured
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Figure 4. Execution time with different size of sequences. Figure 5. Execution time with different number of cores.

it. Therefore, this shows that in response of an increasing
the dataset size, the algorithm scales linearly.

Finaly, we made a test to prove the scalability of DLA
with respect to the number of executors in the cluster.
Results are reported in Figure 5. We run DLA on two
datasets 10M protein and 5M DNA sequences, represented
in grey and blue respectively. In all the three runs we
let invariant the execution parameters, such as σ = 2000,
µ = 8 and α = 15). Results in Figure 5 show how the
execution time of the algorithm decreases with the number
of executors. This ensures that, provided a ”big enough”
cluster even, huge dataset can be analyzed in reasonable
time.

V. CONCLUSION

In this paper, we propose a distributed method in Spark
for frequent sequence mining in large scale databases. This
model is effective since it will always find the pattern if
the pattern exists. It reduces the search space by pruning
the portion not related to the pattern. Our algorithm is
proved to be efficient and highly scalable. Based on GSP
algorithm, keeps its performance advantages of apriori-
model and is taking advantage the new techniques of Apache
Spark computing framework.
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