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1. Introduction

Over the past few decades, construction practitioners have been
facing the challenges of high quality demand and high labour cost.
In order to overcome these challenges practitioners often develop
structures that combine precast elements with cast in place con-
crete components. The use of this technique gives a monolithic
quality to the structure (see for instance [1]).

Similarly, many countries aspire to maintain the traditional
identity of built-up areas. As a result, local administrators promote
structural retrofitting of existing reinforced concrete structures to
enhance their earthquake resistance, to improve their strength to
meet new structural demands or new code requirements, and
to retrofit damaged structural elements. Moreover, structural
retrofitting is adopted to overcome insufficient strength of the
materials in new concrete structures resulting from oversight
errors and lack of proper quality control. A common technique
adopted to improve the bearing capacity of structural elements
is to increase the reinforced concrete cross-section. Concrete
jacketing of beams and columns is a specific method used to
increase the cross-sectional area (see for instance [2-5]).
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In all these cases a reliable evaluation of the stress redistribu-
tion that occurs in the cross section because of creep and shrinkage
of concrete is important to guarantee an accurate forecast of the
behaviour of the structure under service loads and at the ultimate
load (see [6]).

A general approach utilised to evaluate the stress and strain
time evolution of concrete compact cross-sections cast or pre-
stressed in consecutive stages under long term loading was pre-
sented in a previous paper [7]. The overall cross-section was
made of reinforced concrete, prestressed concrete or steel parts
added at distinct stages of the construction process. Moreover,
the cross-section could be prestressed several times during con-
struction and after gaining the final shape. This approach led to a
system of Volterra integral equations (see for instance [8,9]),
whose convolution integral (that is the closed form solution) can-
not be determined because of the complexity of the creep function
usually adopted to describe concrete behaviour ([10,11]). The sys-
tem of Volterra integral equations was therefore solved by means
of a refined step-by-step time integration method (based on the
techniques suggested by classic numerical analysis [12]). The
method gives rise to an error whose value can be minimised
through a suitable choice of the time discretization procedure. This
approach is complicated and cumbersome, hardly implementable
in a computer program and too complex for a common engineer.
Therefore, this paper illustrates simplified versions of the algebraic
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Notation

x; and y, principal axes of piece of concrete 1 (the first to be cast)

A and Jo; area of piece of concrete 1 and its second moment of
area with respect to the x; axis. The cross-section
change because of grouting of tendon 1 (when post-
tensioned) is not taken into account

Ap cross-sectional area of tendon 1
X, and y, principal axes of piece of concrete 2 (the second to be
cast)

Ao and J, area of piece of concrete 2 and its second moment of
area with respect to the x, axis. The cross-section
change because of grouting of tendon 2 is not taken into
account

Ap> cross-sectional area of tendon 2

E. and E., reference elastic moduli (for instance the elastic
moduli at the age of 28 days) of concrete 1 and 2
respectively

E.(t) and Eo(T) elastic moduli of concrete 1 at age t and of
concrete 2 at age T respectively

Ep1 and E,, elastic moduli of the tendons

Gy centroid of piece of concrete 1
G, E-weighted centroid of the final cross section
r ratio between the relaxation loss and the initial

prestressing of the prestressing steel
age of piece of concrete 1

-

T age of piece of concrete 2

Yp1 position of tendon 1 on y; axis

Vp2 position of tendon 2 on y, axis

Ve position of AXj; on y; axis (therefore y., is negative in
Fig. 2)

Yo position of AXj; on y, axis

methods discussed in [13-15] that allow to overcome the inability
to solve the complex numerical integration.

In a following paper the output of the computer program, writ-
ten according to the more refined solution suggested in the previ-
ous paper [7], will be compared with the outcomes of this
approach to verify the accuracy of the latter.

2. The approach to problem-solving
The assumptions adopted in the following are:

1. The cross-section is made of two individual homogeneous
pieces of concrete (indexes c1 and c2) or another generic linear
viscoelastic material (or an elastic material when setting its
creep coefficient to zero) whose constitutive law is a Volterra
integral equation approximated by the following algebraic
expression (see Fig. 2):
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where time t is the age of piece of concrete 1 (the oldest) and time T
is the age of piece of concrete 2, related one another by means of the
construction history (see Fig. 1). E; (ty) and E;(T;) are the elastic
moduli measured at the onset of loading, ¢ (t,t3) and @ (T, T,)
are the creep coefficients and y, (t,t3) and y, (T, T;) are the aging
coefficients.

+

AXM stress resultant variation in tendon 1, positive when act-
ing according to Fig. 2, caused by the “ld” load
AX, stress resultant variation in tendon 2, positive when act-

ing according to Fig. 2, caused by the “ld” load

AN; and AM; internal axial force and bending moment variation
due to an external long term load. These axial force and
bending moment usually follow from a linear elastic
structural analysis and therefore act in the centroid of
the cross section, i.e. point G; or G, depending on the
current stage of construction. These vectors are positive
when acting according to Fig. 2

AN; and AM; internal axial force and bending moment variation
due to any external long term load acting at point G,
(i.e. AM; = AM; — AN; - y,y, when AN; acts at point G,
AM; = AM; otherwise. See Fig. 2). These vectors are
positive when acting according to Fig. 2

AX' and AX!9  stress resultants in piece of concrete 2 (and in ten-
don 2, if any) measured on the contact surface between
the two pieces of concrete, caused by the “ld” load

e term of the flexibility matrix: the axial strain (or the
curvature) present in the homogeneous piece “sec” of
the cross section, in the point where AX; acts (positive
when concordant to AX;), due to AX; =1

5]’-‘1 non-compatible strain (or non-compatible curvature)
on the contact surface where AX; acts, caused by the
“Id” load (positive when acting according to AX;)

Xe1(t.t5) and y, (T, T;) aging coefficients of concrete 1 and 2
respectively

@ (t,ty) and @, (T, Ty) creep coefficients of concrete 1 and 2
respectively

Both concrete pieces hold a tendon (subscripts p1 and p2) whose
constitutive law is linear elastic (at least under long term service
loads):

_op(t).

Ep1(t) = z _op(b)

epa(t) = Ey (2)

2. No bond slip can occur among the parts which make up the
cross-section (external and unbonded internal prestressing
and composite steel-concrete beams with flexible connections
are therefore not considered).

3. The Bernoulli-Navier hypothesis (an initially plane beam sec-
tion which is perpendicular to the beam reference axis remains
plane and perpendicular to the beam’s axis in the deformed
configuration) applies to each individual homogeneous part of
the cross-section. This assumption is commonly adopted (and
accepted) when dealing with compact cross sections in the ser-
vice stage (as it is the case of the application presented in the
following).

4. The internal axial force and bending moment act on a plane of
symmetry of the cross section (out-of-plane bending is not
taken into account, not to complicate too much the solving
system).

The application of the presented approximate solution is there-
fore restricted to cross-sections cast in two stages. That is, precast
prestressed concrete beams (or steel or timber beams) with a cast-
in-situ slab (prestressed or not) or jacketed beams and columns
(i.e. the cases most frequently found in practical applications).

The stress and strain of the cross-section will be evaluated in
the following time intervals (see Fig. 1 that refers to a precast
prestressed beam with a cast-in-situ prestressed slab):
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Fig. 1. Correlation between age scales of the first (age t) and the second (age T) piece of concrete for execution stages and service.
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Fig. 2. Division of the cross section in four homogeneous pieces.

. moment from which shrinkage of piece of concrete 1 (the pre-

cast beam) is taken into account [time tp], i.e. end of concrete
curing

. i-th load that starts acting at time tf < t7, before the bonding of

tendon 1 to the surrounding concrete. Usually in post-tension-
ing the dead load starts acting at tensioning of the tendon, i.e.
before grouting, that is when the tendon is still unbonded (time
i =1t7)

. tendon 1 release from the prestressing bed (in the case of pre-

stressed elements), or post-tensioning and grouting of tendon
1 [time t;]

. i-th load that starts acting at time ¢ : t; < t§ < t,, after bond of

tendon 1 to the surrounding concrete has started acting. This is
for instance the case of the dead load of a pre-tensioned beam
(tF =t7)

. moment from which shrinkage of piece of concrete 2 (the slab)

is taken into account [time t;], i.e. end of concrete curing

. bond of piece of concrete 2 to piece of concrete 1 [time t3]
. i-th load that starts acting before bonding of tendon 2 to the

surrounding concrete, but after bonding of piece of concrete 2
to piece of concrete 1 (at time ¢f : t3 < tf < ty)

. post-tensioning and grouting of tendon 2 [time t,4]
. i-th load that starts acting after bonding of tendon 2 to the sur-

rounding concrete (at tf > t,)

The problem is solved by means of the force method: the cross

section is divided into four homogeneous pieces (i.e. the two pieces

of concrete and the two tendons). The stress resultants AX; (three
axial forces and one bending moment) mutually transferred
between them are the redundant unknowns (see Fig. 2). These
unknowns can be computed by enforcing compatibility at the con-
tact surfaces between the different homogeneous pieces.

In the following, &3 represents the axial strain (or the curva-
ture) of the homogeneous piece, or “sec”, of the cross section at
the point where AX; acts (positive when concordant to AX;), due
to AXy = 1. The corresponding terms of the flexibility matrix are:
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where E;; and E, are the reference elastic moduli (for instance the
elastic moduli at the age of 28 days) of concrete 1 and 2
respectively.

McHenry’s superposition principle [16] and the theorems of
linear viscoelasticity [11] apply to each piece of concrete. It is
therefore possible to subdivide the redundant unknowns in parts
(each one related to a single load or a single non-compatible
strain), calculate the values, and then superimpose the outputs to
get the overall cross section behaviour.

(SJ’-d is the non-compatible strain (or non-compatible curvature)
on the contact surface where AX; acts, caused by the “ld” load
(positive when acting according to AX;). When “1d” is the shrinkage
of piece of concrete 1 we get:

8o (1) = () — En(tr)

850 (£) = —&an(£) + Ean(t5)

&M (t) = 0 (uniform shrinkage does not give rise
to a curvature inside piece of concrete 1)

&M (t) = 0 (tendon 2 is not connected to piece of concrete 1)

(4)

whereas when dealing with shrinkage of piece of concrete 2 we get:

&2(T) = 0 (tendon 1 is not connected to piece of concrete 2)
83 (T) = &a(T) — &an(T)

&2(T) = 0 (uniform shrinkage does not give rise

to a curvature inside piece of concrete 2)

0 (T) = &a(T) — &n(T2)

(5)
G, is the centroid of piece of concrete 1, G, is the E-weighted cen-
troid of the final cross section. The variations of internal axial force,
AN;, and bending moment, AM;, due to an external long term load
usually follow from a linear elastic structural analysis. Therefore,
the loads act at the centroid of the cross section, i.e. point G; or
G, (according to Fig. 2) depending on the current stage of construc-
tion. For the sake of simplicity, the internal axial force and bending
moment due to any external long term load will be assumed to act
at G; and will be named AN; and AM;. (i.e. AM; = AMI. — AN; - Yy,
when AN; acts at point G, AM; = AM; otherwise. See Fig. 2). There-
fore, when dealing with any long term load that gives rise to AN;
and AM;, terms 61’.‘1 are:
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Terms 5{' due to tensioning of tendon 1 are:
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where &, is the non-compatible strain due to tensioning, that is:
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when dealing with pre-tensioning (&, is the elongation of the
tendon), or:
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when dealing with post-tensioning (in this case &, is the elongation
of the tendon plus the shortening of the surrounding concrete).

Term r is the ratio between the relaxation loss and the initial
stress of the prestressing steel (it is approximately equal to 0.03
when dealing with low relaxation tendons). In Eq. (8) X, is the
prestressing force applied by the jack in the prestressing bed at
stressing of the tendon. In Eq. (9) Xp1|,-z. is the prestressing force
applied by the jack at the anchorage minus the friction loss up to
cross section z* (see the notation and Fig. 2 for the other terms).

Post-tensioning of tendon 2 causes the following non-compati-
ble strains:
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and X2/~ is the prestressing force applied by the jack at the
anchorage minus the friction loss up to cross section z*, Ypsec is
the distance of tendon 2 from G, (i.€. Ypsee = Ye1 — Yan, + Y2 — Ypo s
Asec and Jsec are the E-weighted area and the E-weighted second
moment of area (with respect to its principal axis parallel to x,
passing through point G,) of the final cross section.

3. The compatibility equations

The events related to changes in the shape of the cross section
modify the compatibility equations and require the recalculation
of the unknowns (for the same single load) in every time interval
between two consecutive shape changes.

3.1. Prestressing of tendon 1

The unknowns that refer to prestressing of tendon 1 will be
indicated with superscript p1.

311t <t<t3

Compatibility (starting at tendon release from the prestressing
bed in pre-tensioning or at grouting of tendon 1 in post-tensioning)
between tendon 1 and the adjacent concrete fibres yields the
following term:

ep1(t) — &1 + &1 (Y1) =0 (12)

On the basis of Egs. (1)-(3), Eq. (12) becomes:
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that is:
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Term AXP'(t;) can be easily computed by setting t=t; (ie.

@1(t1,t1)=0) in Eq. (14):
AXpl(ﬁ) (3 ip1+AX (t1 )(351] Ee =0 (15)
E(ty)
that is:
AXP(t1) = 2 (16)
1 \t1) =
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Note that Eq. (16) is independent of the prestressing method
adopted (it is a matter of fact that concrete behaviour after time
t; is independent of the way &, was applied). It is interesting to
observe that when replacing Eq. (9) into Eq. (16), that is when
dealing with post-tensioning, we get:

Xpil—. - (1=1) (17)

whereas when dealing with pre-tensioning (i.e. making use of Eq.
(8) instead of Eq. (9)) we get:
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Eq. (17) shows that in post-tensioning the tensile stress resultant
in the tendon at time t; is equal to the prestressing force applied
by the jack at the anchorage minus the friction loss up to the
cross section z* (i.e. Xp|,_,.), reduced by relaxation r of the ten-
don. On the contrary, when dealing with pre-tensioning Eq. (18)
states that the stress resultant in the tendon decreases immedi-
ately at tendon release from the prestressing bed. This is the so-
called “elastic” loss of prestress that is caused by concrete elastic
shortening:
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Whatever the prestressing method, when replacing Eq. (16) into
Eq. (14) we get:
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In this time interval AX?' (t) = AX?] (t) = AXE) () = 0.
312 t:<t<ty

Compatibility equations:

Ep1(t) — &p1(t1) + & (t,Yp) — €1 (t1,¥p) =0
8C1(t7ycl)7861(t37yc1)+862(T7y62) =0 (21)
1/rq(t) —1/ra(t3) + 1/12(T) =0

The first of Eq. (21) enforces compatibility between tendon 1 and
the surrounding concrete, whereas the last two equations enforce
strain and curvature compatibility on the contact surface between
piece of concrete 1 and piece of concrete 2.

When making use of Eqs. (1)-(3) and considering that
AXPl(t3) = AXPI(t3) = 0, Eq. (21) becomes:

[T+ (tt3)- @4 (8, 83)]
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L (14 2(T.T) - 9, (T.T)] |
5o [T+ 2 (3, 11) - @4 (t3,11)]

Note that the terms at the right of the equality sign in the sec-
ond and third of Eq. (22) account for the strains that developed
before bonding of the two pieces of concrete. For the sake of
simplicity, by assuming that:
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Eq. (22) become:

AX(0)- [0F} +F51 (6:00)] + AXEH(6)-Fid (8, 63) + AXEL () FEd (8.83)
=&y — AXP'(t1) - 51 (8,1)

AXPY(E) - f51 (6,60) + AXE (6) - [f53 (£, 63) +£53 (T, T1)] +AXE} (6) - [fsd (t,63) +f3(T.T1)]
=—AXP'(tr) gL (¢, n>+AX‘“<t3> S5l (ts,t0) + AXP (1) - g8} (13, 11)

AXP(E) -f51 (8 6) + AXE (6) - [f1 (£, 63) + £33 (T T1)] +AXEL (6)- [fsd (6.63) + 3 (T.T1)]
=—AXP'(t1) g5} (6. 00) + AXY' (£3) - f51 (£, t1) + AXT' (1) - g8 (85, 10)

(24)

In this time interval AX) (t) = 0.
Note that when setting t=t3 in Eq. (24) we get
AXBl(t3) = AXP] (t3) = 0. Moreover, the value of AX?(t3) is exactly

the same as that computed by means of Eq. (20). This implies that
the stress resultant in tendon 1 immediately before bonding
between the two pieces of concrete is equal to the one computed
immediately after it (because bond itself does not give rise to
any sudden instantaneous elastic change in AX?' ().

313.t>ty
Compatibility equations:
&p1(t) — &p1(t1) + €1 (t,Yp1) — &a(tr,¥p1) =0
ea1(t,Ya) — ea(ts,¥a) +&2(T,¥n) =0
1/ra(t) = 1/ra(t3) + 1/12(T) =0
e (T) 4+ €2(T, Ypo) — €2(T2,¥p) =0
The last of Eq. (25
surrounding concrete.
When making use of Egs. (1)-(3) and taking into account that
AXPl(t3) = AXDI (t3) = AXB) (ts) = 0, Eq. (25) becomes:
X (€)- [0 +F61 600)] + AXE(0)-FEd (8. ) + AXE (6) -
=& —AX[ (tr)-gfh (t.t)
AXP!(£)-f5 (6,61) + AXE (8)- [f53 (£.t3) +f3 (T.T1)]
+AXE () [f53(6,63) +fB (T T0)] + AXE () -f53 (T.T2)
= —AXP"(t1) -85} (6. 6) +AXP (63) S5 (E3,64) + AXP' (1) 851 (E3,61)
AXP(b)-f5] (t.60) + AX (0) - [£53 (6,65) +£53 (T.T1)]
+AXE () [f53 (6,63) +fB (T T0)] + AXE () -f53 (T.T2)
=—AXP'(t1)- gL (t,11) + AXT' (£3) - f5) (£, 01) + AX]' (t1) -85} (£, 1)
AXG(6)-FZ(T,Tr) + AXEL (6)-F53 (T, T0) + AX (6) - [ o0 + (T, T2)|
= AXY (ta)-f3 (T2 T1) + AXfy (ta) -3 (T2, Th)

(25)

) enforces bond between tendon 2 and the

(t7 t3)

(26)

Again, when setting t = t4 in Eq. (24) and in (26) we get the same

values for AX?'(t,) and AXb!(ts). The stress resultants mutually

transferred between the two pieces of concrete immediately before

grouting of tendon 2 are equal to those computed immediately

after grouting (i.e. grouting itself does not give rise to any sudden
elastic change in AX?'(t) and AXY/ (¢)).

3.2. Prestressing of tendon 2

The unknowns that refer to prestressing of tendon 2 will be
indicated with superscript p2.
Tendon 2 is stressed at time 4.

321.t=>ty
Compatibility equations:
ep1(t) +ea(t,ypy) =0
&c1 (tvycl) +éc (T7y62) =0
1/ra(t)+1/r2(T)=0
SPZ(T) - EPZ + SCZ(T'/ypZ) =0

(27)

Once more the first of Eq. (27) enforces compatibility between
tendon 1 and the surrounding concrete, the following two equa-
tions enforce strain and curvature compatibility on the contact sur-
face between the two pieces of concrete, and the last enforces
compatibility between tendon 2 and the surrounding concrete.

When making use of Eqs. (1)-(3) Eq. (27) becomes:
AXP(€)- [+ (. ta) | + AXE (0)- 3 8. ta) + AXER (1) - (. ta)

= —AXP?(ta) -85} (t,ta) — AXY? (ta) -85h(E,ta) — AXG (64) 855 (£, ta)
AX2(6) f51 (8. ta) + AXP(6) - [f53 (8, ta) + £33 (T, T2)]

+AXE (1) [f53(6,ta) +f53(T.T2)] + AXE (8) £33 (T.T2)

= —AXP* (ta) -85} (t.ta) — AXE (ta) - (855 (t,ta) +855(T. T2)]

—AX]i (ta) - (853 (¢,ta) +855 (T, T2)] — AXE (ta) - g54(T.T2)

AXP(0)-f51 (8, ta) + AXIP (0)- [f53 (6.£2) +£3 (T T2)]
HAXGE(8)- [fs3 (8 ta) +F3 (T, T2)] + AXE (6) -f53 (T, T)
—AXP(t4) g5} (t,ta) — AXY (ta) - [g53 (¢, ta) + 85 (T, T2)]

—AXG (ta) - [g85 (t.ta) +853(T.T2)] — AXYY (ta) -5 (T.T2)
AXEZ(0)-f3(T,T2) + AXE (0)-SZ (T, T2) + AXG, (6)- [0 +f2(T,T)|

=8 — AXE2(ta) -8B (T T2) — AX((ta) - 853 (T.T2) — XYY (t4) -85 (T. T2)
(28)
where terms AXP*(ty), AXP2(ty), AXP2(ty) and Xb(t,) can be
computed by setting t=t, in Eq. (28) (they account for the

instantaneous elastic response of the whole section to stressing of
tendon 2).

3.3. Shrinkage of piece of concrete 1

The unknowns that refer to shrinkage of piece of concrete 1 will
be indicated with superscript sh1.

When dealing with post-tensioning, bonding begins to act at
time t; (i.e. after grouting of tendon 1). The cross section is homo-
geneous before this time and therefore shrinkage of concrete does
not give rise to any self-equilibrated stress distribution in the time
interval ty < ty.

When dealing with prestressing, bonding begins at time ty < tq,
(i.e. immediately after concrete hardening). Nevertheless the time
interval between concrete hardening and the release of tendon 1
from the stressing bed corresponds to concrete curing. During this
short time interval, the stiffness of concrete part 1 is rather low. In
this phase concrete is constrained by friction with the mould and
bond to tendon 1 (still anchored to the stressing bed). In short, in
common practice the effect of shrinkage in the time interval
tot < tq is usually neglected.

331t <t<t;

Compatibility between tendon 1 and the surrounding concrete
(concrete strain & is the sum of the viscoelastic plus the shrinkage
strain and AXS" (t;) = 0):

&p1(t) + a1 (t, Y1) =0 (29)
that by means of Eqgs. (1), (2), (3), (4) and (23) becomes:

AXM () [oF) + £ (6 1) = —o38 (0) (30)

In this time interval AX3™ (t) = AX (t) = AXSI(t) = 0.

332, t3<t<ty
Compatibility equations:
ep1(t) +&a(t,yp) =0
&1(t,Yer) — €a1(t3,¥e) +€2(T,Yo) =0 (31)
1/ra1(t) = 1/ra(ts) + 1/r2(T) =0



where again the first of Eq. (31) enforces compatibility between
tendon 1 and the surrounding concrete, and the last two equations
enforce strain and curvature compatibility on the contact surface
between piece of concrete 1 and piece of concrete 2.

When replacing Eqgs. (1), (2), (3), (4) and (23) into Eq. (31), and
taking into account that AX;"™(t;) = AX{"(t3) = AX3h (t3) = 0,

d30 = d40 = 0 we get:

AXE(0)- [o9) +£61(6.00)] + AXG(0)-FE3(.) + AXE (0) - (0.85) =~ (1)
AX (0)-f1 (8 00) + X (0) - [f(6,65) +£2 (T, 1))

+HAXS(6) - [f3 (8, b3) + 52 (T, Th)]

= =% () +AX" (t5) f5] (t3,1)
AX (0)-f1 (800) + AX (1) [f(6,65) +F2 (T, T4))

+HAXS(6) - [ (8, b3) + 2 (T,Th)]

=AX]" (t5) f) (t5.t1)

(32)

In this time interval AXji' (t) = 0. Once more AX{" (t;) can be

computed by setting t = t3 in Eq. (30) or in the first of Eq. (32) (they

are identical, considering that AXS"(t3) = AX{" (t3) = 0, or bond

between the two pieces of concrete does not give rise to any
sudden elastic change in AX{" (t)).

333 t=ty
Compatibility equations:

ep1(t) +ea(t,yy) =0
e1(t,Yer) — a1(t3, Y1) + €2(T,¥e2) =0

33

1/ra(t) = 1/ra(ts) +1/ra(T) =0 33)
ep2(T) + €2(T, Ypo) — €2(T2,Ypp) = 0

that is (AX?’”(t]) = AXSM(t5) = AXSM (£5) = AXSI(T,) = 0, 614 = 6

— o o -0

AXGM () 07} 4 FEL (600 + AT (0)- £ (6.83) + AXG (©)-F3 (6,63) =~ 03 (0)
AX ()51 (6, t) + AXG () - [f53(t83) +£53 (T, Th)]

+AXG () - [f53 (8, 6) + 3 (T,T)] + AX' () -f3(T,T)

= =% (0 +AX" (t5) f51 (t3,1)
AXM(E)-f51(6,60) + X () [f5) (8, 865) +£3 (T, T)]

+AXG () [F53 (8 6) +f3 (T T1)] + AXGy' (6) - f53 (T, T2)

= AX"(t3) - f5] (8, 1)
AXG(6) - F2(T,Ty) + AXGi (£)

=AXS" (ta) S (T2, T1) + AXY (ta) -f3 (T2, Th)

BT + A (1) [0 +15(T.T2)]

(34)
where AXS" (t,) and AXS" (t;) can be computed by setting t=t, in
Eq. (34) (or in Eq. (32)).

3.4. Shrinkage of piece of concrete 2

The unknowns that refer to shrinkage of piece of concrete 2 will
be indicated with superscript sh2.

34.1. t3<t<ty
Compatibility equations (concrete strain & is the sum of the
viscoelastic and the shrinkage strain):

& (t) + &a(t,yp) =0
€1 (t,ya) + €a(T,Ya) =0 (35)
1/ra(t) +1/ro(T) =0

that is (AX}"™(t5) = AX}2(63) = AXjiP(6s) = 0, &3¢ = 657 = 0):

AXG () [o0) +£61 (8 65)] + AXG2(0)-fid (8, 65) + AXG(0) - fid (£, 65) = O
AX(t) - fS1 (8, t3) + AXG2(E) - [fS3 (¢, t5) + F3(T, T4))
FAX(6) - [ (t.t5) + (T, Th)] = 652 (6)
AX2(t) - f1(t,t5) + AXG2 () - [fsd (8, t) + f3 (T, Th) ]+
AXGIZ (1) - [fs3(t t3) + f2(T, T1)] = 0
(36)

In this time interval AX3i(t) = 0.

342.t> 1ty

Compatibility equations:

ep1(t) +&a(t,y,) =0

&1 (t,Yer) + (T, Ye) =0

1/rc1(t) + 1/r62(T) =0

&p2(T) + €2 (T, Y1) — ec2(T2, Y1) = 0
that is (AX;™(ts) = AX;® (t3) = AXG (83) =

~ i o4 -0y

37)

AXS2(T)) = 0, 614 = 641

AXP () - [+ fil (6 6)] + AXIP(0) - FE3 (6, 03) + AXI(0) - fiL(6,65) = O

AXT(8) - f51(E,63) + AXG2(0) - [f$3 (¢, ) + F3(T, Th))]

FAX(0) - [f5H (. t3) + F3(T.T1)] + AX () - f53(T, T2) =

AX2 (1) - 51t t5) + AX2 (1) - [fsd (8, t3) + f2(T, Th)]
+AX7,’:2<r> [f53(tt3) +FF(T.T0)] + AXGP(6) - f53 (T, T2) = O

AXG(€) -FF(T.T0) + AXGP (€) ST, To) + AXR2 (0) - [0 + F3(T. T2)]
= —55’” £) + AX2 (ta) - f3 (T2, Tr) + AXGiP (ta) - f52 (T2, T1)

~05 ()

PR

(38)
where AX3"(t,) and AX3(t4) can be computed by setting t =t, in
Eq. (38) (or in Eq. (36)).

3.5. External long term load

The unknowns that refer to an external long term load are indi-
cated by superscript g.

In this case it is necessary to distinguish between the loads that
start acting before grouting of tendon 1 (i.e. when tendon 1 is
unbounded) and those that start acting when tendon 1 is bonded
to piece of concrete 1.

3.5.1. i-Th long term load that starts acting at time tf <
grouting of tendon 1)

Post-tensioning usually induces an upward bending of the
beam (that is the beam detaches from the mould). In this case
the dead load of piece of concrete 1 starts acting at post-tensioning
of tendon 1 (i.e. before grouting).

t; (prior to

3.5.1.1. tf < t < t7. Bond between tendon 1 and the surrounding
concrete does not act and therefore the first theorem of linear vis-
coelasticity applies to piece of concrete 1 (the stress in concrete 1 is
constant in time and equal to its elastic value, while the stress in
tendon 1 is zero).

3512.t; <
Spl(t)+£cl(t7yp1)7851(t11yp1) =0 (39)
that is (AX‘,gj(t]) = o) :

AXE(E)- (37} + i1 (.00)] +

t < t3. Compatibility equation:

Foi [@a (6.8) — o (t1,6)] =0 (40)

and therefore:
Foiw [P (6:8) = Qe (61,6)]
M +fi ()

AXfi(t) = (41)



In this time interval AX} () = AX§, () = AX§, ,(t) = 0. AXE

ILi

Eq. (45).

(t4) and AX%, (t4) can be easily computed by setting t = t, in

3.5.1.3. t3 < t < t;. Compatibility equations:

. . . L
&p1(6) + &1 (6,Yp1) — 1 (E1,Y1) = O 3.5.2. i Th long term load that starts acting at time t] < tf < ts (after
grouting of tendon 1)

&1 (t,Yer) — ea(t3, Y1) + (T, Y2) =0 (42) 3.5.2.1. t; < t < t3. Compatibility equations:
1/ra(t) = 1/ra(ts) +1/r2(T) =0
&p1(t) + e (t, Y1) =0 (46)

Once stated that the external load acts on piece of concrete 1,
i.e. an homogeneous viscoelastic cross section, and that that is (AXf;(tf) # 0; the load acts on a homogeneous viscoelastic
AXFi(t1) = AX% (t3) = AXF (t3) = 0, AXF,(t3) # 0, Eq. (42) become: cross section, which is that of piece of concrete 1):

(0 [ 3R} + £ 0)] + AXE(0) - F (6 85) + X, (0) - FE3 (2, 83)
5 [(pcl (t tg) () (t17 t?)

10, ]
( ) fzcl1( ) llz( ) [ (t t3) +f (T Tl)} (43)
AX (t [ t t3 +f T T1 ] 201' [qod( tg) (pcl (t37 )} +AX§1(t3) f21 (t37t1)
AXF(0) - f51 (. t1) + AXE(6) - [f55 (¢, 63) + f3 (T, 1)
AX (t [f t t3 +f33 T Tl ] 301' [@cl( tg) D1 (t37 1)} +Axlg;(t3) f31 (t3 tl)
In this time interval AX§, () = 0. AXE (t) - [51;{ +FEe tg)] +AXE(t8) - gL (t, 19)
Term AX’,%,.(t3) can be computed by setting t = t3 in Eq. (41) or in ' . '
the first of Eq. (43) (taking into account that AX% (t3)= + 0% [T+ (6t)] =0 (47)

AX} (t3) = 0). The result indicates that the stress resultant in
tendon 1 immediately before bonding between the two pieces of
concrete is equal to the one measured immediately after it (i.e. 5*%01

When setting t = tf in Eq. (47) we get:

: L ; AXE(8) = ——— L — 48
bond itself does not give rise to any sudden change in AX,(t)). (t7) = 6’]’} n 5]1 ([g) (48)
3.5.14. t > t,. Compatibility equations: and finally:

Ep1(t) + & (t, — & (ty, =0 X
p1(8) + €1 (6, Y1) — &t (E1, V) AXE(F) AXE (£8) - g (6, 85) + 8- [1 4 @ (£, 8F)] 49
e1(t,Yer) — &a(ti,¥er) + &2(T,¥e2) =0 (44) I,i( )=- 5P +f51 (t tg) (49)
1/ra(t) = 1/ra(t) +1/ra(T) = 0 S !
&2(T) + £2(T, Y1) — £2(T2, Y1) = O In this time interval AX‘,g,)i( ) = AX,,,I( ) = AX§,;(t) = 0.
Onge more, ttgle externalgload still agcts on piece of concrite 1 and 3.5.2.2. t; < t < t. Compatibility equations:
AXFi(t) = AX (t3) = AXF (t3) = AXF, (ta) = 0, 85, =0,AX%,(t1) #0,
AXg 11, . 111, IV 40, i I, Spl (t) + &1 (t7yp1) _ 0
ii(ta) # 0,AX}, ;(t4) #0). Therefore, Eq. (44) became:
e (t,ya) = ea(ts,ya) + éa(T,ye) =0 (50)
AXE(1)- [6‘;1 R 0)] + AXE (0 fE3 (6. 05) + AXE (6)- T (0.65) 1/ra(t) = 1/ra(ts) +1/ra(T) =0
=3y [ (L) — @y (61, £5)] or (AX{i(t%’) # 0, AXE,(t3) # 0, AXS, (t3) = AX%, (t3) = O, the load acts
on a homogeneous viscoelastic cross section):
AXE(6)-f5l(t,t1) + AXE (6) - [f53(t,t3) +f52(T,T1)] !
Y AXE(0)- (981 51 (6.69)] +AXE (0)-FE3(60) +-AXE (0) (6 5)
X)) T T+ X () T T2) o 14 (-0 )
= =030 [Pa (6,8 ) 1(f37 £)]+AXE (t3) S5 (83, t1) 51(66) +AXG(0)- [ (6,6) +f3(T.T1)]
+AXg (0)- [f53 (t.ts) +fF(T.Th)] = [P (6.87) — ey (85,87
AXg- t tt + tt + T,T 1L 201 C i C i
BOSHE6) + (0 [ (.6) 4T T ) [g)(6.6) 5 6. - ) 5 6.
+HAXE (6) - [f53 (¢, t3)+f3 (T,T1)] +AXjy (6)-f52 (T, T2) )£ (E.85) + AXE (6) - [fEd (6. t3) + F2(T.Th) ]
g —_58
=080 [Per (6,65) — @y (t3.15)] + AXE(63) - f51 (85, t1) +AXm,<t> 53 (6.65) +£3(T.T0)] = =00, [@cr (£.8F) = @ (85.17)]
—AXG () - (51 (6,8F) — 8853 (63, 6F) | + AXi(85) S5 (83, 8F)
AXE(0)-J3 (T.T0) + AXG, (0)-SF (T.T) + AXY, (0)- [ 85 +S3(T. T2) (51)

= AXjji(ta) S5 (T2, T1) + AXGy(ta) i3 (T2, Th) In this time interval AXj,(t) = 0.

(45) Term AXF,(t3) can be computed by setting t = t3 in Eq. (41) or in

the first of Eq (43).



3.5.2.3. t > t;. Compatibility equations:

ep(t) + e (t,y,) =0

e1(t,Ye) —&a(ts,Yer) + €2(T,¥2) =0
1/rea(t) = 1/ra(ts) + 1/re(T) = 0
ep2(T) + €2(T, ¥p1) — €c2(T2,Yp1) =

(52)

that is (the load acts on a homogeneous viscoelastic cross sec-
tion and moreover AX$,(tf) # 0,AXF (t3) # 0, AXS (t3) = AXF(t3) =
AXF, i(ta) = 0,05, = 0, AX} (ta) # 0, AXF ,(ta) # 0):

A%<U~Pﬂ+fﬂutﬁ]+Axm<> (6.6) +AXE (0-fi} (6.85)
5%, [T+ 0 (6.67)] - AXF(£F) -85 (6.5F)
51 (6,87) +AXE () - [f55 (8,83) +f53 (T, T1)
ml()[ 1(t,t3) +FB(T.Th)] + AXS, () £33
—AXg (fg) (851 (,6F) — 853 (t3, 1) | + AXF(t3) - f5
5(68) + AXE (0 [f5 (¢.5) + 5 (T, Th)]
,,,,<> (8, 05) +F2(T,T1)] + AXS, ((0)-f53(T,T2) =
*AXg ((65) - (851 (6.6F) — g5 (t3,85) ] + AXF (t3) - f5] (3, tg)
AXS (6)-f3 (T, T1) + AXF, (6)-f3 (T, T1) + AXy (¢
= AXS (ta) 3 (T2, T1) + AXE) (ta) f3(T2, Ty

(Ta TZ)
66

(t
)

where terms AX}(t;) and AX} (ts) can be computed by setting

t = t4 either in Eq. (53) or in Eq. (51).

3.5.3. i-Th long term load that starts acting at time

t; < t§ < ty(= T¢ = tf — t3+ T;) (after bond between the two pieces
of concrete)

3.5.3.1. t3 < t < t4. Compatibility equations:

&p1(t) +&c1(t,yp) =0
ea(t,¥a) +62(T,yo) =0 (54)
1/ra(t) +1/re(T)=0

that is (AXF,(tf) # 0, AXE (&) # 0, AXE, (&) # 0, the load acts on a

homogeneous viscoelastic cross section):

= =00 [1+@a (t6.6])] = AXF(t) - 80 (6,6F) —
AXFi(0) S5 (66) + AXG,(0) - [f55 (6 6F) + £ (T TF)
+HAXG () - 53 (6.6F) + F53 (T, TF)] + AXG 4(0) - £33

AXFi(6) - f5 (€.6F) + AXG(0) - [f53 (6 6F) + f53 (T, TF)]
+AX (0 - [f53 (6 6) + 3 (T.TE)] + AXG () - 53 (T, T2) =

Axg
= AXii(ta) - £33 (T2, TF) + AXG(6F) - [885 (T2, TF)
+AXG(6F) - [88 (T2, TF) — 835 (6. £F) ]

201 e (8.8F) —

Foi [0 (L.6) —

) [ +13(T.T2)]

AX3(t) - [5121 +fe (e, tg)] AXE () £ (6 65) + AXE(6) - (. £)
IIz(t) gﬁlz(t’ tlg) Axiglll( l) g%(t7 t}g)

(T, T2) = &%,
X (1) g1 (6. 8F) — AXE, () - [g5h(.15) + g3 (T, TF)) — X

—AXF(tF) - g5 (¢, 8F) — AXG,(6F) - [855 (6. 6F) + 85 (T, T)| — AXG,
m>5@ﬁh¢%x)dUM+w%U[W+f@5ﬂ
-85 (t> t%)] + AXf,,_,-(L;) f3

AXE () [0 +F50 (6.66) |+ AXE (0 -F5d (6.5 + A (0 (6.8)

=05 [1 +<ﬂn(f 6F)] — AXF; (€F) - 853 (6,6F) — AXG, () - 855 (6.6F) — AXGy, () - 855 (¢.6F)
AXFi(6) 57 (6,6F) + AXG ,(0) - [f53 (8. 5) + 53 (T.TF)]

X (0)- 55 (6.65) + 3 (T, T])] = =00, - [1+ 9 ()]

—AXE(6F) - 851 (6,65) — AXT (6) - [55(¢,63) +855 (T TF)] — AXG (£F) - (855 (¢.65) + 855 (T.TF)]
AXE (D) -f51 (6,6F) +AXG(0)- (£33 (6,63) +£3 (T.TF)]

FAXG (0 5 (06) +f53 (T.TF)] = =50 [1+ 9 (L.1)]

—AXF(6F) - 851 (6,6F) — AXE () - [855 (¢, t3) +855 (T TF)] — AXG (tF) - [g55 (t.13) + 853 (T.TF)]

(35)

P (t t3)]
(33)

P (tu t3)]

Terms AXF, (), AX5;(6) and AXF, (£) can be easily computed
by setting t =t} in Eq. (55).

In this time interval AX%, ;(t) =
3.5.3.2. t > t,. Compatibility equations:

ep (t) +&a(t,yp) =0

e1(t,Yer) +82(T,y2) =0

1/ra(t) +1/ro(T) =0

ep2(T) + (T, Yp) — €a(T2, Y1) =0

(56)

that is (Axfi(tf’) #0,AXF (£F) #0,AX3, (£F) #0,AX5, ;(t4) =0,55,, =0,
the load acts on a homogeneous viscoelastic cross section):

i [T+ @a (66)]
{(t)) - (855 (6. 6]) + 853 (T.T7)]

(57)

75'%01 ’ [1 + P (t7 t':g)}
i) - g (. 6F) + 8B (T.TF)]

(T2, T)



3.5.4.i-Th long term load that starts acting at time t§ > ty(= T =
t8 —t; +Ty) (after grouting of tendon 2)
Compatibility equations:

Ep1(t) +&a(t,y,) =0
Ec1 (tv.VCl) + SCZ(T’yCZ) =0

1ra(t) +1/ro(T) = 0 (58)
ep(T) + €2(T2,¥p) =0
that is  (AXY(5) = 0, AXE (t) = 0, AXE, (£5) # 0, AXE, () =0,

8%,; = 0, the load acts on a homogeneous viscoelastic cross section):

AXE () - [+ £ (6. 85)] +

= [1+@u (t,65)]
Axg-< )51t 6) + AXE (0) - [

Hl(t). 1621 (t, tfg) +AX”II( ) C] (t t?)
5 (6,63) + £33 (T, TF)]
AXG (0 - [f53 (6 63) + f53(T, T$) ] + AX3, ,(0) - f53(T, T2) =

) -
*Axg( ) - 851 (6.6F) — AX§(tF) - [g8h(.15) + g5 (T. TF)]
£

—AXE () - g5h (6. 6F) — AXE (£F) - (8558, £3) + 85 (T TF)]
~ X (15) - (8558, t5) + 8R (T, )] — AXG,(6) - 854 (1. )
A ()

= —AXG(6F) - 83 (T, T7) — AXGy (6]) - 83(T, TF) —

Terms AXE(tF), AXY, (tF), AXE, (1£) and AXE,

computed by setting t = tf in Eq. (59).

(%) can be easily

4. Superposition of the redundant unknowns
According to McHenry’s superposition principle [16]:

Xn(t) = AX3M (£) + AXP!(t >+M‘“2<>
+ AXP(¢) +ZAX

where n=1, II, Ill or IV and AXE(t) 0 when t > ¢{.

According to the assumptlon (Bernoulli- Nav1er) that plane
sections remain plane after deformation, the stresses in the four
pieces of the cross-section at time t are:

(60)

AN (1) - gh (0.19) — AXE (65) - g (.5) -

—AXS, i (€F) - [855 (6, t3) + 855 (T, TF) | — AXG,;(¢F) - 853 (T, TF)
AXE(0) - f51 (6,8F) + AXG(0) - [f3 (£, ts) + £33 (T. TF)]
+Axun< ) B3 5) + B3 (T.TH)] + AXG (6) - f53(T. T2) = ~ 5, -

B(T.T5) + AXE (0) - FR(T.TE) + AXS, (0) - |85 +fR(T.To)|
AXG () - g (T, TF)

where, once again, AN; # 0 and AM; # 0 only if t > ¢

Verification at the ultimate limit state calls for the pre-strain
(i.e. the strain in the tendon when the surrounding concrete is at
zero stress, resulting from suitable instantaneous variations of
the internal forces), that is:

- _op(t) | OV, t)

8P1 (t) - 21)1 Ecl ?t) (62)
3 t) . GpZ(t) Oc2 (yp27 T)

T e, Eq(T)

The approach that replaces the non-compatible strains (i.e. &y
and &y,) with the pre-strains (i.e. &y (t) and &y(t)) in the analyses

AXG(€F) - 855 (8. )

—350; - [1+ @q (6,5)]

(59)

[1+ ¢ (6,6F)]

made in the service states and at ultimate under both short and
long term loads is wrong from a physical point of view. This state-
ment is the consequence of the observation that the pre-strain is
the sum of the non-compatible strain of the cable and a compatible
strain due to the delayed behaviour of concrete. Nevertheless, the
mathematical outcome is exact whatever the load condition, the
level of prestressing and the instantaneous constitutive laws of
the materials (see [17] for the demonstration).

5. Numerical example

The example refers to a girder bridge, made with precast, pre-
tensioned beams and a cast-in-situ top slab (Fig. 3). The top slab
reinforcing bars are not taken into account.

The time history of the structure is the following:

op1(t) = )X(t) (tension is positive)
pl
_ Xi(t) = Xu(t) + X5AN;: | Xi(t) - Yy + Xu() - Y1 sup + X (£) — 2,AM;
gy, t) = +
Acl ]cl
Gy ) = Xu(t );sz(t) +Xu(t) Yaint — Xm(t) + X (t) - Ypo
c2 ch
Op(t) = X (6) (tension is positive)

Ap

¥y, (compression is positive)
(61)

Y, (compression is positive)
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Fig. 3. Girder bridge cross section.

e tp=3 days (end of curing of the girder, onset of shrinkage
strains)

e t; =7 days (prestressing of the girder)

e t, = t3 =ty = 30 days (beginning of shrinkage in the slab; activa-
tion of the connection)

e t5 =30,000 days (~82 years)

Note that since the beams are steam-cured immediately after
casting to speed up their removal from the prestressing bed, ages
to and t; are to be regarded not as actual times, but rather as times
of normal curing “equivalent” to shorter times of accelerated
curing.

The deck is assumed to be simply supported, over a span of
20 m. In the following, reference is made to the mid-span section.

Therefore, the following values of bending moment are assumed in
the calculations:

e M; =400 kNm (self-weight of the girder, applied at 7 days)

e M, =300 kNm (self-weight of the slab, applied at 27 days)

e M; =180 kNm (permanent loads, equal to 3.00 kN/m?, applied
at 55 days)

Assuming that the stress applied by the jack in the prestressing
bed is equal to 1375 MPa, and allowing for a 3% reduction of
the stress because of short-time relaxation in the prestressing
bed, the non-compatible strain is equal to &, =1375-(1 — 0.03)/
195,000 ~ 6.84%o.

The constitutive viscoelastic law used is the one described in
[18].

The beams are characterised by an average compressive
strength equal to f.;, = 48 MPa, while that of the top slab is equal
to 33 MPa. The cement is assumed to have a normal hardening
(s=0.25), and the relative humidity, RH, of 50%. Shrinkage of the
two pieces of concrete is taken into account in the calculations.

The time evolution of the stresses in the prestressing strands,
and at significant points of the beam and slab are shown in
Fig. 4. They were computed under three different assumptions,
concerning the level of approximation used in modelling the visco-
elastic behaviour of the structure:

1. General Method, that implies the numerical solution of Volterra
integral equations.

20 —
| —— General method
— AAEMM (X=exact value)
16 — AAEMM (2=0.8)
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Girder bridge midspan cross section stress evolution.



2. Age-Adjusted Effective Modulus Method, using the classic
approach, where the aging coefficient y is evaluated on the
basis of the compliance and relaxation functions.

3. Age-Adjusted Effective Modulus Method, with the aging coeffi-
cient constant and equal to 0.80.

When looking at these diagrams it can be stated that even when
dealing with the worst approximation (i.e. aging coefficient equal
to 0.80) the solution is accurate, in spite of the complexity of the
problem. This outcome suggest the opportunity of verifying the
extent of the error made by this method in other cases of practical
relevance.

6. Conclusions

The stress-strain time evolution computation problem of con-
crete compact cross-sections cast and prestressed in consecutive
stages under long term loading has been solved by means of an
approximate algebraic method.

The method is lengthy, but its formulas are simple and there-
fore can be easily implemented in a spreadsheet. The general
method, presented in a previous paper [7], is complicated and
cumbersome as the problem itself is complex. The system of
Volterra integral equations, which represents the mathematical
synthesis of the physics of this problem, cannot be solved in
closed-form because of the complexity of the creep function usu-
ally adopted for concrete. Therefore, the solution has to be
achieved by means of a refined step-by-step time integration
method. The problem of time integration is overcome when deal-
ing with algebraic methods, as long as the aging coefficient,
x(t,t;), is known or is set by means of a suitable approximate
formula.

Note that Eq. (1) still applies when dealing with an elastic mate-
rial (that is when ¢(t,t;) =0 and E(t;) = E). This approach is
therefore able to solve many modern structural problems such as
the service behaviour of new structural elements made of a pre-
cast, prestressed main load bearing element combined with a
cast-in-place concrete cross-section (even if post-tensioned after
gaining the final shape), composite steel-concrete sections and
reinforced or prestressed concrete elements rehabilitated or
strengthened by means of concrete jacketing or steel or carbon
fibre reinforced polymer plate bonding. Moreover this method
makes it possible to determine the pre-strain of the tendons, and
therefore, to take into account creep effects in the cross section
analyses at the ultimate limit state of bending and compression
of the composite cross section.

In the last decades construction phases, driven by new technol-
ogies and by the need to reduce costs, have become increasingly

complicated. Approximate but reliable solutions are needed in
common practice during the design phase (to speed it up) and dur-
ing the structural verification phase (to guarantee the reliability of
the outputs of more refined solutions, or to predict the long-term
behaviour of the structural element if the expanse of a refined
solution is not justified by the economic value of the job). From this
point of view, algebraic methods are a good solution. It would be
anyway interesting to verify the error ensuing from the adoption
of approximate formulas for the aging coefficient in selected cases
of practical interest. This is the reason why in a following paper the
output of a computer program written according to the general
method will be compared with the outcomes of the algebraic
methods to verify the accuracy of the latter; especially when the
aging coefficient y(t,t;) is evaluated by means of approximate
formulas.
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