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A spectral collocation solution

for in-plane eigenvalue analysis of skew plates

Amir Hossein Mohazzaba, Lorenzo Dozioa,∗

aDepartment of Aerospace Science and Technology, Politecnico di Milano, via La Masa, 34, 20156, Milano, Italy

Abstract

Free in-plane vibration analysis of isotropic plates with skew geometry is carried out using the spectral

collocation method. The mathematical formulation of the discretized spectral solution is expressed in a

concise matrix form which can be directly and easily coded in modern mathematical software packages. A

rather comprehensive set of plate cases with various skew angles, aspect ratios, and boundary conditions

is presented, with the aim of both showing the rate of convergence and degree of accuracy of the adopted

method and providing useful design guidelines related to the effect of the plate geometrical parameters on

the fundamental in-plane frequency value.

Keywords: In-plane free vibration, Skew plates, Spectral collocation method, Eigenvalues

1. Introduction

Accurate computation of the in-plane modal characteristics of plates can be of utmost importance in some

engineering applications such as transmission of high frequency vibration through a built-up structure [1, 2]

or excitation of thin plates subjected to high speed tangential flows.

Owing to the practical interest of the problem, some researchers investigated the in-plane vibration of

plates according to different mathematical approaches. About two decades ago, Bardell et al. [3] used the

Ritz method to study the in-plane frequencies and mode shapes of isotropic rectangular plates with various

boundary conditions. The same method was adopted later by others to study the effect of ply orientation

in orthotropic and laminated plates [4, 5], the influence of nonuniform elastically restrained boundaries [6]

and the modal properties when the plate has non-rectangular geometry [7]. Gorman [8, 9, 10] applied the

superposition method to accurately predict the in-plane frequencies of rectangular plates with fully free

and clamped edges and uniform elastic supports normal to the boundary. The Kantorovich-Krylov method

was employed by Wang and Wereley [11] to compute free in-plane vibration characteristics of rectangular

isotropic plates with various combinations of clamped and free edges. Finally, a series solution is obtained
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in Refs. [12, 13, 14] for the in-plane vibration analysis of isotropic and orthotropic plates with elastically

restrained boundaries.

Besides the aforementioned approximate analytical-type and numerical studies, some exact solutions of

the free in-plane vibrations of rectangular plates are also available in the open literature. Gorman [15]

analyzed plates having at least two opposite edges simply supported and the other edges free or clamped.

In Gorman’s work, two distinct types of simple support boundary conditions are formulated: so called

simple support type 1 (SS1), where the normal stress and tangential displacement along the edge are zeros,

and simple support type 2 (SS2), where normal displacement and tangential stress are zeros. Xing and

Liu’s work [16] is another significant contribution in this field. They employed the separation of variables

method to obtain exact solutions of natural frequencies and mode shapes when at least two opposite edges

had either types of simple support conditions previously introduced. All possible exact solutions were

successfully obtained, including cases which were not available before. An extension of the same exact

procedure to orthotropic plates is presented in Ref. [17].

Despite the availability of the works cited above, the amount of research devoted to free in-plane vibration

of plates is still extremely small in comparison to that devoted to free transverse vibration of plates. In

particular, very little attention has been given to in-plane vibration analysis of non-rectangular plates with

straight edges. To the best author’s knowledge, the topic is discussed only in the work by Singh et al. [7],

where a modified form of the Rayleigh-Ritz method is adopted to study rhombic plates. Only few cases with

clamped and free edges are numerically investigated in Ref. [7]. Skew plates are of practical interest in the

aerospace industry due to the increasing use of such components in aircraft and space vehicles. Indeed, there

are extensive studies on the transverse vibration of plates with skew geometry (see, for instance, [18] and [19]

and references therein). The same cannot be said for the in-plane vibration problem. The main purpose of

the present paper is to contribute to the literature on vibration of skew plates by providing complete sets

of vibration data related to in-plane modal properties of plates with various boundary conditions, different

aspect ratios and small and large skew angles.

Since exact solutions cannot be obtained for the problem under study, a numerical approach must

be employed. Instead of using a classical finite element method (FEM), the solution of the free in-plane

vibration of skew plates is obtained here by a spectral collocation method. The reason is twofold. First, FEM

typically requires both huge computational resource to accurately capture high frequency modal behaviour

and remeshing for any variation of geometrical parameters. Furthermore, the usual slow convergence of

FEM is even worsened by the stress singularities at the obtuse corners of the skew plate. Therefore, FEM

appears to be an unsuitable choice especially when extensive optimisation and parametric analysis is to be

performed.

Spectral methods [20] are known to have high rate of convergence and accuracy. There are various kinds

of spectral methods, which can be classified according to the selection of basis and weighting functions in
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the numerical procedure. The spectral collocation method used here, also known as Chebyshev collocation

method or pseudospectral method [21], can be considered to be a global spectral method that performs a col-

location process, i.e., weighting functions are delta functions centered at special grid points called collocation

points. Since the mathematical formulation is simple and powerful enough to produce approximate solutions

close to exact values, this method has been largely adopted with success in solving partial differential equa-

tions governing many physical phenomena such as fluid dynamics and wave motion. It was also used for the

solution of structural mechanics problems. Lin and Jen [22] used the pseudospectral method for computing

the bending response of laminated anisotropic plates. The eigenvalues analysis of Timoshenko beams and

axisymmetric Mindlin plates is presented by Lee and Schultz [23]. More recently, Sari and Butcher applied

the pseudospectral method to study the effect of damaged boundaries on the free transverse vibration of

thin, moderately thick and thick rectangular plates [24, 25, 26]. It is worth mentioning that, as pointed out

by Shu [27], the pseudospectral method is identical to the differential quadrature method (DQM) [28] when

the grid points of DQM are chosen to be the Chebyshev collocation points. It is also noted that, differently

from the out-of-plane free vibration problem of thin plates, the application of DQM to in-plane vibration

analysis of plates is easier since difficulty in dealing with multiple boundary conditions [29, 30] does not

exist.

The paper is organised as follows. Section 2 presents the mathematical formulation in terms of equations

of motion and boundary conditions of the problem under study, and the related discretization procedure

and eigenvalue problem. The discretization of the boundary-value problem is obtained in a concise matrix

form which can be directly and easily coded in modern mathematical software packages. Some numerical

results are shown in Section 3. First, the rate of convergence of the method is discussed with respect to FEM

solutions and for varying skew angles and boundary conditions. Then, the accuracy of the present approach

is evaluated by comparison with some reference cases available in the literature. Finally, the fundamental

in-plane frequencies of plates with various aspect ratios, skew angles and boundary conditions are reported.

Section 4 contains some concluding remarks.

2. Mathematical formulation

2.1. In-plane equations of motion and boundary conditions

Under the small strains assumption, the in-plane dynamic equilibrium of a homogeneous isotropic plate

of thickness h with undeformed midplane Ω (see Figure 1) can be expressed in weak form through the

principle of virtual displacements as follows

∫

Ω

[

δ
∂u

∂x
Nxx + δ

∂v

∂y
Nyy +

(

δ
∂u

∂y
+ δ

∂v

∂x

)

Nxy

]

dydx =

−

∫

Ω

[

δum
∂2u

∂t2
+ δv m

∂2v

∂t2

]

dydx

(1)
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Figure 1: A plate of generic shape Ω and boundary Γ.

where u = u(x, y, t) and v = v(x, y, t) are the displacement components along the in-plane (x, y) cartesian

coordinate directions, δ denotes the virtual variation,m = ρh is the mass per unit area and Nαβ (α, β = x, y)

are the in-plane stress resultants.

After integrating by parts Eq. (1), the equilibrium can be written as

∫

Γ

[δuNxxnx + δv Nyyny + δuNxyny + δv Nxynx] ds

−

∫

Ω

[

δu
∂Nxx

∂x
+ δv

∂Nyy

∂y
+ δu

∂Nxy

∂y
+ δv

∂Nxy

∂x

]

dydx =

−

∫

Ω

[

δum
∂2u

∂t2
+ δv m

∂2v

∂t2

]

dydx

(2)

where Γ is the plate boundary and nx and ny are the components of the outward normal n at a point on Γ.

Making use of the constitutive equations and exploiting the arbitrariness of the virtual variations over Ω,

the in-plane equations of motion can be written in matrix form as





L11 L12

L21 L22











u

v







= m
∂2

∂t2







u

v







(3)

where the elements of the 2× 2 matrix of linear differential operators are given by

L11 = A11
∂2

∂x2
+A66

∂2

∂y2
L12 = (A12 +A66)

∂2

∂x∂y

L21 = L12 L22 = A66
∂2

∂x2
+A22

∂2

∂y2

(4)

The quantities Aij are the in-plane rigidities of the plate defined as A11 = Eh/(1 − ν2), A12 = νA11,

A22 = A11, and A66 = Eh/[2(1 + ν)], where E is Young’s modulus and ν is Poisson’s ratio.

4



The boundary integral in Eq. (2) can be alternatively written as
∫

Γ

[δunNnn + δusNns] ds (5)

where un and us are the boundary displacements along the normal and tangential directions, respectively,

on the boundary Γ (see Figure 1), and Nnn and Nns are the corresponding boundary stress resultants. The

following relations hold:

un = unx + vny

us = −uny + vnx

Nnn = Nxxn
2
x + 2Nxynxny +Nyyn

2
y

Nns = (Nyy −Nxx)nxny +Nxy

(

n2
x − n2

y

)

Therefore, the boundary equations can be expressed in matrix form as




B11 B12

B21 B22











u

v







=







0

0







(6)

where the operators Bij are defined according to the in-plane boundary conditions. The four classical

boundary conditions are here considered: clamped (un = 0, us = 0), free (Nnn = 0, Nns = 0), simply-

supported type 1 (us = 0, Nnn = 0), and simply-supported type 2 (un = 0, Nns = 0). The explicit

expressions of Bij can be found in Appendix A.

2.2. Skew plates in free vibration

From the previous general equations referred to a plate of arbitrary shape, the boundary-value problem

of a skew plate can be derived. Let’s consider the plate in Figure 2 of side lengths a, b, and skew angle α

with respect to the y axis. The boundary-value problem is here expressed in dimensionless form by mapping

the (x, y) physical domain Ω into a square (ξ, η) computational domain Ω̂ = [−1, 1]2. The spatial derivatives

of any quantity in the two coordinate systems are related by






















∂

∂x

∂

∂y























=











2

a
0

−
2

a
tanα

2

b

1

cosα

































∂

∂ξ

∂

∂η























(7)

and


















































∂2

∂x2

∂2

∂y2

∂2

∂x∂y



















































=

























4

a2
0 0

4

a2
tan2 α

4

b2
1

cos2 α
−

8

ab

tanα

cosα

−
4

a2
tanα 0

4

ab

1

cosα















































































∂2

∂ξ2

∂2

∂η2

∂2

∂ξ∂η























































(8)
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(a) Physical domain

(b) Computational domain

Figure 2: Geometry of the skew plate. (a) Physical domain and (b) computational domain.
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After using the above relations into Eq. (4) and assuming a harmonic motion for the in-plane displacements

as (u, v) = (û, v̂)ejωt, equations (3) can be put into the following ordinary differential eigenvalue form





L̂11 L̂12

L̂21 L̂22











û

v̂







= λ2







û

v̂







(9)

where

λ2 =
ρa2ω2(1− ν2)

4E
(10)

and the transformed differential operators are defined as

L̂11 = −
2 + (1− ν) tan2 α

2

∂2

∂ξ2
−

1− ν

2

φ2

cos2 α

∂2

∂η2

+ (1 − ν)φ
tanα

cosα

∂2

∂ξ∂η

L̂12 = −
1 + ν

2

[

φ
1

cosα

∂2

∂ξ∂η
− tanα

∂2

∂ξ2

]

L̂21 = L̂12

L̂22 = −
2 tan2 α+ 1− ν

2

∂2

∂ξ2
−

φ2

cos2 α

∂2

∂η2

+ 2φ
tanα

cosα

∂2

∂ξ∂η

(11)

where φ = a/b is the plate aspect ratio. Accordingly, the related boundary conditions at each edge may be

expressed in matrix form as





B̂11 B̂12

B̂21 B̂22











û

v̂







=







0

0







(each edge) (12)

where, for the sake of brevity, the boundary operators B̂ij for clamped (C), free (F), simply-supported type

1 (SS1) and simply-supported type 2 (SS2) edges are reported in Appendix B.

2.3. Discretization of the boundary-value problem

A spectral collocation solution of the eigenvalue problem expressed by Eqs. (9) and (12) is derived. Let

us first introduce a grid of Chebyshev-Gauss-Lobatto (CGL) points (ξi, ηj), i, j = 0, . . . , N , over Ω̂ (see

Figure 3) defined as

ξi = − cos(iπ/N) ηj = − cos(jπ/N) (13)

The discrete solution of the 2-D problem is sought in the form of tensor product of one-dimensional expan-

sions as follows






ûN

v̂N







=
N
∑

m=0

N
∑

n=0







ûmn

v̂mn







ψm(ξ)ψn(η) (14)
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ξ

η

Figure 3: Two dimensional grid of Chebyshev-Gauss-Lobatto points on the computational domain (example with N = 12).

where ûmn and v̂mn are the unknown values at the grid points, i.e., ûmn = ûN(ξm, ηn) and v̂mn = v̂N (ξm, ηn),

and ψl (l = 0, . . . , N) denotes the Lagrange interpolating polynomial relative to the given set of CGL nodes,

so that ψm(ξi) = δmi and ψn(ηj) = δnj for i, j = 0, . . . , N . The approximation (ûN , v̂N ) is found by col-

location; that is, (ûN , v̂N ) is required to satisfy the differential problem Eq. (9) along with the boundary

conditions Eq. (12) at the CGL nodes. The derivatives in the differential operators L̂ij and B̂ij are approx-

imated through the interpolation derivatives, corresponding to the evaluation at the grid points of the first-

and second-order derivatives of the interpolants in Eq. (14).

For the sake of convenience, the collocation equations are written in a matrix form. To this aim,

the vectors u,v ∈ R
(N+1)2 of displacement values ûmn and v̂mn at the CGL nodes are introduced, e.g.

u = (û00, û01, . . . , û0N , . . . , ûNN) and v = (v̂00, v̂01, . . . , v̂0N , . . . , v̂NN ). They are sorted so that increasing

values of the coordinate ξ (η) starting from ξ(η) = −1 correspond to increasing values of the index i (j).

Thus, the four corners of the computational domain in Figure 3 are numbered as follows: (.)00 (bottom left),

(.)N0 (bottom right), (.)0N (top left), and (.)NN (top right). Similarly, the values of the derivatives at the

CGL points are collected into vectors which are denoted by a subscript indicating the variable with respect

of which the partial derivative is taken, i.e., ()ξ = ∂/∂ξ. They can be expressed through the Kronecker
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product ⊗ as follows

uξ =
(

D(1) ⊗ I
)

u uηη =
(

I⊗D(2)
)

u

uη =
(

I⊗D(1)
)

u vξξ =
(

D(2) ⊗ I
)

v

vξ =
(

D(1) ⊗ I
)

v vηη =
(

I⊗D(2)
)

v

vη =
(

I⊗D(1)
)

v uξη =
(

D(1) ⊗D(1)
)

u

uξξ =
(

D(2) ⊗ I
)

u vξη =
(

D(1) ⊗D(1)
)

v

where I is the identity matrix of size (N +1), and D(1) and D(2) are the differentiation matrices containing,

respectively, the first- and second-order derivatives of the interpolants evaluated at the CGL nodes. We

have D(2) =
(

D(1)
)2

and the entries of D(1) are reported for example in Refs. [27, 31].

By using the above notation, the discretized set of collocated equations of motions can be written as





L11 L12

L21 L22











u

v







= λ2







u

v







(15)

where

L11 = −
2 + (1− ν) tan2 α

2

(

D(2) ⊗ I
)

−
1− ν

2

φ2

cos2 α

(

I⊗D(2)
)

+ (1 − ν)φ
tanα

cosα

(

D(1) ⊗D(1)
)

L12 = −
1 + ν

2

[

φ
1

cosα

(

D(1) ⊗D(1)
)

− tanα
(

D(2) ⊗ I
)

]

L21 = L12

L22 = −
2 tan2 α+ 1− ν

2

(

D(2) ⊗ I
)

−
φ2

cos2 α

(

I⊗D(2)
)

+ 2φ
tanα

cosα

(

D(1) ⊗D(1)
)

(16)

The satisfaction of the equations of motion must be enforced at the interior CGL nodes only (i, j =

1, . . . , N − 1). Moreover, as it will be shown later, the boundary CGL points must be explicitly defined in

order to connect the differential problem with the set of boundary conditions. To this aim, the following

procedure is implemented. First, a matrix ZI ∈ R
(N−1)2×(N+1)2 selecting the rows of the discrete operators

9



in Eq. (16) corresponding to interior points is introduced

ZI =





































eT(N+1)+2

...

eT2(N+1)−1

eT2(N+1)+2

...

eT3(N+1)−1

...





































(17)

where ei ∈ R
(N+1)2×1 is the ith unit vector, i.e., the vector which is zero in all entries except for the ith

entry at which it is equal to 1. A similar selecting matrix ZB ∈ R
4N×(N+1)2 corresponding to the boundary

points is defined as

ZB =

















































eT1
...

eT(N+1)

eT(N+1)+1

eT2(N+1)

...

eTN(N+1)+1

...

eT(N+1)(N+1)

















































(18)

Accordingly, Equations (15) are transformed into the following set

LBsB + LIsI = λ2sI (19)

where

LB =











ZIL11Z
T
B ZIL12Z

T
B

ZIL21Z
T
B ZIL22Z

T
B











(20)

LI =











ZIL11Z
T
I ZIL12Z

T
I

ZIL21Z
T
I ZIL22Z

T
I











(21)

and

sI =



















uI

vI



















sB =



















uB

vB


















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are vectors containing displacement variables of interior and boundary points, respectively.

A similar procedure is employed for the discretization of the boundary conditions. Displacements and

derivatives at the CGL boundary points along edge ξ = −1 are expressed as

u =
(

eT1 ⊗ I
)

u v =
(

eT1 ⊗ I
)

v

uξ =
(

eT1 D
(1) ⊗ I

)

u vξ =
(

eT1 D
(1) ⊗ I

)

v

uη =
(

eT1 ⊗D(1)
)

u vη =
(

eT1 ⊗D(1)
)

v

Similarly, for edge η = −1, we can write

u =
(

I⊗ eT1
)

u v =
(

I⊗ eT1
)

v

uξ =
(

D(1) ⊗ eT1

)

u vξ =
(

D(1) ⊗ eT1

)

v

uη =
(

I⊗ eT1 D
(1)

)

u vη =
(

I⊗ eT1 D
(1)

)

v

Related quantities referred to edges ξ = 1 and η = 1 are obtained from the previous expressions by substi-

tuting e1 with eN+1.

By using the above notation, the discretized set of boundary conditions for each of the four edges can

be written as




B11 B12

B21 B22











u

v







=







0

0







(each edge) (22)

where the discrete operators Bij are explicitly reported in Appendix C for the edge conditions considered

in this work. The whole set of discretized boundary equations for all edges is then expressed in a more

compact matrix form as follows
[

Bu Bv

]







u

v







=







0

0







(23)

where Bu collects the B11 and B21 matrices of the four edges related to the displacement vector u and Bv

groups together the B12 and B22 matrices of the four edges related to the displacement vector v. Using

vectors sI and sB of displacements at interior and boundary points, the boundary equations can be written

as

BBsB +BIsI = 0 (24)

where

BB =
[

BuZ
T
B BvZ

T
B

]

BI =
[

BuZ
T
I BvZ

T
I

]

(25)

2.4. Solution

The discretized problem is governed by Eqs. (19) and (24). From the second, we get

sB = −B−1
B BIsI (26)
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Figure 4: Convergence study for SS1-SS1-SS1-SS1 rectangular plate.

Substituting Eq. (26) into Eq. (19) yields the following standard eigenvalue problem

(

LI − LBB
−1
B BI

)

sI = λ2sI (27)

3. Numerical analysis

In this section, some illustrative numerical examples are presented to show the convergence rate and

accuracy of the spectral collocation solution. In the following, the combination of edge conditions of the

skew plate is represented by a compact four-letter symbolic notation for describing clamped (C), free (F),

simply-supported of type 1 (SS1) and type 2 (SS2) boundary conditions, numbered in a counterclockwise

direction beginning from edge DA (see Figure 2).

3.1. Convergence study

First, a rectangular plate (α = 0o) with φ = 0.833 and two different sets of boundary conditions, SS1-

SS1-SS1-SS1 and SS1-C-SS1-F, is considered. The present solution for increasing number N of CGL points

is compared with the solution obtained using a classical FEM in Figures 4 and 5 for the fundamental mode

and an arbitrarily selected higher-order mode (mode 7 for the fully simply-supported plate and mode 8

for the SS1-C-SS1-F plate). The error |ω − ωe|/ωe is shown, where ωe is the reference exact value of the

in-plane natural frequency as reported in Ref. [16]. We see, as expected, exponential convergence for the
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Figure 5: Convergence study for SS1-C-SS1-F rectangular plate.

spectral solutions, whereas the FE solutions are limited to algebraic convergence. Note that the deviations

from the exact values are so small for N ≥ 20 that they are swamped by the round-off error of the present

computations. Furthermore, it is apparent that the convergence is not affected by the edge conditions of

the rectangular plate.

The convergence rate of the method is then evaluated by varying the skew angle of the plate considered

before, now having SS2-SS2-SS2-SS2 boundary conditions. The skew angle α is assumed to be equal to

0o, 15o, 30o, 45o and 75o, ranging from a rectangular to a highly skewed plate. Figure 6 shows the value of

∆ = |ωNk+1 −ωNk| for two modes (mode 3 and mode 7) as function of increasing values of N . It is observed

that the skewness of the plate largely affects the convergence of the spectral solution. Increasing angles slow

down the rate of convergence since the solution is non-smooth due to the corner singularities.

Another case corresponding to a cantilever F-C-F-F plate with φ = 1.0 is presented in Figure 7. It

is noted that the convergence rate is negatively affected by the presence of free corners when the plate is

rectangular (α = 0o). It is also observed that, even though the plate has free corners, a behaviour similar to

the previous case (see Fig. 6) is obtained for nonzero skew angles. Due to the strong effect of the skewness

of the plate with free corners on the rate of convergence of the spectral solution, one may question whether

the present results obtained with a selected value N of collocation points are accurate. To answer this

question, Table 1 shows the first six in-plane frequency parameters λ = ωa
√

ρ/E of a rhombic F-C-F-F

plate with α = 75o as a function of N . The eigenvalues are compared with those obtained from a finite
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Table 1: First six in-plane frequency parameters λ = ωa
√

ρ/E of a rhombic F-C-F-F plate.

Mode

N 1 2 3 4 5 6

22 0.3502 0.9545 1.7113 2.0608 2.8895 3.9583

26 0.3495 0.9544 1.7080 2.0600 2.8885 3.9520

30 0.3491 0.9537 1.7058 2.0596 2.8866 3.9477

34 0.3489 0.9532 1.7043 2.0593 2.8851 3.9449

38 0.3487 0.9528 1.7032 2.0590 2.8840 3.9429

42 0.3485 0.9525 1.7025 2.0588 2.8831 3.9413

46 0.3484 0.9523 1.7018 2.0587 2.8824 3.9402

50 0.3483 0.9521 1.7014 2.0586 2.8818 3.9393

FEM 0.3484 0.9524 1.7003 2.0613 2.8952 3.9576

err(%) 0.03 0.03 0.06 0.13 0.46 0.46

element model in ABAQUS with a refined mesh of 300× 300 elements. The percentage error of the spectral

solution computed with N = 50 with respect to the FE solution is also shown in the last row of the table.

It is observed that the present converged values obtained using 50 collocation points in each plate direction

are very close to the reference FE results. Rather accurate eigenfrequencies are also found when a relatively

small number of collocation points are adopted.

The rate of convergence is also affected by the boundary conditions of the skew plate. This is shown in

Figure 8 for a plate with φ = 0.833 and α = 30o having six different combinations of edge conditions.

The adversing effect of increasing skewness of the plate on the rate of convergence was also observed

in previous studies dealing with transverse vibrations and buckling [32, 33] and it is still considered to be

a challenge for numerical methods. From the previous analysis, it is noted that, although the exponential

convergence of the spectral collocation solution is lost when skew plates are considered, well converged results

to four significant digits are obtained in all cases when N = 50. Therefore, the frequency values shown in

the following are considered to be highly accurate.

3.2. Comparison study

The accuracy of the present spectral solution is now explicitly evaluated and discussed by comparison

with some exact and reference values available in the literature. As done previously, rectangular plates

are considered first. Table 2 lists the first ten in-plane non dimensional frequency parameters λ = ωa/πc

(c =
√

G/ρ is the shear wave velocity and G is the shear modulus) of plates with aspect ratio φ = 0.833 and

various boundary conditions. Present results are computed with N = 20 CGL collocation points. Values in

round brackets, when available, are taken from exact analysis presented in Ref. [16]. It can be noticed the

excellent agreement of this solution and the exact eigenfrequencies, even when a relatively small number of

collocation points is adopted.
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Table 2: First ten in-plane frequency parameters λ = ωa/πc of rectangular plates with φ = 0.8333 and various boundary

conditions. Comparison with exact solutions reported in Ref. [16].

Mode

Boundary conditions 1 2 3 4 5 6 7 8 9 10

SS1-SS1-SS1-SS1 0.8333 1.0000 1.3017 1.6667 1.9437 2.0000 2.1667 2.2003 2.5000 2.6034

(0.8333) (1.0000) (1.3017) (1.6667) (1.9437) (2.0000) (2.1667) (2.2003) (2.5000) (2.6034)

SS2-SS2-SS2-SS2 1.3017 1.4086 1.6903 1.9437 2.1667 2.2003 2.6034 2.6926 2.8172 3.1136

(1.3017) (1.4086) (1.6903) (1.9437) (2.1667) (2.2003) (2.6034) (2.6926) (2.8172) (3.1136)

SS1-C-SS1-C 0.8333 1.5406 1.6667 1.7846 2.2493 2.3915 2.5000 2.5735 2.7774 3.1512

(0.8333) (1.5406) (1.6667) (1.7846) (2.2493) (2.3915) (2.5000) (2.5735) (2.7774) (–)

SS2-C-SS2-C 1.4086 1.5406 1.7846 2.2493 2.3915 2.5735 2.7774 2.8172 3.1512 3.3292

(1.4086) (1.5406) (1.7846) (2.2493) (2.3915) (2.5735) (2.7774) (–) (–) (–)

SS1-C-SS1-F 0.4167 0.9970 1.2500 1.5900 1.8388 2.0492 2.0783 2.0833 2.3976 2.7491

(0.4167) (0.9970) (1.2500) (1.5900) (1.8388) (2.0492) (2.0783) (2.0833) (–) (–)

SS2-C-SS2-F 0.7043 0.9970 1.5900 1.8388 2.0492 2.0783 2.1129 2.3976 2.7491 2.8321

(0.7043) (0.9970) (1.5900) (1.8388) (2.0492) (2.0783) (2.1129) (–) (–) (–)

SS1-C-SS2-F 0.7359 0.9029 1.3971 1.5252 1.9594 2.0398 2.2923 2.4121 2.5657 2.6312

(0.7359) (0.9029) (1.3971) (1.5252) (1.9594) (2.0398) (2.2923) (2.4121) (2.5657) (2.6312)
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Table 3: First six in-plane frequency parameters λ = ωa
√

ρ(1 − ν2)/E of fully clamped rectangular plates with various aspect

ratios φ.

Mode

φ = a/b Source 1 2 3 4 5 6

1.0 Present 3.5552 3.5552 4.2350 5.1857 5.8586 5.8944

Ref. [12] 3.554 3.554 4.236 5.185 5.859 5.896

Ref. [3] 3.555 3.555 4.235 5.186 5.859 5.895

Ref. [6] 3.5552 3.5552 4.2350 5.1859 5.8587 5.8946

1.5 Present 4.1127 4.9252 5.4024 6.5644 6.6024 6.6164

Ref. [12] 4.112 4.923 5.402 6.564 6.602 6.617

2.0 Present 4.7890 6.3786 6.7121 7.0488 7.6083 8.1402

Ref. [12] 4.788 6.374 6.710 7.048 7.608 8.140

Ref. [3] 4.789 6.379 6.712 7.049 7.608 8.140

2.5 Present 5.5398 7.5911 7.8744 8.1011 8.7759 9.5653

Ref. [12] 5.538 7.590 7.868 8.097 8.773 9.568

3.0 Present 6.3385 8.1970 9.3950 9.5398 10.056 10.543

Ref. [12] 6.336 8.195 9.385 9.532 10.05 10.54

Another case is considered in Table 3, where the first six in-plane nondimensional frequency parameters

λ = ωa
√

ρ(1 − ν2)/E of fully clamped rectangular plates with various aspect ratios φ are tabulated. As

before, the present solutions are computed with N = 20. Comparison with other approximate solutions

obtained using analytical-type methods is reported. Again, the spectral collocation method is capable of

providing highly accurate eigenvalues in the overall frequency range of interest.

Finally, the present numerical approach is compared with the energy method proposed by Singh et al. [7]

to compute the in-plane natural frequencies corresponding to the first six modes of rhombic (φ = 1.0) skew

plates having three different combinations of clamped and free edge conditions. Nondimensional frequency

parameters λ = ωa
√

ρ/E are reported in Table 4 for skew angle α = 0o, 15o, 30o, 45o and 60o. As suggested

by the convergence analysis discussed above, accurate converged eigenvalues of plates with increasing skew

angle require the use of an increasing number of collocation points. For this reason, the present solutions

are computed with N = 50. We see from Table 4 a good agreement between the two methods for small skew

angles. When α > 30o, a slightly increasing discrepancy is observed. This is probably due to the limited

number of degrees of freedom of the discretized model developed in Ref. [7]. Indeed, no convergence study

is reported in the work of Singh et al. to evaluate the degree of accuracy of the adopted truncated model.

Since their approach can be classified as an energy method based on a Ritz approximation, the frequency

values computed in Ref. [7] are upper-bound solutions of the in-plane free vibration problem. Therefore,

it is believed that the present solutions have an higher degree of accuracy with respect to the comparison

results.
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Table 4: First six in-plane frequency parameters λ = ωa
√

ρ/E of rhombic skew plates with various boundary conditions.

Comparison with approximate solutions reported in Ref. [7].

Skew angle α

Boundary conditions Mode 0o 15o 30o 45o 60o

C-C-C-C 1 3.7269 3.6814 3.8498 4.3406 5.5368

(3.7270) (3.6814) (3.8498) (4.3407) (5.5372)

2 3.7269 3.9741 4.4856 5.4574 7.5134

(3.7270) (3.9743) (4.4861) (5.4588) (7.5428)

3 4.4395 4.5708 5.0125 5.9590 7.5420

(4.4395) (4.5708) (5.0125) (5.9608) (7.5231)

4 5.4361 5.4860 5.6950 6.2328 8.0486

(5.4363) (5.4862) (5.6953) (6.2334) (8.0737)

5 6.1415 6.1668 6.5249 7.4379 9.3357

(6.1601) (6.1674) (6.5262) (7.4494) (9.3394)

6 6.1790 6.2888 6.7838 7.8431 9.5452

(6.1741) (6.2888) (6.7847) (7.9611) (9.7038)

C-C-C-F 1 2.3794 2.4376 2.6321 3.0435 3.9231

(2.3801) (2.4390) (2.6360) (3.0521) (3.9428)

2 3.3156 3.3850 3.6138 4.0918 5.1234

(3.3165) (3.3865) (3.6174) (4.1027) (5.1716)

3 3.5735 3.6659 3.9724 4.5979 5.8302

(3.5742) (3.6678) (3.9792) (4.6204) (5.9077)

4 4.5137 4.5560 4.7437 5.2288 6.4238

(4.5148) (4.5572) (4.7449) (5.2293) (6.4405)

5 4.9459 5.0885 5.4610 6.1020 7.4825

(4.9459) (5.0827) (5.1358) (6.1184) (7.6716)

6 5.1969 5.2630 5.6160 6.4744 7.8463

(5.1970) (5.2633) (5.6158) (6.4821) (7.9042)

C-F-C-F 1 1.7747 1.8258 1.9965 2.3576 3.1361

(1.7758) (1.8283) (2.0040) (2.3776) (3.1955)

2 3.1635 3.2315 3.4586 3.9373 4.9110

(3.1653) (3.2360) (3.4737) (3.7975) (4.9137)

3 3.2711 3.3225 3.5191 3.9727 4.9654

(3.2713) (3.3225) (3.5010) (3.9587) (5.0550)

4 3.5125 3.6054 3.8485 4.2483 5.1440

(3.5130) (3.6059) (3.8486) (4.2501) (5.1719)

5 3.9238 4.0045 4.3170 4.8266 5.9043

(3.9266) (4.0097) (4.3282) (4.8358) (5.9619)

6 4.0908 4.1488 4.3553 5.0415 6.4774

(4.0912) (4.1498) (4.3569) (5.0693) (6.5640)
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Table 5: Fundamental in-plane frequency parameter λ = ωa/πc of SS1-C-SS1-C plates with various aspect ratios φ = a/b and

skew angles α.

Skew angle α

Aspect ratio φ 0o 15o 30o 45o 60o

1.0 1.0000 1.0370 1.1602 1.4199 1.9820

1.5 1.5000 1.5567 1.7460 2.1474 3.0245

2.0 2.0000 2.0745 2.3238 2.8543 4.0230

2.5 2.5000 2.5922 2.9010 3.5607 5.0222

3.0 3.0000 3.1098 3.4782 4.2674 6.0217

Table 6: Fundamental in-plane frequency parameter λ = ωa/πc of SS2-C-SS2-C plates with various aspect ratios φ = a/b and

skew angles α.

Skew angle α

Aspect ratio φ 0o 15o 30o 45o 60o

1.0 1.6903 1.6624 1.6637 1.7618 2.0709

1.5 2.1976 2.1940 2.2495 2.4653 3.0608

2.0 2.5676 2.6072 2.7595 3.1376 4.0586

2.5 2.9746 3.0404 3.2731 3.8089 5.0567

3.0 3.4060 3.4940 3.7991 4.4849 6.0548

3.3. Parametric study

The last numerical analysis presented in this work refers to some new frequency values corresponding to

the in-plane fundamental mode of plates with different skew angles, aspect ratios, and boundary conditions,

with the aim of covering a reasonably complete set of application cases. The skew angle is varied from 0o

to 60o with a step of 15o. The analysis includes plates with aspect ratio φ = 1.0, 1.5, 2.0, 2.5 and 3.0. Five

combinations of boundary conditions are considered in Tables 5 to 9 comprising SS1-C-SS1-C, SS2-C-SS2-

C, C-C-C-C, C-C-C-F, and C-F-C-F plates. The non dimensional in-plane natural frequency λ = ωa/πc

is shown in all cases as a result of computations performed with 50 collocation points. The following

Table 7: Fundamental in-plane frequency parameter λ = ωa/πc of C-C-C-C plates with various aspect ratios φ = a/b and skew

angles α.

Skew angle α

Aspect ratio φ 0o 15o 30o 45o 60o

1.0 1.9128 1.8895 1.9759 2.2279 2.8418

1.5 2.2128 2.2548 2.4060 2.7561 3.5796

2.0 2.5767 2.6376 2.8479 3.3191 4.4170

2.5 2.9807 3.0594 3.3296 3.9299 5.3211

3.0 3.4104 3.5072 3.8383 4.5706 6.2599
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Table 8: Fundamental in-plane frequency parameter λ = ωa/πc of C-C-C-F plates with various aspect ratios φ = a/b and skew

angles α.

Skew angle α

Aspect ratio φ 0o 15o 30o 45o 60o

1.0 1.2213 1.2511 1.3510 1.5621 2.0136

1.5 1.5015 1.5373 1.6558 1.8989 2.3887

2.0 1.8374 1.8687 1.9750 2.2054 2.7263

2.5 2.0465 2.0751 2.1862 2.4514 3.0876

3.0 2.2072 2.2468 2.3874 2.7117 3.4883

Table 9: Fundamental in-plane frequency parameter λ = ωa/πc of C-F-C-F plates with various aspect ratios φ = a/b and skew

angles α.

Skew angle α

Aspect ratio φ 0o 15o 30o 45o 60o

1.0 0.9109 0.9372 1.0248 1.2101 1.6096

1.5 0.8637 0.8827 0.9437 1.0607 1.2604

2.0 0.8128 0.8252 0.8631 0.9250 0.9919

2.5 0.7606 0.7678 0.7879 0.8117 0.8046

3.0 0.7095 0.7127 0.7195 0.7173 0.6698

observations can be made from tabulated values:

1. the fundamental in-plane frequency of SS1-C-SS1-C plates increases significantly as the skew angle

and aspect ratio increase;

2. the same behavior as above occurs for SS2-C-SS2-C plates, but the increment of the fundamental

eigenvalue is less marked;

3. fully clamped plates exhibit frequency values close to those of SS2-C-SS2-C plates at high aspect ratios;

4. the first in-plane frequency of C-F-C-F plates decreases with increasing aspect ratio; it is also noted

in this case that, for aspect ratios up to 2, the frequency monotonically increases as the skew angle

increases; instead, for higher values of the aspect ratio, there is first an increasing and then a decreasing

behavior.

The above informations can be useful in the design process and the accurate results reported in the Tables

can be also used as benchmark values for validating other numerical techniques aimed at solving the in-plane

free vibration problem of skew plates.
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4. Conclusions

The paper has presented the solution of the free in-plane vibration problem for isotropic skew plates with

arbitrary combination of classical boundary conditions using the spectral collocation method. Rectangular

plates are also included in the analysis as a particular case when the skew angle is set to zero. Results for

different skew angles and aspect ratios are reported and discussed. It is shown that the spectral collocation

method exhibits a good rate of convergence as the number of collocation points increases and provides

frequency values with a high degree of accuracy. Some design guidelines are also provided by studying the

effect of the plate geometry on the variation of the fundamental eigenvalue. A rather comprehensive set

of new accurate results is presented, which can be used as a reference for future numerical studies. It is

believed that the present work contributes in extending the available studies on the in-plane vibration of

plates with non-rectangular shape.
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Appendix A

The boundary operators in Eq. (6) are defined below for each in-plane classical boundary condition

considered in this work:
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- clamped (un = 0, us = 0):

B11 = nx

B12 = ny

B21 = ny

B22 = −nx

(28)

- free (Nnn = 0, Nns = 0):

B11 =
(

A11n
2
x +A12n

2
y

) ∂

∂x
+ 2A66nxny

∂

∂y

B12 =
(

A12n
2
x +A22n

2
y

) ∂

∂y
+ 2A66nxny

∂

∂x

B21 = (A12 −A11)nxny
∂

∂x
+A66

(

n2
x − n2

y

) ∂

∂y

B22 = (A22 −A12)nxny
∂

∂y
+A66

(

n2
x − n2

y

) ∂

∂x

(29)

- simply supported - type 1 (us = 0, Nnn = 0):

B11 = ny

B12 = −nx

B21 =
(

A11n
2
x +A12n

2
y

) ∂

∂x
+ 2A66nxny

∂

∂y

B22 =
(

A12n
2
x +A22n

2
y

) ∂

∂y
+ 2A66nxny

∂

∂x

(30)

- simply supported - type 2 (un = 0, Nns = 0):

B11 = nx

B12 = ny

B21 = (A12 −A11)nxny
∂

∂x
+A66

(

n2
x − n2

y

) ∂

∂y

B22 = (A22 −A12)nxny
∂

∂y
+A66

(

n2
x − n2

y

) ∂

∂x

(31)

Appendix B

The boundary operators in Eq. (12) are defined below according to the boundary conditions of each edge

of the skew plate:
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- clamped edge (C):

B̂11 = nx

B̂12 = ny

B̂21 = ny

B̂22 = −nx

(32)

- free edge (F):

B̂11 =
[(

n2
x + νn2

y

)

− (1− ν) tanαnxny

] ∂

∂ξ

+
φ

cosα
(1− ν)nxny

∂

∂η

B̂12 =
[

− tanα
(

νn2
x + n2

y

)

+ (1 − ν)nxny

] ∂

∂ξ

+
φ

cosα

(

νn2
x + n2

y

) ∂

∂η

B̂21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

∂

∂ξ

+
φ

cosα

1− ν

2

(

n2
x − n2

y

) ∂

∂η

B̂22 =

[

− tanα(1− ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

∂

∂ξ

+
φ

cosα
(1− ν)nxny

∂

∂η

(33)

- simply-supported type 1 edge (SS1):

B̂11 = ny

B̂12 = −nx

B̂21 =
[(

n2
x + νn2

y

)

− (1− ν) tanαnxny

] ∂

∂ξ

+
φ

cosα
(1 − ν)nxny

∂

∂η

B̂22 =
[

− tanα
(

νn2
x + n2

y

)

+ (1− ν)nxny

] ∂

∂ξ

+
φ

cosα

(

νn2
x + n2

y

) ∂

∂η

(34)
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- simply-supported type 2 edge (SS2):

B̂11 = nx

B̂12 = ny

B̂21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

∂

∂ξ

+
φ

cosα

1− ν

2

(

n2
x − n2

y

) ∂

∂η

B̂22 =

[

− tanα(1− ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

∂

∂ξ

+
φ

cosα
(1− ν)nxny

∂

∂η

(35)

By referring to Figure 2, the components of the outward normal can be specified for the four edges as

follows:

- edge DA: nx = cos(π − α) ny = sin(π − α)

- edge AB: nx = 0 ny = −1

- edge BC: nx = cos(2π − α) ny = sin(2π − α)

- edge CD: nx = 0 ny = 1

When α = 0, the particular case of a rectangular plate is obtained.

Appendix C

The boundary operators in Eq. (22) are defined below according to the boundary conditions of each edge

of the skew plate:

- edge DA, clamped

B11 = nx

(

eT1 ⊗ I
)

B12 = ny

(

eT1 ⊗ I
)

B21 = ny

(

eT1 ⊗ I
)

B22 = −nx

(

eT1 ⊗ I
)

(36)
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- edge DA, free

B11 =
[(

n2
x + νn2

y

)

− (1− ν) tanαnxny

]

(

eT1 D
(1) ⊗ I

)

+
φ

cosα
(1− ν)nxny

(

eT1 ⊗D(1)
)

B12 =
[

− tanα
(

νn2
x + n2

y

)

+ (1− ν)nxny

]

(

eT1 D
(1) ⊗ I

)

+
φ

cosα

(

νn2
x + n2

y

)

(

eT1 ⊗D(1)
)

B21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

(

eT1 D
(1) ⊗ I

)

+
φ

cosα

1− ν

2

(

n2
x − n2

y

)

(

eT1 ⊗D(1)
)

B22 =

[

− tanα(1 − ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

(

eT1 D
(1) ⊗ I

)

+
φ

cosα
(1− ν)nxny

(

eT1 ⊗D(1)
)

(37)

- edge DA, SS1

B11 = ny

(

eT1 ⊗ I
)

B12 = −nx

(

eT1 ⊗ I
)

B21 =
[(

n2
x + νn2

y

)

− (1 − ν) tanαnxny

]

(

eT1 D
(1) ⊗ I

)

+
φ

cosα
(1− ν)nxny

(

eT1 ⊗D(1)
)

B22 =
[

− tanα
(

νn2
x + n2

y

)

+ (1− ν)nxny

]

(

eT1 D
(1) ⊗ I

)

+
φ

cosα

(

νn2
x + n2

y

)

(

eT1 ⊗D(1)
)

(38)

- edge DA, SS2

B11 = nx

(

eT1 ⊗ I
)

B12 = ny

(

eT1 ⊗ I
)

B21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

(

eT1 D
(1) ⊗ I

)

+
φ

cosα

1− ν

2

(

n2
x − n2

y

)

(

eT1 ⊗D(1)
)

B22 =

[

− tanα(1 − ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

(

eT1 D
(1) ⊗ I

)

+
φ

cosα
(1− ν)nxny

(

eT1 ⊗D(1)
)

(39)
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- edge AB, clamped

B11 = nx

(

I⊗ eT1
)

B12 = ny

(

I⊗ eT1
)

B21 = ny

(

I⊗ eT1
)

B22 = −nx

(

I⊗ eT1
)

(40)

- edge AB, free

B11 =
[(

n2
x + νn2

y

)

− (1− ν) tanαnxny

]

(

D(1) ⊗ eT1

)

+
φ

cosα
(1− ν)nxny

(

I⊗ eT1 D
(1)

)

B12 =
[

− tanα
(

νn2
x + n2

y

)

+ (1 − ν)nxny

]

(

D(1) ⊗ eT1

)

+
φ

cosα

(

νn2
x + n2

y

)

(

I⊗ eT1 D
(1)

)

B21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

(

D(1) ⊗ eT1

)

+
φ

cosα

1− ν

2

(

n2
x − n2

y

)

(

I⊗ eT1 D
(1)

)

B22 =

[

− tanα(1− ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

(

D(1) ⊗ eT1

)

+
φ

cosα
(1− ν)nxny

(

I⊗ eT1 D
(1)

)

(41)

- edge AB, SS1

B11 = ny

(

I⊗ eT1
)

B12 = −nx

(

I⊗ eT1
)

B21 =
[(

n2
x + νn2

y

)

− (1− ν) tanαnxny

]

(

D(1) ⊗ eT1

)

+
φ

cosα
(1 − ν)nxny

(

I⊗ eT1 D
(1)

)

B22 =
[

− tanα
(

νn2
x + n2

y

)

+ (1− ν)nxny

]

(

D(1) ⊗ eT1

)

+
φ

cosα

(

νn2
x + n2

y

)

(

I⊗ eT1 D
(1)

)

(42)
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- edge AB, SS2

B11 = nx

(

I⊗ eT1
)

B12 = ny

(

I⊗ eT1
)

B21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

(

D(1) ⊗ eT1

)

+
φ

cosα

1− ν

2

(

n2
x − n2

y

)

(

I⊗ eT1 D
(1)

)

B22 =

[

− tanα(1− ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

(

D(1) ⊗ eT1

)

+
φ

cosα
(1− ν)nxny

(

I⊗ eT1 D
(1)

)

(43)

- edge BC, clamped

B11 = nx

(

eTN+1 ⊗ I
)

B12 = ny

(

eTN+1 ⊗ I
)

B21 = ny

(

eTN+1 ⊗ I
)

B22 = −nx

(

eTN+1 ⊗ I
)

(44)

- edge BC, free

B11 =
[(

n2
x + νn2

y

)

− (1− ν) tanαnxny

]

(

eTN+1D
(1) ⊗ I

)

+
φ

cosα
(1− ν)nxny

(

eTN+1 ⊗D(1)
)

B12 =
[

− tanα
(

νn2
x + n2

y

)

+ (1 − ν)nxny

]

(

eTN+1D
(1) ⊗ I

)

+
φ

cosα

(

νn2
x + n2

y

)

(

eTN+1 ⊗D(1)
)

B21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

(

eTN+1D
(1) ⊗ I

)

+
φ

cosα

1− ν

2

(

n2
x − n2

y

)

(

eTN+1 ⊗D(1)
)

B22 =

[

− tanα(1− ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

(

eTN+1D
(1) ⊗ I

)

+
φ

cosα
(1− ν)nxny

(

eTN+1 ⊗D(1)
)

(45)
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- edge BC, SS1

B11 = ny

(

eTN+1 ⊗ I
)

B12 = −nx

(

eTN+1 ⊗ I
)

B21 =
[(

n2
x + νn2

y

)

− (1− ν) tanαnxny

]

(

eTN+1D
(1) ⊗ I

)

+
φ

cosα
(1 − ν)nxny

(

eTN+1 ⊗D(1)
)

B22 =
[

− tanα
(

νn2
x + n2

y

)

+ (1− ν)nxny

]

(

eTN+1D
(1) ⊗ I

)

+
φ

cosα

(

νn2
x + n2

y

)

(

eTN+1 ⊗D(1)
)

(46)

- edge BC, SS2

B11 = nx

(

eTN+1 ⊗ I
)

B12 = ny

(

eTN+1 ⊗ I
)

B21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

(

eTN+1D
(1) ⊗ I

)

+
φ

cosα

1− ν

2

(

n2
x − n2

y

)

(

eTN+1 ⊗D(1)
)

B22 =

[

− tanα(1− ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

(

eTN+1D
(1) ⊗ I

)

+
φ

cosα
(1− ν)nxny

(

eTN+1 ⊗D(1)
)

(47)

- edge CD, clamped

B11 = nx

(

I⊗ eTN+1

)

B12 = ny

(

I⊗ eTN+1

)

B21 = ny

(

I⊗ eTN+1

)

B22 = −nx

(

I⊗ eTN+1

)

(48)
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- edge CD, free

B11 =
[(

n2
x + νn2

y

)

− (1− ν) tanαnxny

]

(

D(1) ⊗ eTN+1

)

+
φ

cosα
(1− ν)nxny

(

I⊗ eTN+1D
(1)

)

B12 =
[

− tanα
(

νn2
x + n2

y

)

+ (1− ν)nxny

]

(

D(1) ⊗ eTN+1

)

+
φ

cosα

(

νn2
x + n2

y

)

(

I⊗ eTN+1D
(1)

)

B21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

(

D(1) ⊗ eTN+1

)

+
φ

cosα

1− ν

2

(

n2
x − n2

y

)

(

I⊗ eTN+1D
(1)

)

B22 =

[

− tanα(1− ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

(

D(1) ⊗ eTN+1

)

+
φ

cosα
(1− ν)nxny

(

I⊗ eTN+1D
(1)

)

(49)

- edge CD, SS1

B11 = ny

(

I⊗ eTN+1

)

B12 = −nx

(

I⊗ eTN+1

)

B21 =
[(

n2
x + νn2

y

)

− (1− ν) tanαnxny

]

(

D(1) ⊗ eTN+1

)

+
φ

cosα
(1− ν)nxny

(

I⊗ eTN+1D
(1)

)

B22 =
[

− tanα
(

νn2
x + n2

y

)

+ (1− ν)nxny

]

(

D(1) ⊗ eTN+1

)

+
φ

cosα

(

νn2
x + n2

y

)

(

I⊗ eTN+1D
(1)

)

(50)

- edge CD, SS2

B11 = nx

(

I⊗ eTN+1

)

B12 = ny

(

I⊗ eTN+1

)

B21 =

[

(ν − 1)nxny − tanα
1− ν

2

(

n2
x − n2

y

)

]

(

D(1) ⊗ eTN+1

)

+
φ

cosα

1− ν

2

(

n2
x − n2

y

)

(

I⊗ eTN+1D
(1)

)

B22 =

[

− tanα(1− ν)nxny +
1− ν

2

(

n2
x − n2

y

)

]

(

D(1) ⊗ eTN+1

)

+
φ

cosα
(1− ν)nxny

(

I⊗ eTN+1D
(1)

)

(51)
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