
Least restrictive supervisors for intersection
collision avoidance: A scheduling approach

Alessandro Colombo, Member, IEEE, and Domitilla Del Vecchio, Member, IEEE

I. INTRODUCTION

Transportation systems are increasingly relying on commu-
nication technologies and automated control in order to make
driving safer and more enjoyable [1]. A particular area of focus
is the design of driver assist systems that use vehicle to vehicle
and/or vehicle to infrastructure communication to prevent
collisions at traffic intersection [2]–[6]. Two key requirements
of these systems are that they must guarantee collision-
free intersection crossing (safety), while intervening as little
as possible (least restrictiveness). The latter requirement is
especially important in ground transportation since drivers are
expected to be in control of their vehicles at all times and
overrides are acceptable only in case of extreme danger. At the
same time, algorithms that determine whether drivers’ desired
actions are safe and provide a set of possible safe controls must
be computationally efficient, since they must run in real-time
in the presence of a potentially large number of vehicles.

Typically, least restrictive sets of control actions are deter-
mined by calculating the maximal (safe) controlled invariant
set and the least restrictive feedback map that keeps the
system inside this set. The maximal controlled invariant set
is the largest set of states (with respect to set inclusion)
for which there exists an input that avoids conflicts at all
positive times. Determining the maximal controlled invariant
set is often a computationally difficult problem, and has been
proved to be NP-hard in the case of some collision avoidance

A. Colombo is with DEIB at Politecnico di Milano, Italy, e-mail: alessan-
dro.colombo@polimi.it.

D. Del Vecchio is with the ME Dept. at MIT, MA, USA, email:
ddv@mit.edu.

Fig. 1. Agents on 3 paths must cross an intersection while avoiding contact.

problems [7], [8]. A number of exact algorithms have been
proposed, whose application to systems with more than a few
agents is not practical [5], [9]–[20]. Some of these results are
applicable only to the two-agent conflict resolution problem
[5], [16], [18], and the others have exponential complexity
in the size of the state space. Hence, research has been
focusing on methods to approximate the maximal controlled
invariant set with more efficient algorithms [21]–[23]. In many
cases, even the termination of the algorithm that computes the
maximal controlled invariant set is not guaranteed, and work
has been done to identify classes of systems that allow to prove
termination [24], [25].

In this paper, we design least restrictive supervisors for
collision avoidance at traffic intersections. Our algorithms do
not return a specific control action, and are not intended
to optimize a performance metric, but rather to determine
the largest set of (infinite horizon) control actions that avoid
any conflict. We propose a new paradigm for the design
of least restrictive supervisors that leverages the distinctive
structure of the application to obtain exact and approximate
algorithms for collision avoidance at intersections involving
an arbitrary number of agents. Specifically, we exploit the fact
that agents evolve unidirectionally along their paths through an
intersection (Fig. 1) and that they have (nonlinear) monotone
dynamics [26]. Under these assumptions, we demonstrate that
determining whether a state belongs to the maximal controlled
invariant set –which we call the verification problem (VP)– is
equivalent to solving a scheduling problem (SP) [27]. While
VP is defined over a function space, SP requires a search over
a finite set of strings; it is thus simpler to handle. We then
leverage and adapt results from the scheduling literature to
determine exact and approximate solutions to the verification
problem, and we use the solution of the verification problem to
synthesize a least restrictive supervisor. This supervisor leaves
the agents freedom of choice unless such a choice will com-
promise safety at some future time. We provide algorithmic
procedures, which are guaranteed to terminate, that solve the
verification problem. Approximate solutions use algorithms
with polynomial complexity and can be efficiently used for
real-time control of systems involving a large number of

agents. Tight approximation bounds are provided to measure
the difference between the approximate solution and the exact
one.

There is an extensive literature on conflict resolution [28]–
[36] and on probabilistic conflict prediction [37]–[39]. The
papers on conflict resolution address problems that are close
to the one tackled here, but with the following significant
differences. The algorithms developed in [28], [29], [31]–
[36] can handle more than two agents, however they do not
provide a least restrictive solution, which is instead provided
by our algorithms. The algorithms in [30] are based on a mixed
integer linear programming formulation, potentially suitable to
compute least restrictive solutions. However, their complexity
scales exponentially in the number of agents, limiting their
application to systems with a small number of vehicles.
Our approach instead allows to derive approximate solutions
with polynomial complexity and a guaranteed approximation
bound, which can be applied to very large systems. The
approach we follow was first proposed in [8], but while that
work assumed a single agent on each path, here we allow an
arbitrary number of agents on each path and take care of rear-
end collisions of agents on the same path as well as of side-
impacts of agents from different paths. As a consequence, the
results discussed here solve a much more complex supervisory
problem.

The paper is organised as follows. In Section II, we intro-
duce the model and VP. In Section III, we introduce some
scheduling concepts and terminology, and we provide some
basic results that will be used throughout the paper. These
results will set the bases to decouple the (hard) problem of
deciding in which order agents can cross the intersection from
the (easy) problem of choosing how they can cross it once
the order is fixed. Section IV contains the main results: we
introduce SP; we prove equivalence of VP and SP; and we
provide an exact and an approximate solution to SP. Section
V uses these solutions for the synthesis of a least restrictive
supervisor. Section VI presents an application example.

II. SYSTEM DEFINITION AND PROBLEM STATEMENT

We consider conflict resolution problems such as the one
depicted in Fig. 1. We model agents as point masses moving
along a specified path and governed by Newton’s law:

ẍi = fi(ẋi, ui), (1)

with i ∈ {1, . . . , n}, where xi ∈ Xi ⊆ R is the position
and ui ∈ Ui ⊂ Rm is the control input. We use the following
notation throughout the paper. The symbols xi and ui are used
both for signals (functions of time) and signal values (vectors
in a Euclidean space). When the dependence of xi on the
input needs to be made explicit, we write xi(ui). The value
of xi at time t0 + t starting from (xi(t0), ẋi(t0)), with input
ui in [t0, t0 + t], is denoted xi(t, ui, xi(t0), ẋi(t0)). The same
notation is used for ẋi. When the initial state is not important
we use the shorter notation xi(t, ui) and ẋi(t, ui). Boldface
x and u denote the vectors (x1, x2, ...), (u1, u2, ...), while uji
denotes the j-th component of vector ui.

We call U the set of input signals u, and we assume that it
contains at least the piecewise smooth functions with a finite

number of discontinuities. Given a signal ui, we write ui � u′i
if uji (t) ≥ u′

j
i (t) for all j and for all t ≥ 0, and ui � u′i if

uji (t) ≥ u′
j
i (t) for all j and for all t ≥ 0 and there exists at

least one j such that uji (t) > u′
j
i (t) for all t > 0. Similarly,

given a vector ui, let ui � u′i if uji ≥ u′
j
i for all j, and

ui � u′i if uji ≥ u′
j
i for all j and there exists at least a j

such that uji > u′
j
i . The same notation is used for (xi, ẋi).

We make the following assumptions:
(A.1) Ui has a unique minimum ui,min and a unique maximum

ui,max in the order � defined above, and fi(ẋi, ui) is
non-decreasing in ui.

(A.2) system (1) has unique solutions, depending continuously
on initial conditions and parameters.

(A.3) ẋi is bounded to a strictly positive interval
[ẋi,min, ẋi,max] with nonempty interior (agents always
move forward).

(A.4) |fi(ẋi, ui)| is bounded for all ẋi ∈ [ẋi,min, ẋi,max], ui ∈
Ui,

(A.5)
limt→∞ ẋi(t, ui,max) = ẋi,max
limt→∞ ẋi(t, ui,min) = ẋi,min

(2)

(min and max velocities are attained at least asymptoti-
cally by applying ui,min and ui,max),

(A.6) dynamics of agents on the same path are identical,
i.e., fi = fj , [ui,min, ui,max] = [uj,min, uj,max],
[ẋi,min, ẋi,max] = [ẋj,min, ẋj,max].

Before proceeding, we briefly comment on the above assump-
tions. As shown in [26], (A.1) implies that

(xi(0), ẋi(0)) � (x′i(0), ẋ′i(0)), ui � u′i
⇓

(xi, ẋi) � (x′i, ẋ
′
i),

(3)

while the following monotonicity property follows easily:

(xi(0), ẋi(0)) � (x′i(0), ẋ′i(0)) and ui � u′i ⇒ xi � x′i. (4)

This means that, if agent i’s position and velocity are not
smaller than those of agent j, and agent i applies an input not
smaller than that of agent j, then the ordering between the two
agents is preserved. Our model therefore belongs to the class
of monotone systems [26]. This is a natural assumption given
the physics of the problem. Assumption (A.3) requires that the
dynamics of (1) make the interval [ẋi,min, ẋi,max] invariant
irrespective of the input (note that (1) is not required to be
smooth, so saturation is allowed). Positive minimum velocity
is not a restrictive assumption, given the problem at hand,
since all agents that can stop before the intersection avoiding
a rear end collision can be removed from the verification
problem. Finally, (A.6) implies that, if agents i and j are on
the same path and (xi(0), ẋi(0)) = (xj(0)+d, ẋj(0)) for some
d ∈ R, then xi(t, ui) + d = xj(t, uj) for all t ≥ 0 provided
ui = uj . This fact is used in some of the proofs to ensure the
existence of a safe input on an infinite horizon once agent i
is tailing agent j. This assumption may be relaxed to the cost
of significantly complexifying some of the proofs.

Let I be the set of all non-ordered pairs of indices i ∈
{1, . . . , n}. To represent the fact that two agents can be on
the same or on different paths, we partition I in the two sets

I+ and I−. The first set contains all pairs of indices of agents
travelling along different paths, the second all pairs of indices
of agents travelling along the same path. The intersection
is represented by an interval [ai, bi] along the path of each
agent, where the size of the interval must be chosen taking
into account the geometry of the intersection and the physical
size of the agent. A side impact occurs if two agents from
different paths lie within the interval [ai, bi] simultaneously;
a rear-end collision occurs if two agents on the same path
have distance less than d, fixed for all agents. The bad set
B, consisting of all states where two or more agents collide,
is the union of the set B+ := {x ∈ Rn : ∃(i, j) ∈ I+, xi ∈
(ai, bi) and xj ∈ (aj , bj)} which accounts for all side impacts,
and B− := {x ∈ Rn : ∃(i, j) ∈ I−, |xi − xj | < d}, which
accounts for all rear-end collisions. Given the initial condition
(x(0), ẋ(0)), an input signal u such that x(t,u) /∈ B for all
t ≥ 0 is called a collision-free input. VP can be formally stated
as follows.

VP. Given initial conditions (x(0), ẋ(0)) determine if there
exists an input signal u that guarantees that x(t,u) /∈ B for
all t ≥ 0.

An instance of VP is fully described by the
initial condition (x(0), ẋ(0)) and by the tuple Θ :=
{a1, . . . , an, b1, . . . , bn, d, f1, . . . , fn, X1, . . . , Xn, U1, . . . ,
Un,U}.

III. PRELIMINARY RESULTS

In this section, we introduce some concepts of Scheduling
Theory, define some function sets for the inputs of (1), and
prove some properties of these sets that are needed in the
following sections.

A. Notions of Scheduling Theory

A scheduling problem consists of assigning to a number of
jobs a schedule, that is, a vector of execution times, while
satisfying given constraints [27]. Job i is represented by the
symbol Ji. If a precedence constraint holds between two
jobs, that is, if Ji must be executed before Jj , we write
Ji < Jj . Adopting the formalism of complexity theory, we
write scheduling problems in the form of decision problems,
which have a yes or no solution [40]. When a decision
problem P maps an instance I to the solution yes we say that it
accepts the instance, denoted I ∈ P . In particular, the results
presented here use a special form of the following decision
problem:

Definition 1 (1|ri, prec|Lmax). Given a set of n jobs to
be run on a single machine, with release times ri ∈
R+, deadlines di ∈ R+, and durations pi ∈ R+, and
a set of precedence constraints, determine if there exists
a schedule T = (T1, . . . , Tn) ∈ Rn+ such that, for all
i ∈ {1, . . . , n}, ri ≤ Ti ≤ di − pi, and for all i 6= j,
Ti ≥ Tj ⇒ Ti ≥ Tj + pj, and Ji < Jj ⇒ Ti ≤ Tj.

Figure 2 shows three schedules for an instance of the above
problem. 1|ri, prec|Lmax was shown to be NP-Complete in
[41]. It has, however, a polynomial-time exact solution, first

1 2 3 4 5

Schedule 1

Schedule 2

Schedule 3

6

Fig. 2. Three schedules for 1|ri, prec|Lmax with r = [1.5, 2, 3.5], d =
[6, 6, 5], p = [1.5, 0.5, 1], and J2 < J1. Schedule 1 is not feasible because
J1 terminates after its deadline. Schedule 2 is not feasible because the order
of J1 and J2 violates a precedence constraint. Schedule 3 is feasible.

proposed in [42], when all job durations pi are identical.
This case can always be transformed, by normalisation of
the data, into the case where jobs have duration 1, denoted
1|ri, prec, pi = 1|Lmax.

One of the main results of the paper is a proof of equiv-
alence of two decision problems. Here, equivalence is meant
in the sense used in complexity theory [40]:

Definition 2. A problem P1 is reducible to a problem P2
if for every instance I of P1 an instance I ′ of P2 can be
constructed in polynomial-bounded time, such that I ∈ P1⇔
I ′ ∈ P2. In this case, we write P1 ∝ P2. If P1 ∝ P2 and
P2 ∝ P1 then we say that P1 and P2 are equivalent, denoted
P1 ' P2.

B. Function Spaces

Here we introduce three sets of input signals and prove some
of their properties. The crucial properties are in Theorems
1 and 3. We attach a preorder “�” [43] to each set. We
denote the maximum and minimum of a set in the preorder
“�” by “max�” and “min�”, respectively. All proofs of this
section are collected in Appendix A. From here until the end
of Section IV, we deal with solutions of (1) for fixed initial
conditions (x(0), ẋ(0)) and for fixed parameters Θ. Hence,
for the sake of brevity, the dependence of all objects on
(x(0), ẋ(0)) and Θ is omitted.

The order of agents along a path imposes constraints on the
order in which agents can reach the intersection. Considering
the task of letting an agent through the intersection as a job to
be executed on a machine, we represent these constraints as
a set of precedence constraints on the jobs, writing Ji < Jj
if job i must be executed before job j, that is, if xi(0) >
xj(0) and (i, j) ∈ I−. The set of all precedence constraints
defines a directed acyclical graph with the jobs as nodes, and a
corresponding topological order (the order of the nodes along
a directed path). We say that a vector T ∈ Rn+ has elements in
topological order if Ti ≤ Tj whenever Ji < Jj . We say that
agent j is the predecessor of agent i if j is such that Jj < Ji
and Jk < Jj for all k 6= j such that Jk < Ji. In other words,
the predecessor of i is the agent immediately preceding i in
the topological order. This is denoted Jj � Ji. If i has no
predecessor, we write ∅ � Ji. Given an assignment of indices
to agents we say that these are numbered in topological order
if, for all (i, j) ∈ I−, j < i implies Jj < Ji, in reverse
topological order if j < i implies Ji < Jj .

Definition 3. U is the set of input signals u ∈ U such that
x(t,u) /∈ B− for all t ≥ 0.

This is the set of all input signals that avoid rear-end
collisions. We define the preorder “�L” on the components ui
of u ∈ U by writing ui �L u′i if xi(ui) � xi(u′i) and we say
that u �L u′ if the above relation holds for all i ∈ {1, . . . , n}.
U has the following property.

Theorem 1. If U 6= ∅, then it has a minimum in the preorder
“�L”.

A minimum of U is a lowest control input that the agents can
apply without causing a rear-end collision. It is not necessarily
ui,min, as this could cause a rear-end collision for any possible
input of the successor. Notice that, even though minima of U
do not have to be unique, the corresponding position trajectory
is unique. This is a simple consequence of the definition of
“�L”.

Assume that U 6= ∅. Given u ∈ min�L U , a vector T :=
(T1, . . . , Tn), and x(t) := x(t,u), define the constraints

xi(0) ≤ ai ⇒ xi(t, ui) ≤ ai ∀ t ≤ Ti, (5)

Jj � Ji ⇒ xi(t, ui) ≤ xj(t, uj)− d ∀ t ≥ 0, (6)

xi(t, ui) ≥ xi(t) ∀ t ≥ 0. (7)

Constraint (5) requires that, if agent i is behind ai at t = 0,
then it remains behind ai at least until t = Ti. Constraint
(6) requires that an agent and its predecessor respect a safety
distance d. Constraint (7) requires that each agent i maintain
a trajectory not lower than the one obtained with ui. Note
that (7) is redundant when (6) is satisfied by all agents. It is
nonetheless used in the definition of the input set Ūi(uj , Ti)
which follows.

Definition 4. Given a vector T ∈ Rn (a schedule), and given
x(0), we let
• Ū(T) be the set of input signals u ∈ U such that all

components of x(t,u) satisfy (5) and (6);
• Ūi(uj , Ti) be the set of inputs ui ∈ Ui that satisfy (5),

(6), and (7). We denote by Ūi(∅, Ti) the same set when i
has no predecessor, and we write Ūi(·, Ti) when we need
to refer to both cases. If U = ∅, then xi in (7) is not
defined. In this case, let Ūi(·, Ti) := ∅.

The set Ū(T) contains all the inputs that agents can use
without violating (5) and (6). Notice that Ū(T) ⊂ U , since
any input satisfying (6) for all i satisfies x(t,u) /∈ B− for
all t ≥ 0. We attach a preorder to the above sets, as follows.
For all ui, u′i ∈ Ūi(·, Ti), we write ui �U u′i if xi(t, ui) ≤
xi(t, u

′
i)∀ t ≥ Ti, and we say that u �U u′ if the above

relation holds for all i ∈ {1, . . . , n}. We now address the
existence of maxima of Ū(T) and, to do so, we first establish
the existence of maxima of Ūi(·, Ti). Simply put the following
lemma states that, provided there exists at least one collision-
free input, the set Ūi(·, Ti) of agent i is guaranteed to have
a maximum in the preorder “�U”. If i has a predecessor
j (an agent driving in front) such a maximum cannot be
increased without increasing uj . The lemma assumes that
agent j ultimately applies uj,max and concludes that i can also
ultimately apply ui,max, allowing to apply the result iteratively
to construct maxima for all agents.

Lemma 2. Consider agent i. If it has a predecessor j, assume
uj = uj,max for all t ≥ tf for some finite tf ≥ 0. Assume
U 6= ∅ and Ūi(·, Ti) 6= ∅. Then Ūi(·, Ti) has maxima in
the preorder “�U”, and for every maximum ūi there exists
a finite t′f > 0 such that ūi(t) = ui,max for all t ≥ t′f .

Moreover, if i has predecessor j, then
(
u′j �U uj , ui ∈

max�U Ūi(uj , Ti), u′i ∈ Ūi(u′j , Ti)
)
⇒
(
u′i �U ui

)
.

Notice that, even though the maxima in Lemma 2 are not
necessarily unique, the definition of the preorder “�U” implies
that for all ui, u′i ∈ max�U Ū(·, Ti), xi(t, ui) = xi(t, u

′
i) for

all t ≥ Ti. Algorithm 1 computes a maximum of Ūi(·, Ti)
considering elements of Ūi(·, Ti) of the form

ui,t1,t2,t3 :=


ui if t < min(t1, t3)
ui,max if t ∈ (min(t1, t3),min(t2, t3)]
ui,min if t ∈ (min(t2, t3), t3]
uj if t > t3.

(8)
The structure of the above input follows from the proof of
Lemma 2 (in the Appendix). In the algorithm the function
Root F (γ) returns a positive root of the equation F (γ) = 0.
If Root F (γ) finds no positive solution the algorithm aborts
although, for the sake of brevity, this is not stated explicitly in
the pseudocode; in this case Ūi(·, Ti) is empty. We assume that
if i has a predecessor j, then ūj has already been computed;
this is ensured by processing agents in topological order.

Theorem 3. If Ū(T) 6= ∅, then it has a maximum in the
preorder “�U”. Moreover, if the components of a vector u ∈
U satisfy the recursive relation

∅ � Ji ⇒ ui ∈ max�U Ūi(∅, Ti),
Jj � Ji ⇒ ui ∈ max�U Ūi(uj , Ti),

(9)

then u ∈ max�U Ū(T).

The above result implies that the problem of finding a
maximum of Ū(T) has an optimal substructure [40], that is,
we can compute an optimal solution iteratively by solving a set
of simpler optimization problems. Thus, finding a maximum
of Ū(T) is no harder than finding a maximum of Ūi(·, Ti).
Here lies the keystone of the paper: once a feasible schedule
T has been found, finding a maximum of Ū(T), and hence an
input signal satisfying VP, is a simple task. The complexity
of VP is entirely due to finding T. This is the matter of the
following section.

IV. MAIN RESULTS

A. Formal Statement of SP and Equivalence of VP and SP

In Section III, we defined the sets U and Ū(T) and proved
that they have a minimum and a maximum, respectively. Here,
we use these minima and maxima to define the scheduling
quantities Ri, Di, and Pi, that are necessary to formalise SP.
All proofs are collected in Appendix B.

Let tα(ui) := min{t ≥ 0 : xi(t, ui) ≥ α}, that is, tα(ui)
is the earliest time when xi becomes greater than or equal to
α. Such tα(ui) exists since ẋi is positive and bounded away
from 0. As before, let u denote an element of min�L U . The

Algorithm 1 Compute a maximum of Ūi(·, Ti)
1: if xi(0) ≤ ai then
2: α← min(xi(Ti, ui,max), ai)
3: τ1 ← Root F (γ) := xi(Ti, ui,γ,∞,∞)− α
4: if i has no predecessor, or j is predecessor of i and xj(t, ūj) ≥

xi(t, ui,τ1,∞,∞) + d∀ t ≥ 0 then . in this case
max�U Ū = max�U Ua in the proof of Lemma 2

5: ūi ← ui,τ1,∞,∞
6: else
7: Dista ← mint≥Ti

{
xj(t, ūj)− xi(t, ui,τ1,Ti,∞)− d

}
8: τ2 ← Root F (γ) := xi(Ti, ui,0,γ,∞)− α
9: Distb ← mint≥Ti {xj(t, ūj)− xi(t, ui,0,τ2,∞)− d}

10: if Dista ≥ 0 then . in this case max�U Ū ∈ Ua in the proof of
Lemma 2

11: τ∗1 ← τ1

12: τ∗2 ← Root F (γ) := min
t≥Ti

{
xj(t, ūj)− xi(t, ui,τ∗1 ,γ,∞)− d

}
13: t∗t ← Root F (t) :=

(
xj(t, ūj)− xi(t, ui,τ∗1 ,τ∗2 ,∞)− d

)
14: ūi ← ui,τ∗1 ,τ

∗
2 ,t
∗
t

15: else if Distb ≥ 0 then . in this case max�U Ū ∈ Ub in the proof
of Lemma 2

16:
vTi ← Root F (ẋi(Ti)) :=

min
t≥0
{xj(t+ Ti, ūj)− xi(t, ui,min, xi(Ti) = ai, ẋi(Ti))− d}

17:
(τ∗1 , τ

∗
2)← Root {F1(τ1, τ2) := xi(Ti, ui,τ1,τ2,∞)− α,

F2(τ1, τ2) := ẋi(Ti, ui,τ1,τ2,∞)− vTi}
18: t∗t ← Root F (t) :=

(
xj(t, ūj)− xi(t, ui,τ∗1 ,τ∗2 ,∞)− d

)
19: ūi ← ui,τ∗1 ,τ

∗
2 ,t
∗
t

20: else . in this case max�U Ū ∈ Uc in the proof of Lemma 2
21: τ∗2 ← Root F (γ) := min

t≥Ti
{xj(t, ūj)− xi(t, ui,0,γ,∞)− d}

22: t∗t ← Root F (t) :=
(
xj(t, ūj)− xi(t, ui,0,τ∗2 ,∞)− d

)
23: ūi ← ui,0,τ∗2 ,t

∗
t

24: else if xi(0) > ai then . in this case max�U Ū ∈ Ud in the proof of
Lemma 2

25: if i has no predecessor then
26: ūi ← ui,0,∞,∞
27: else
28: τ∗2 ← Root F (γ) := min

t≥0
{xj(t, ūj)− xi(t, ui,0,γ,∞)− d}

29: t∗t ← Root F (t) :=
(
xj(t, ūj)− xi(t, ui,τ∗1 ,τ∗2 ,∞)− d

)
30: ūi ← ui,0,τ∗2 ,t

∗
t

31: return ūi

scheduling quantities are defined as follows. If U = ∅, set
Ri = 0, Di = −1 for all i ∈ {1, . . . , n}, otherwise

Ri := tai(ui,max),
Di := tai(ui).

(10)

These are the earliest and latest time when an agent can reach
ai. If Ū(T) = ∅, Pi(T) =∞ for all i ∈ {1, . . . , n}, otherwise,
take ū(T) ∈ max�U Ū(T) and

Pi(T) := tbi(ūi(T)). (11)

Pi(T) is the earliest time when i can reach bi, avoiding rear
end collisions, if it does not pass ai before Ti. We can now
state:

SP. Given initial conditions (x(0), ẋ(0)), determine if there
exists a schedule T = (T1, . . . , Tn) ∈ Rn+ such that for all i

Ri ≤ Ti ≤ Di, (12)

and for all (i, j) ∈ I+, if xi(0) < bi, then

Ti ≥ Tj ⇒ Ti ≥ Pj(T). (13)

Looking at the scheduling problem in Definition 1, we see
that Ri plays the role of a release time, Di of a deadline, and
Pi − Ti of a job duration. The precedence constraints of Def-
inition 1 are here a consequence of (13) and the definition of
Pj . The main difference with respect to a standard scheduling
problem is that, here, the duration Pi−Ti is a function of the
schedule T. Notice that instances of Problems VP and SP are
described by the same tuple {(x(0), ẋ(0)),Θ}. According to
Definition 2, this means that the mapping between instances
of the two problems is the identity, and in order to prove
equivalence it suffices to show that {(x(0), ẋ(0)),Θ} ∈ VP if
and only if {(x(0), ẋ(0)),Θ} ∈ SP. We thus reach one of our
main results.

Theorem 4. VP ' SP.

B. Exact Solution of VP

By Theorem 4 a solution of VP, which is defined over a
function space, can by found by solving SP, whose search
space is the set of all the possible orderings of agents through
the intersection, and is therefore finite. Here we propose an
enumerative solution of SP, and we start by further reducing
the size of the search space by means of the following Lemma.

Lemma 5. If SP accepts an instance, then it is satisfied by
a schedule T with elements Ti in topological order, that is,
such that Jj � Ji ⇒ Tj ≤ Ti.

This result enables us to restrict the search to schedules
in topological order. Furthermore, given a candidate order of
jobs Ji in topological order, if a schedule is feasible, then
in particular the one that satisfies (13) tightly is feasible,
i.e., the one such that Ti ≥ Tj ⇒ Ti = Pj(T). Such a
schedule is uniquely determined once the order of jobs has
been chosen. Therefore, the search space coincides with the
set P of all possible permutations of the indices 1, . . . , n
that satisfy the topological order (Jj < Ji ⇒ j < i).
The procedure EXACTSOLUTION in Algorithm 2 solves SP
exactly by performing an exhaustive search in P . We denote
by π ∈ P a permutation of indices and by πi the i-th
index in the permutation. With some abuse of notation, in
the procedure we write P̃i ← tbi

(
max�U Ūi(·, Ti)

)
as a

short form of ui ∈ max�U Ūi(·, Ti), P̃i ← tbi(ui). The
abbreviation should cause no confusion, since as we noted
before, all maxima of max�U Ū(·, Ti) give the same trajectory
for t ≥ Ti, and therefore the same value of tbi . The state
(x(0), ẋ(0)) is in the maximal controlled invariant set if
and only if EXACTSOLUTION finds a feasible schedule. If
a feasible schedule is found, the input u ∈ max�U Ū(T)
constructed at lines 6 and 21 of Algorithm 2 is a safe input
for (x(0), ẋ(0)).

Example 1 (Execution of Algorithm 2). Consider three iden-
tical agents on two paths. Model the agents’ longitudinal
dynamics as a linear double integrator with saturation, so that

Algorithm 2 Exact solution of SP
1: procedure EXACTSOLUTION(x(0), ẋ(0),Θ)
2: for all i ∈ {1, . . . , n} do
3: given xi(0) and Θ calculate Ri, Di
4: for all π ∈ P do
5: Tπ1 ← Rπ1

6: ūπ1 ← max�U Ū1(∅, Tπ1)

7: P̃π1 ← tbπ1 (ūπ1)
8: for i = 2→ n do
9: if (πi, πi−1) ∈ I+ then

10: Tπi ← max{P̃πi−1 , Rπi}
11: else
12: Tπi ← max{Tπi−1 , Rπi}
13: if ∃j : Jj � Jπi then
14: if Ūπi (xπi−1 , Tπi) 6= ∅ then
15: ūπi ← max�U Ūi(xj(ūj), Ti)
16: P̃πi ← tbπi

(ūπi)
17: else
18: P̃πi ←∞
19: else
20: if Ūπi (∅, Tπi) 6= ∅ then
21: ūπi ← max�U Ūi(xj(∅, Ti))
22: P̃πi ← tbπi

(ūπi)
23: else
24: P̃πi ←∞
25: if Ti ≤ Di ∀ i ∈ {1, . . . n} then
26: return {T, yes}
27: return {∅, no}

the vector field in (1) takes the form

fi(ẋi, ui) =

 ui if (ẋi < ẋi,max and ui > 0) or
(ẋi > ẋi,min and ui < 0)

0 otherwise ,

with ẋi,min = 1, ẋi,max = 10, ui,min = −1, ui,max = 1,
ai = 15, bi = 16, and d = 1. Assume x1(0) = 0, x2(0) = 4,
x3(0) = 0, and ẋi(0) = 1 for all agents, and let agents 1
and 2 be on the same path. The initial conditions imply that
J2 � J1.

We have that ui(t) = −1 for all t ≥ 0, for all i. Assume
that Algorithm 2 is testing the permutation [2, 1, 3]. The values
of Ri and Di are, respectively, Ri ' {4.57, 3.80, 4.57} and
Di = {15, 11, 15}. Lines 5-7 of Algorithm 2 assign T2 ' 3.80,
ū2 = 1, P̃2 = 4. Then, agent 1 has agent 2 as predecessor.
Line 12 of Algorithm 2 assigns T1 ' 4.57. To compute the
assignment at Lines 15 and 16, we use Algorithm 1. All roots
in Algorithm 1 can be found analytically, since the vector field
can be integrated explicitly. We find that τ1 = 0 at line 3 and
x2(t, u2,max) � x1(t, u1,max) + d, so that the assignment at
Line 5 of Algorithm 1 sets ū1 = 1 for all t ≥ 0. This gives
P1 ' 4.74. Finally, Lines 10, 21, and 22 of Algorithm 2 assign
T3 ' 4.74, ū3(t) = 0 for t ∈ [0, 0.22], ū3(t) = u3,max for t >
0.22, and P̃3 ' 4.92. We thus obtain T = [4.57, 3.80, 4.74],
which verifies the test at Line 25.

The search space, and hence the running time of the
procedure EXACTSOLUTION in Algorithm 2, scales as the
multinomial coefficient (n1, n2, . . .)! := n!/(n1!n2! . . .) where
ni is the number of agents on path i and

∑
i ni = n. For an

effective, online approach applicable to large systems we need
to seek an approximate solution.

C. Approximate Solution of VP

The results in the previous section provide a means to
determine membership in the maximal controlled invariant set
exactly. However, the complexity of the algorithm renders the
computation impractical in the presence of a large number
of agents. Here, we exploit the equivalence of VP and SP to
construct an approximate solution with polynomially bounded
running time, and we provide an upper bound for the error
introduced by the approximation. Specifically, we use Garey’s
exact solution [42] of 1|ri, prec, pi = 1|Lmax (this is the
scheduling problem of Definition 1 with unit time jobs) to
solve an approximate version of SP. Let POLYNOMIALTIME
be a procedure that solves 1|ri, prec, pi = 1|Lmax. The idea
is to define a time δmax long enough so that any agent is able
to cross the interval [ai, bi] in at most δmax, and allocate this
fixed amount of time to each agent.

To begin with, consider the quantity

d∗i := inf{α : ∃(ui, uj), xi(ui) + d � xj(uj),
xi(0) + α = xj(0), ẋi(0) = ẋi,max, ẋj(0) = ẋj,min,

(i, j) ∈ I−}

This is the minimum distance that two agents on the same path
must have, at any given time, to avoid a rear end collision if
the agent in front has velocity ẋj,min and the one in the back
has velocity ẋi,max. Then, call

τi(α) := inf{t ≥ 0 : xi(t, ui,max) ≥ max{bi, ai + d∗i },
xi(0) = α, ẋi(0) = ẋi,min}.

(14)
This is the minimum time taken to reach max{bi, ai + d∗i }
by an agent that starts at position α with minimum velocity,
using input ui,max. Finally, call

δmax := max
i∈{1,...,n}

τi(ai). (15)

We can now define the approximation SP* of SP:

SP*. Given initial conditions (x(0), ẋ(0)), determine if there
exists a schedule T = (T1, . . . , Tn) ∈ Rn+ such that, for all i,

Ri ≤ Ti ≤ Di, (16)

for all (i, j) ∈ I+, if Tj = 0 and xi(0) < bi then

Ti ≥ Tj ⇒ Ti ≥ Pj(T), (17)

for all (i, j) ∈ I− if Tj = 0 then

Jj < Ji ⇒ Ti ≥ τj(xj(0)) (18)

while for all (i, j) ∈ I if Tj > 0 then

Ti ≥ Tj ⇒ Ti ≥ Tj + δmax (19)

and
Jj < Ji ⇒ Ti ≥ Tj . (20)

Note that, by (16), Tj = 0 if and only if xj(0) ≥ aj .
Constraints (16) and (17) are the same as in SP. Constraint
(18) states that, if i and j are on the same path and j lies
at or after aj , then agent i is not allowed in the intersection
before j has passed the points bj and aj + d∗j . Constraint
(19) states that, if i and j lie before ai and aj , respectively,

then their scheduled time of arrival must be spaced at least
δmax apart. Finally, Constraint (20) requires that schedules be
in topological order. An exact solution to the above problem
is found by Algorithm 3. In the pseudocode, without loss of
generality, we assume that xi(0) ≥ ai for i = 1, . . . ,m, and
xi(0) < ai for i = m + 1, . . . , n. Pj(0) at Line 7 stands for
Pj(T) with Ti = 0 for all i.

Algorithm 3 Solution of SP*
1: procedure APPROXIMATESOLUTION(x(0), ẋ(0),Θ)
2: for all i ∈ {1, . . . , n} do given xi(0) calculate Ri, Di
3: if xi(0) ∈ [ai, bi) and xj(0) ∈ [aj , bj) for some (i, j) ∈ I+ or

Di < Ri for some i then
4: return {∅, no}
5: for all i ∈ {1, . . . ,m} do Ti ← 0

6: for all i ∈ {m+ 1, . . . , n} do

7: R̃i ← max

{
max

j≤m:(i,j)∈I+
{Pj(0)}, max

j≤m:(i,j)∈I−
{τj}, Ri

}
8: set δmax as in (15)
9: r = (R̃m+1/δmax, . . . , R̃n/δmax)

10: d = (Dm+1/δmax + 1, . . . , Dn/δmax + 1)
11: {Tm+1 , . . . , Tn , answer}= POLYNOMIALTIME(r,d, prec)
12: for i = m+ 1→ n do Ti ← Tiδmax
13: return {T, answer}

Example 2. Consider the system in Example 1. We can
compute d∗i and δmax explicitly, obtaining d∗i = 21.25
and δmax ' 5.60. All agents have xi(0) < ai, therefore
R̃i = Ri in Algorithm 3 while, as we have seen in Ex-
ample 1, Ri ' {4.57, 3.80, 4.57} and Di = {15, 11, 15}..
The vectors r and d obtained by dividing R̃ and D by
δmax are r ' [0.82, 0.68, 0.82] and d ' [2.68, 1.97, 2.68].
The procedure POLINOMIALTIME finds the feasible sched-
ule T ' [2.68, 0.68, 1.68], which corresponds to T '
[15.00, 3.80, 9.40].

We say that SP* is an approximation of SP if any schedule
that is feasible for SP* is feasible also for SP.

Theorem 6. SP* is an approximation of SP.

By this theorem, APPROXIMATESOLUTION can be used to
check membership in the maximal controlled invariant set, but
it underestimates its size. The extent of this underestimation
depends on the choice of δmax. The following theorem pro-
vides a measure of the extent of the underestimation. First,
define the sets B̂+ :=

{
x : ∃(i, j) ∈ I+, xi ∈ [ai, ai +

δmaxẋmax], xj ∈ [aj , aj + δmaxẋmax]
}

and B̂− :=
{
x :

∃(i, j) ∈ I−, |xi−xj | ≤ δmaxẋmax
}

and define the extended
bad set

B̂ := B̂+ ∪ B̂−. (21)

The extended bad set is thus a superset of the bad set. In
Theorem 7 we prove that if APPROXIMATESOLUTION returns
“no” then, for all u ∈ U , trajectories intersect B̂ (i.e, B̂ is an
upper bound of the overestimation of B), then in Theorem 8
we prove that B̂ cannot be made any smaller (i.e, B̂ is a tight
upper bound).

Theorem 7. If for a given (x(0), ẋ(0)) APPROXIMATESOLU-
TION returns “no”, then for all u ∈ U there exists a t ≥ 0
such that x(t,u) ∈ B̂.

Now define the sets B̌+ :=
{
x : ∃(i, j) ∈ I+, xi ∈ [ai, ai+

γ+δmaxẋmax], xj ∈ [aj , aj+γ+δmaxẋmax]
}

and B̌− :=
{
x :

∃(i, j) ∈ I−, |xi − xj | ≤ γ−δmaxẋmax
}

and let B̌ := B̌+ ∪
B̌−.

Theorem 8. If γ+ < 1 or γ− < 1, there exists a tuple
{x(0), ẋ(0),Θ} such that APPROXIMATESOLUTION returns
“no” and, for at least one u ∈ U , x(t,u) /∈ B̌ for all t ≥ 0.

V. SYNTHESIS OF A SAFETY-ENFORCING SUPERVISOR

Here, we use the results of the previous sections to construct
a supervisor for (1) to keep the system within the maximal
controlled invariant set. Proofs can be found in Appendix C.

Given a discretization of time of step τ , we design the
supervisor as a map s(x(kτ), ẋ(kτ),vk) 7→ uk for all k ∈ N.
The map takes a “desired” input vk ∈ U := (U1, . . . , Un) for
the time interval [kτ, (k+1)τ), and returns a signal uk(t) = vk
for all t in [kτ, (k + 1)τ) if this maintains the state of the
system within the maximal controlled invariant set, or a safe
signal otherwise. Since all quantities here are evaluated at
multiple time steps, the initial state (x(kτ), ẋ(kτ)) is explic-
itly included among the arguments of the trajectories. Let
vk denote the desired input at time kτ . Consider the two
signals uk and u∞k defined as follows: the first one is defined
on the interval [kτ, (k + 1)τ] and identically equal to vk;
the second one is an element of U defined on [kτ,∞), and
such that u∞k (t) = uk(t) when t ∈ [kτ, (k + 1)τ]. Addition-
ally, given (x(kτ), ẋ(kτ)), call u∞k,safe ∈ U a control signal
such that x(t,u∞k,safe,x(kτ), ẋ(kτ)) /∈ B for all t ≥ kτ
(if such control exists), and call uk,safe the restriction of
u∞k,safe to the interval [kτ, (k+1)τ]. If u∞k,safe does not exist,
let u∞k,safe,uk,safe = ∅. The supervisor design problem is
formally stated as follows

Problem 1. Design a supervisor s(x(kτ), ẋ(kτ),vk) such that

s(x(kτ), ẋ(kτ),vk) =


uk if ∃u∞k (t) ∈ U :
x(t,u∞k ,x(kτ), ẋ(kτ)) /∈ B
∀ t ≥ 0

uk,safe otherwise.

The above supervisor overrides the desired input vk when-
ever this will cause a collision at some future time. Moreover,
it has the following property.

Proposition 9. The supervisor s(x(kτ), ẋ(kτ),vk) defined
above is nonblocking, i.e., if uk := s(x(kτ), ẋ(kτ),vk) 6= ∅
and xk+1 = x(τ,uk,x(kτ), ẋ(kτ)), ẋk+1 = ẋ(τ,uk,x(kτ),
ẋ(kτ)), then for any vk+1, s(xk+1, ẋk+1,vk+1) 6= ∅.

This ensures that at all times kτ , and for all desired inputs
vk, the supervisor returns a collision-free input.

Given a system of the form (1) and the state (x(kτ), ẋ(kτ))
at some time kτ , the procedure EXACTSOLUTION returns a
binary value (yes/no), and a schedule T. We can use this
information to design the supervisor in Problem 1. Assume
that, at t = 0, we have EXACTSOLUTION(x(0), ẋ(0),Θ) =
{T0, yes}. Define u∞0,safe = ū(x(0), ẋ(0),T0), where ū(x(0),
ẋ(0),T0) ∈ Ū(T0), and we have explicitly written the ini-
tial conditions for clarity. Define u0,safe as the restriction

of u∞0,safe to the time interval [0, τ]. At each iteration k =
0, 1, 2, . . ., the supervisor map s(x(kτ), ẋ(kτ),vk) is defined
in Algorithm 4.

Algorithm 4 Implementation of the supervisor map
1: procedure s(x(kτ), ẋ(kτ),vk)
2: ū(t)← vk ∀ t ∈ [kτ, (k + 1)τ]
3: xk+1 ← x((k + 1)τ, ū,x(kτ), ẋ(kτ))
4: ẋk+1 ← ẋ((k + 1)τ, ū,x(kτ), ẋ(kτ))
5: {T, answer} ← EXACTSOLUTION(xk+1, ẋk+1,Θ)
6: if (answer = yes) and x(t, ū) /∈ B for all t ∈ [kτ, (k + 1)τ]

then
7: return ū
8: else
9: {T, answer} ← EXACTSOLUTION(x(kτ), ẋ(kτ),Θ)

10: u∞k,safe ← ū(x(kτ), ẋ(kτ),T)
11: uk,safe ← u∞k,safe restricted to [kτ, (k + 1)τ]
12: return uk,safe

Theorem 10. Assume that s(x(0), ẋ(0),v0) 6= ∅. Then, the
supervisor defined by Algorithm 4 solves Problem 1.

Algorithm 4 uses EXACTSOLUTION, whose running time
scales multinomially with the number of agents. Therefore,
it can be applied only to relatively small problems. To ob-
tain a supervisor that scales polynomially with the number
of controlled agents, we substitute EXACTSOLUTION with
APPROXIMATESOLUTION at lines 5 and 9 of the algorithm.
The approximate supervisor, denoted sapprox(x(kτ), ẋ(kτ),
vk), can handle much larger systems, at the expense of a
more restrictive behaviour. The following result quantifies the
restrictiveness of sapprox. Consider the extended bad set B̂ de-
fined in (21). Call ŝ(x(kτ), ẋ(kτ),vk) the supervisor defined
in Problem 1 substituting B̂ to B.

Theorem 11. sapprox(x(kτ), ẋ(kτ),vk) is no more restrictive
than ŝ(x(kτ), ẋ(kτ),vk), that is, if sapprox(x(kτ), ẋ(kτ),vk)
= uk,safe then ŝ(x(kτ), ẋ(kτ),vk) = uk,safe. Moreover if
sapprox(x(0), ẋ(0),v0) 6= ∅ then sapprox is nonblocking as
defined in Proposition 9.

Thus sapprox enforces safety and has polynomial complex-
ity in the number of agents, and its performance can be rig-
orously compared against that of the optimal supervisor.

VI. EXAMPLE

We have tested the supervisory algorithms described in Sec-
tion V on a set of vehicles governed by the equation

ẍi =


ui − 0.005(ẋi)

2 if
(ẋi > ẋi,min and u− 0.005(ẋi)

2 ≤ 0) or
(ẋi < ẋi,max and u− 0.005(ẋi)

2 ≥ 0)
0 otherwise,

(22)
where the input term ui is the net effect of the motor’s torque
and rolling resistance on the vehicle acceleration, while the
quadratic term accounts for air drag [44]. The above system
satisfies Assumptions (A.1)-(A.6). We have used the following
parameters for all vehicles: bi− ai = 10m, ẋi,min = 1.39m/s,
ẋi,max = 13.9m/s, ui,min = −2m/s2, ui,max = 2m/s2, d =
5m. This gives d∗i ' 21.998m and δmax ' 4.135s.

Fig. 3. The capture set (the complement of the maximal controlled invariant
set) for 3 agents on 3 different paths. Initial velocities are [5, 12, 3].

Fig. 4. Supervisor of 6 agents on 3 paths, ẋi(0) = 13.9 for all agents. The
gray band marks the interval [ai, bi], identical for all agents. Trajectories of
agents on the same path are plotted in the same colour. Red segments on the
t axis denote intervals where the supervisor is overriding the desired input.
(top) Supervisor with algorithm EXACTSOLUTION. (bottom) Supervisor with
algorithm APPROXIMATESOLUTION.

Algorithm 4 was implemented numerically with τ = 0.2s.
Trajectories were discretized with time step 0.1s. All simu-
lations were executed on a 2.4Ghz Intel core 2 Duo, 4Gb
ram. Figure 3 shows a portion of the capture set (complement
of the maximal controlled invariant set) in the space of the
positions, for fixed velocities, for 3 agents on 3 paths. In Fig. 4
we show the trajectories of three pairs of agents travelling
along 3 paths. In the top panel we use the supervisor with
procedure EXACTSOLUTION. Notice that agents on different
paths (trajectories in different colours) enter the intersection
(in gray) as soon as the preceding agent has left it. EXACTSO-
LUTION was executed, in this configuration, in less than 0.38s.
The bottom panel shows the same system and initial condi-
tions, controlled using procedure APPROXIMATESOLUTION.
APPROXIMATESOLUTION was executed, in this configuration,
in less than 0.028s. Finally, Fig. 5 depicts the trajectories of 30
vehicles moving along 3 different paths, controlled using pro-
cedure APPROXIMATESOLUTION. APPROXIMATESOLUTION
was executed in less than 0.17s.

0
10

t

240
230

0 20 30 40 50 60 70 80 90 100

Fig. 5. Supervisor with algorithm APPROXIMATESOLUTION, 30 agents on
3 paths, ẋi(0) = 13.9 for all agents, colour coding as in Fig. 4.

VII. CONCLUSION

We have proved that checking membership in the maximal
controlled invariant set for n dynamic agents at the intersection
of m paths is equivalent to solving a scheduling problem.
By means of this equivalence, we have devised exact and
approximate solutions to design least restrictive supervisors for
collision avoidance at traffic intersections. These algorithms
determine if a point x in the state space belongs to the maxi-
mal controlled invariant set, that is, if there exists a conflict-
free trajectory starting at x. The exact algorithm exploits the
equivalence to reduce the verification problem to a search over
a finite set of strings, corresponding to all possible ordering
of agents. It has combinatorial complexity, which limits its
applicability, but it represents the benchmark against which the
performance of any solution can be tested. The running time of
the approximate algorithm scales polynomially in the number
of agents. Moreover, we can provide tight upper bounds on
the error introduced by the approximation. We have proposed
a least restrictive supervisor based on the exact solution, and an
approximate supervisor with quantified approximation bounds.
We have tested our results on a nonlinear model of vehicles
at traffic intersections.

We are investigating extensions of the Scheduling Problem
that we have introduced to handle more complex traffic sce-
narios and multiple intersections (using decoupling of group
of agents near different intersections), imperfect information
and model uncertainty (using robust scheduling), the presence
of uncontrollable agents (using scheduling with inserted idle
time). Some preliminary results have been published in [45]–
[47].

APPENDIX A
PROOFS OF SECTION III

We begin by listing a few properties of the solutions of
(1). In the following propositions and in the proof of The-
orem 1 we consider only agents on a single path, therefore
for simplicity of notation we omit the subscript i from the
quantities ui,max and ui,min. The first two propositions relate
the ordering of the extrema of segments of two trajectories
with the ordering of the interior points of the segments. They
are simple consequences of the monotonicity property (4).

Proposition 12. Let u′i, u
′′
i ∈ Ui, and let u′i(t) := umax for

all t ∈ [t1, t2]. Then
(
xi(t1, u

′′
i) ≥ xi(t1, u

′
i), xi(t2, u

′′
i) ≥

xi(t2, u
′
i)
)
⇔
(
xi(t, u

′′
i) ≥ xi(t, u′i)∀ t ∈ [t1, t2]

)
.

Proposition 13. Let u′i, u
′′
i ∈ Ui, and let u′i(t) := umin for

all t ∈ [t1, t2]. Then
(
xi(t1, u

′′
i) ≤ xi(t1, u

′
i), xi(t2, u

′′
i) ≤

xi(t2, u
′
i)
)
⇔
(
xi(t, u

′′
i) ≤ xi(t, u′i)∀ t ∈ [t1, t2]

)
.

The following proposition states that, given two agents i
and j with i initially in front, and provided that i ultimately
constantly accelerates and j ultimately constantly brakes (so
that their trajectories are guaranteed to split asymptotically), if
one can find a pair of inputs u′ and u′′ such that u′ is collision-
free while u′′ causes a violation of the safety distance on
some time interval, then there exists a third input u′′′ which is
collision-free and allows the agents to reach the same velocity
and a distance of exactly d at some time tt.

Proposition 14. Let ui,α ∈ Ui, uj,β ∈ Uj be two families of
inputs, parametrised in α ∈ A and β ∈ B, and assume that
there exists a finite ts ≥ t0 such that ui,α(t) = umax and
uj,β(t) = umin for all t ≥ ts and for all α ∈ A, β ∈ B.
Assume that xi(t, ui,α) and xj(t, uj,β) depend continuously
on the parameters α ∈ A and β ∈ B, where A and B are
path connected. Let i, j be two agents with identical dynamics,
and take d ≥ 0. If there exists a pair (α′, β′) ∈ A × B such
that xi(t, ui,α′) ≥ xj(t, uj,β′) + d for all t ≥ 0 (i.e., i drives
strictly in front of j), and a pair (α′′, β′′) ∈ A × B such
that xi(t, ui,α′′) < xj(t, uj,β′′) + d for some finite t (i.e., i
and j violate the safety distance d), then there exists a pair
(α′′′, β′′′) ∈ A×B such that xi(t, ui,α′′′) ≥ xj(t, uj,β′′′) + d
for all t ≥ 0 (i.e., i drives in front of j) and xi(t, ui,α′′′)
is tangent to xj(t, uj,β′′′) + d at some finite tt (i.e., i and j
achieve the same velocity and a distance of exactly d at time
tt).

Proof: Given a path from (α′, β′) to (α′′, β′′) in parame-
ter space, and given that ui,α(t) = umax and uj,β(t) = umin
for all t ≥ ts and ẋmax is assumed strictly greater than
ẋmin, (A.5) ensures that xi(t, ui,α) > xj(t, uj,β) − d for
all t ≥ tf ≥ ts for some tf sufficiently large, for all pairs
(α, β) along the path. Then, the intermediate value theorem
applied to the function mint∈(0,tf){xi(t, ui,α)− xj(t, uj,β)−
d} of (α, β) ensures the existence of a pair (α′′′, β′′′)
such that mint∈(0,tf){xi(t, ui,α′′′) − xj(t, uj,β′′′) − d} = 0.
Differentiability of xi(t, ui,α′′′) and xj(t, uj,β′′′) in t, and
min{xi(t, ui,α′′′) − xj(t, uj,β′′′) − d} = 0 over the open
interval t ∈ (0, tf) imply that xi(t, ui,α′′′) and xj(t, uj,β′′′)+d
are tangent at some tt ∈ (0, tf).

The following continuity property of the solutions of (1) is
a consequence of (A.2) and (A.4). Consider a set u0, . . . ,ur
of continuous signals in U . Let τ0 = 0, let τ0 < τ1 < . . . < τr
be a finite sequence of real numbers, and let uτ0,...,τr be an
input signal equal to uk, k ∈ {0, . . . , r−1}, for t ∈ [τk, τk+1),
and equal to ur for t ≥ τr.

Lemma 15. For every ε > 0 there exists a δ > 0 such that, if
|τ ′k − τk| < δ ∀ k, then ‖x(t,uτ ′0,...,τ ′r) − x(t,uτ0,...,τr)‖∞ <
ε∀ t ∈ [0, τr].

We can now prove Theorem 1. The proof is constructive and
based on induction. It consists in showing that, given a known
minimum trajectory for the successor j of i, the minimum
trajectory of i can be constructed with an input consisting
of a braking phase (where umin is applied) followed by an
acceleration phase (where umax is applied). Using Proposition
14 such a trajectory is shown to reach a point where agent i
precedes j at a distance of exactly d and has the same speed as

j. From this point on, the input of i is set equal to that of the
j so that the two agents maintain the distance d. Minimality
of such a trajectory is then proved using (3) and Proposition
12. The formal proof proceeds as follows.

Proof of Theorem 1: Since the inequality conditions
defining B− only involve pairs of agents on the same path,
the set U is the cross product of a number of sets equal
to the number of paths, each set containing trajectories that
do not intersect the restriction of B− to the corresponding
subspace. Thus, we can prove the theorem by dealing with
one path at a time. Consider all agents along a path in reverse
topological order, indexed from 1 to n where n is the num-
ber of agents on the path. By (3), and since U1 is bounded,
u1(t) := umin for all t ≥ 0 is the unique input minimizing
x1(t, u1) for all t ≥ 0. Therefore, it is the first component of
all vectors in min�L U . For all following agents, we construct
the components of min�L U inductively, using the above as
the base case. Assume the component i − 1 of min�L U
is known, and call it ui−1. Assume also that there exists
some tf > 0 such that ui−1(t) = umin for all t > tf . Let
xi−1(t) := xi−1(t, ui−1). Consider the family ui,τ of inputs
with elements ui,τ (t) := {umin if t ≤ τ, umax if t > τ}
for all τ ∈ R+. ui,τ is a totally ordered family of inputs
according to the above order. By (3), inputs in ui,τ generate
a totally ordered set of position trajectories which, by Lemma
15, depend continuously on τ . If, for all ui,τ , xi(t, ui,τ) ≥
xi−1 + d, then ui(t) := umin for all t ≥ 0 is the unique input
minimizing xi(t, ui) for all t ≥ 0 while satisfying xi(t, ui) ≥
xi−1(t) + d. Therefore, it is the component i of min�L U ,
and ui(t) = umin for all t ≥ 0. Otherwise, since U 6= ∅, it
must be that xi(t, ui,0) ≥ xi−1(t, ui−1) + d for all t ≥ 0,
while xi(t, ui,τ) < xi−1(t, ui−1) for some t ≥ 0, for τ suf-
ficiently large. Therefore we can use Proposition 14, with
ui,α = ui,τ , ui,β = ui−1, and t0 = 0 to show that there
exists a τopt such that xi(t, ui,τopt) ≥ xi−1(t, ui−1) + d for
all t ≥ 0 and xi(t, ui,τopt) is tangent to xi−1(t, ui−1) + d
at some tt ≥ 0. Let us set ui(t) := ui,τopt for all t ≤ tt,
and ui(t) := ui−1(t) for t > tt. Tangency of the trajectories
implies that, at t = tt, the states of agents i and j are identical
except for a translation by d in the position. By (A.6) choosing
identical inputs for all t ≥ tt ensures that the distance d is
preserved, i.e., xi(t, ui(t)) = xi−1(t) + d for all t ≥ tt. If
tt < τopt, xi(t, ui) ≤ xi(t, ui) for all ui ∈ U . This is ensured
in the interval [0, tt] by (3) (since we are using ui = umin for
all t ≤ tt < τopt), and in the interval [tt,∞) by the constraint
x(t) ∩ B− = ∅ (since any xi(t) below xi(t, ui) would lie
below xi−1(t) + d). If instead tt ≥ τopt, by Proposition 12
with t1 = τopt, t2 = tt, we have xi(t, ui) ≤ xi(t, ui) for all
ui ∈ U and for all t ∈ [τopt, tt]. The inequalities in the rest of
the real line are proved as before.

Thus, ui(t) is the component i of min�L U , and since
ui(t) := ui−1(t) for t ≥ tt, ui(t) = umin for all t ≥ tf ,
for some finite tf ≥ 0, completing the induction step.

Sketch of proof of Lemma 2: We need to prove that
(i) ∃ūi ∈ Ūi(·, Ti) : ui �U ūi ∀ui ∈ Ūi(·, Ti),

(ii)
(
Jj � Ji, u

′
j �U uj , ui ∈ max�U Ūi(uj , Ti),

u′i ∈ Ūi(u′j , Ti)
)
⇒ u′i �U ui.

Fig. 6. The set Ua+b+c is the union of three sets of signals sketched in the
panels. The dashed horizontal band is the intersection. Different curves within
the same set and the corresponding parameters τ1 and τ2 are represented in
different shades of gray.

(iii) ūi(t) = ui,max for all t ≥ t′f > 0.

In the case xi(0) ≤ ai, we introduce the family of inputs
Ua+b+c sketched in Fig. 6. This is a set of inputs of the form

ui :=

 ui ∀ t ∈ [0, τ1],
ui,max ∀ t ∈ (τ1, τ2],
ui,min ∀ t > τ2

(23)

where τ2 spans the interval [0,∞], while τ1 is defined as a
different function in the three subsets Ua, Ub, Uc. In Ua, τ2
takes all values in [Ti,∞], while τ1 is constant and selected
so that the trajectory reaches α exactly at Ti, or τ1 = 0 if
xi(Ti, ui,max) < ai. In Ub, τ2 takes all values in [τ2,min, Ti)
and τ1 is a function of τ2 such that the trajectory reaches α
exactly at Ti. τ2,min is the least value of τ2 which allows the
trajectory to reach ai at Ti, and the corresponding value of τ1
is 0. If xi(Ti, ui,max) < ai, then Ub is empty and τ2,min = Ti.
In Uc, τ1 = 0 while τ2 takes all values in [0, τ2,min).

It can be proven that the above family has these properties:

(p.1) it is totally ordered and has a maximum (τ1 ≤ Ti, τ2 =
∞) and a minimum (τ1 = τ2 = 0) in the preorder “�U”,

(p.2) if ui := min�U Ua+b+c, then xi(ui) � xi(ui),
(p.3) the values of τ1, τ2 representing inputs in Ua+b+c form a

path connected set,
(p.4) for all u′i ∈ Ua+b+c and for all u′′i ∈ U that satisfy (5),(

∃ tc ≥ Ti : xi(tc, u
′′
i) > xi(tc, u

′
i)
)
⇒
(
xi(t, u

′′
i) >

xi(t, u
′
i)∀ t ≥ tc

)
.

In the case xi(0) ≥ ai we consider instead a family

Ud := ∪τ≥0
{
ui ∈ Ui :

{
ui := ui,max ∀ t ∈ [0, τ]
ui(t) := ui,min ∀ t > τ.

}
which can be shown to have equivalent properties to the four
listed above.

We begin by selecting from the family Ua+b+c or Ud the
greatest input ui, in the preorder “�U”, that satisfies xi(ui) �
xj(uj) − d with Jj � Ji, or simply the greatest input if i
has no predecessor. Such an input exists and is unique due
to (p.1), (p.2), and can be shown to satisfy (5)-(7). If there
is no predecessor we set ūi = ui, otherwise, if a predecessor
j of i exists, xi(ui) is tangent to xj(uj) − d at some t ≥
0 by (p.1)-(p.3) and Proposition 14. In this case we define
ūi(t) = ui(t) up to the time of tangency, and ūi(t) = uj(t)
afterwards. Then, (i) and (ii) are proven by contradiction using
(p.4), which implies that if any u′i is such that x(t, u′i) ≥
x(t, ūi) for some t ≥ Ti, such x(t, u′i) must be strictly above

xj(t, uj) at t > t′ and violate (6), while (iii) is a consequence
of the construction of ūi.

Proof of Theorem 3: We prove the theorem statement
starting from its second part: we consider a vector u ∈ U
satisfying (9) and we show that such vector is a maximum of
Ū(T). As a consequence of this, Ū(T) has maxima.

We begin by noting that Ū(T) 6= ∅ implies U 6= ∅, since
Ū(T) ⊂ U . It also implies that Ūi(∅, Ti) 6= ∅ for all i such that
∅ � Ji, and that Ūi(uj , Ti) 6= ∅ for all i such that Jj � Ji,
provided uj is the j-th component of an input u ∈ Ū(T).
This follows by the fact that each component of ū ∈ U(T)
satisfies constraints (5), (6), (7). Thus, by Lemma 2 the sets
Ūi(·, Ti) have maxima and the relation (9) is well defined.
Consider a vector ū that satisfies (9). Such ū ∈ Ū(T), since
by construction each of its components satisfies (5) and (6). To
show that it is maximal we proceed by contradiction. Assume
that there exists a u ∈ Ū(T) such that

u �U ū. (24)

We know that for all i such that ∅ � Ji and for all ui ∈
Ūi(∅, Ti), ui �U ūi. Thus, to have (24) there must exist a
i and j such that Jj � Ji, and for some uj ∈ Ūj(·, Tj)
such that uj �U ūj , for ūi ∈ max�U Ūi(ūj , Ti), and for
ui ∈ Ūi(uj , Ti), ui �U ūi. This is contradicted by Lemma 2.

APPENDIX B
PROOFS OF SECTION IV

In the proof of Theorem 4 we use the following Corollary
of Theorem 3.

Corollary 16. Assume that Ū(T) 6= ∅. Then, Pi(T) ≤ tbi(ui)
for all i and for all u ∈ Ū(T).

Proof: By Theorem 3, if Ū(T) 6= ∅ then it has a max-
imum ū in the preorder “�U”. Given the definition of the
preorder “�U”, xi(t, ūi) ≥ xi(t, ui) for all ui ∈ Ū(T) and
for all t ≥ Ti, which implies that tbi(ūi) = Pi(T) ≤ tbi(ui).

Proof of Theorem 4: We must show that VP is reducible
to SP and vice versa, or equivalently that {x(0), ẋ(0),Θ} ∈
VP⇔ {x(0), ẋ(0),Θ} ∈ SP. We prove the two directions of
the implication separately.
({x(0), ẋ(0),Θ} ∈ VP ⇒ {x(0), ẋ(0),Θ} ∈ SP): Assume
that x̃(t, ũ) satisfies the constraints of VP. The time instants
at which x̃(t, ũ) crosses each of the planes xi = ai define a
vector T, and we can set Ti = 0 if xi(0) > ai. Given this
choice of T, Ū(T) 6= ∅, and since Ū(T) ⊆ U , U 6= ∅, so by
Theorem 1 the quantities xi(t) exist. Moreover this T satisfies
(12) given the definition of Ri and Di. The time instants
at which x̃(t, ũ) crosses the planes xi = bi define a vector
P̃ = (P̃1 . . . , P̃n), with P̃i = tb(ũi), and for all i such that
Ti ≥ Tj , (i, j) ∈ I+ and xi(0) < bi, we have Ti ≥ P̃j , other-
wise x̃(t, ũ)∩B 6= ∅. By Corollary 16, Pi(T) ≤ tb(ũi) = P̃i
for all u ∈ Ū(T), so we conclude that T satisfies (13).
({x(0), ẋ(0),Θ} ∈ VP ⇐ {x(0), ẋ(0),Θ} ∈ SP): Assume
that {x(0), ẋ(0),Θ} ∈ SP, i.e., there exists a schedule T that
satisfies SP given (x(0), ẋ(0)). In order for any schedule T

to satisfy (12), it must be that U 6= ∅. If for all (i, j) ∈ I+,
xi(0) ≥ bi and xj(0) ≥ bj , then any input in U solves VP.
If instead there exists xi(0) < bi, in order for the schedule
element Ti to satisfy (12) and (13), Pj(T) must be finite
(since Di is finite by (A.3)). By the definition of Pi(T),
this implies that Ū(T) 6= ∅ and that tbi(ūi) = Pi(T), where
ū ∈ max�U Ū(T). This, together with the fact that all inputs
in Ū(T) satisfy (5) and (6) and that ẋi(t) > ẋi,min > 0 for
all t, insures that: (i) if xi(0) ≤ ai, then xi(t, ūi) ≤ ai for all
t < Ti, (ii) if xi(0) < bi then xi(t, ūi) < bi for all t < Pi(T),
and (iii) for all t ≥ 0, xi(t, ūi) ≤ xj(t, ūj)−d when Jj < Ji.
Given (12) and (13) with this input each xi enters the interval
(ai, bi) no earlier than Ti, leaves the interval at Pi(T), and
the intervals (Ti, Pi(T)) and (Tj , Pj(T)) with (i, j) ∈ I+ do
not intersect. Thus x(ū, t) /∈ B for all t ≥ 0, and ū satisfies
VP.

Proof of Lemma 5: The property follows from the fact
that, if Jj � Ji, constraint (5), appearing in the definition of
Pi, is inactive for all Ti ≤ Tj .

Sketch of proof of Theorem 6: The theorem is proved by
showing that, for all schedules T that satisfy SP*, Pi(T) ≤
Ti + δmax for all agents i with xi(0) < ai. This property
ensures that conditions (16)-(20) imply conditions (12) and
(13).

To prove the above property, let us number and analyze
agents in topological order. Let {1, . . . ,m} be all agents such
that xi(0) ≥ ai, and let

x∗i := xi(ui,max, ai, ẋi,min),

that is, x∗i is a trajectory of agent i with maximum input, initial
position equal to ai, and initial velocity equal to ẋi,min. If SP*
admits a schedule then U 6= ∅, otherwise condition (16) could
not be satisfied. Using this fact and Proposition 14 we can
construct an input u ∈ U of the form

ui(t) =

 ui,max for t ≤ τ1
ui,min for t ∈ (τ1, τ2]
uj for t > τ2

with 0 ≤ τ1 ≤ τ2 ≤ ∞ and Jj � Ji, such that

xi(t, ui) ≥ x∗i (t)− ai + xi(0)∀ t ≥ 0 (25)

for all i ∈ {1, . . . ,m}. Set ui(t) = ui,max for all t if i has no
predecessor. With this input we have τi(xi(0)) ≥ tai+d∗i (ui)
(by (25)) and xi(t) ≥ xj(t) + d for all t ≥ 0 and Jj � Ji
(since u ∈ U).

Now let m+ 1 be the first agent in topological order with
initial condition xm+1 ≤ am+1. By (18) and (25) we have
xm(Tm+1, um) ≥ x∗m+1(0) + d∗m+1 and

xm(t+ Tm+1, um) ≥ x∗m+1(t) + d∗m+1 ∀ t ≥ 0. (26)

It can be proved that, if U 6= ∅, (26), and Ti satisfies (16) and
(18), then there exists an input um+1 of the form

um+1(t) =


ui for t ≤ τ1
ui,max for t ∈ (τ1, τ2]
ui,min for t ∈ (τ2, τ3]
uj for t > τ3

satisfying (5)-(7), as well as (25). This reasoning can be it-
erated over all agents i ∈ {m + 1, . . . , n}, to construct the
remaining entries of the signal u. The resulting u ∈ Ū(T), and
by (25) τi(xi(0)) ≥ tai+d∗i (ui) for all i. Since δmax + Ti ≥
τi(xi(0)) and Pi(T) ≤ tai+d∗i (ui), we have that Pi(T) ≤
Ti + δmax for all agents i with xi(0) < ai, as requested.

Proof of Theorem 7: If APPROXIMATESOLUTION re-
turns “no” then either xi(0) ∈ [ai, bi) and xj(0) ∈ [aj , bj)
for some (i, j) ∈ I+, or Di < Ri implying U = ∅, or
POLYNOMIALTIME at line 11 returns “no”. In the first case,
x(0) ∈ B+ ⊂ B̂. In the second case, for all u ∈ U , x(t,u)
intersects B− ⊂ B̂. In the third case, for any u ∈ U the
schedule T defined by Ti = tai(ui) satisfies (16) and (20).
Since APPROXIMATESOLUTION solves SP* exactly, and finds
no feasible schedule, T must violate either (17), or (18), or
(19). If (17) is violated then xi(t, ui) ∈ [ai, bi] and xj(t, uj) ∈
[aj , bj] for some t ≥ 0 and for some (i, j) ∈ I+ in which case
x(t,u) intersects B+ ⊂ B̂. If (18) is violated, then tai(ui) <
τj for some Jj < Ji with xj(0) ≥ aj and xi(0) < ai.
We have that xj(tai(ui)) ≤ xj(0) + τj ẋmax, and that τj ≤
δmax−(xj(0)−aj)/ẋmax, hence xj(tai(ui))−xi(tai(ui)) ≤
δmaxẋmax, that is, the trajectory intersects B̂−. If (19) is
violated, then Ti − Tj < δmax for some i, j with xi(0) < ai,
xj(0) < aj , Ti ≥ Tj . This implies that xi(taj (uj), ui) −
xj(taj (uj), uj) ≤ δmaxẋmax, thus, if (i, j) ∈ I+ the trajec-
tory intersects B̂+, if (i, j) ∈ I− it intersects B̂−.

Proof of Theorem 8: We prove the theorem by showing
that, if γ+ < 1 or γ− < 1, we can select {x(0), ẋ(0),Θ} such
that APPROXIMATESOLUTION returns “no” and construct a
trajectory that does not intersect B̌. Consider first γ+ < 1.
Take a system with two agents on two different paths. Assume
ẋ1,max = ẋ2,max := ẋmax, ẋ1,min = ẋ2,min := ẋmin,
b1 − a1 = b2 − a2 := b − a. Let x1(0) < a1, x2(0) < a2,
x1(0) > x2(0), ẋ1(0) = ẋmax, and ẋ2(0) = ẋmin. Select
x1(0) and x2(0) such that ta2(u2,min)−ta1(u1,max) = δmax−
ε for some ε > 0. APPROXIMATESOLUTION returns “no”,
since ta1(u1,max) = R1, ta2(u2,min) = D2, R1 < R2, and
D1 < D2. Consider the trajectory x(t) := (x1(t, ui,max),
x2(t, u2,min)). We have x1(ta2(u2,min), u1,max) = a+(δmax−
ε)ẋmax, thus x(t) /∈ B̌ for all t ≥ 0 provided that ε ∈(
0, δmax(1− γ+)

)
.

Now consider γ− < 1 and consider the same system as
above, with identical parameters but with agents 1 and 2 on
the same path. APPROXIMATESOLUTION returns “no’ for the
same reasons as above. Consider the trajectory x(t) := (x1(t,
u1,max), x2(t, u2,min)). We have that |x1(t, u1,max) − x2(t,
u2,min)| ≥ |x1(0) − x2(0)| = (δmax − ε)ẋmax − (ẋmax −
ẋmin)ta2(u2,min). Thus, x(t) /∈ B̌ for all t ≥ 0 provided
that ε ∈

(
0, δmax(1− γ−)− ta2(u2,min)

(
1− ẋmin

ẋmax

))
, which

is nonempty for ta2(u2,min) < δmax(1− γ−)ẋmax/(ẋmax −
ẋmin)

APPENDIX C
PROOFS OF SECTION V

Sketch of proof of Proposition 9: Nonblockingness fol-
lows from the associative property of the flow action: if at
time kτ there is a trajectory that does not intersect B, and this

trajectory is followed for a time τ , then the same trajectory is
available at time (k + 1)τ .

Proof of Theorem 10: This follows from the equivalence
of VP and SP.

Sketch of proof of Theorem 11: That sapprox(x(kτ),
ẋ(kτ),vk) is no more restrictive than ŝ(x(kτ), ẋ(kτ),vk) is
a consequence of Theorem 7. Nonblockingness is proved by
observing that, at iteration k, line 6 of Algorithm 4 explicitly
checks the existence of a collision-free input for iteration k+1.
Thus the only way that the algorithm could block is when the
test at line 6 fails, the algorithm executes the code from line
8, and line 9 does not return a feasible schedule. This never
happens for the following reason. If at iteration k − 1 the
desired input was accepted (i.e. the test at line 6 didn’t fail),
then existence of a feasible schedule has already been verified.
Otherwise at iteration k−1 agents have been forced to use in-
put uk−1,safe. Given the trajectory x(t,u∞k−1,safe), let Tk−1
be the vector of times at which agents starting at x((k− 1)τ)
enter the intersection, with Tk−1,i = 0 if xi(k−1τ) ≥ ai. Let
Tk be the same vector computed from x(kτ,u∞k,safe). One
can check that if Tk−1 satisfies (16)-(20) then so does Tk,
therefore line 9 always finds a feasible schedule.

ACKNOWLEDGMENT

This work was supported by the NSF Award # CNS 0930081

REFERENCES

[1] R. M. V. Auken, J. Zellner, D. P. Chiang, J. Kelly, J. Y. Silberling, R. Dai,
P. C. Broen, A. M. Kirsch, and Y. Sugimoto, “Advanced crash avoidance
technologies (ACAT) program – final report of the Honda-DRI team,
volume I: Executive summary and technical report.” U.S. Department of
Transportation, National Highway Traffic Safety Administration, Tech.
Rep., 2011.

[2] Z. R. Doerzaph, V. L. Neale, J. R. Bowman, D. C. Viita, and M. Maile,
“Cooperative intersection collision avoidance system limited to stop
sign and traffic signal violations (CICAS-V) Subtask 3.2 interim report:
Naturalistic infrastructurebased driving data collection and intersection
collision avoidance algorithm development,” National Highway Traffic
Safety Administration, Tech. Rep., 2008.

[3] P. Alexander, D. Haley, and A. Grant, “Cooperative intelligent transport
systems: 5.9-ghz field trials,” Proc. IEEE, vol. 99, pp. 1213–1235, 2011.

[4] F. Basma, Y. Tachwali, and H. Refai, “Intersection collision avoidance
system using infrastructure communication,” in IEEE Conference on
Intelligent Transportation Systems, 2011.

[5] M. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio, “Cooper-
ative collision avoidance at intersections: Algorithms and experiments,”
IEEE Trans. Intell. Transp. Syst, vol. 14, pp. 1162 – 1175, 2013.

[6] Kyoung-Dae Kim, “Collision free autonomous ground traffic: A model
predictive control approach,” in International Conference on Cyber-
Physical Systems, 2013.

[7] S. A. Reveliotis and E. Roszkowska, “On the complexity of maximally
permissive deadlock avoidance in multi-vehicle traffic systems,” IEEE
Trans. Autom. Control, vol. 55, pp. 1646–1651, 2010.

[8] A. Colombo and D. Del Vecchio, “Efficient algorithms for collision
avoidance at intersections,” in Hybrid Systems: Computation and Con-
trol, 2012.

[9] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air traffic
management: A study in multi-agent hybrid systems,” IEEE Trans.
Autom. Control, vol. 43, pp. 509–521, 1998.

[10] C. Tomlin, J. Lygeros, and S. Sastry, “Synthesizing controllers for
nonlinear hybrid systems,” in Hybrid systems: Computation and control,
1998.

[11] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,” Automatica, vol. 35, pp. 349–370,
1999.

[12] R. Ghosh and C. Tomlin, “Maneuver design for multiple aircraft conflict
resolution,” in American Control Conference, 2000.

[13] C. Tomlin, J. Lygeros, and S. Sastry, “A game theoretic approach to
controller design for hybrid systems,” Proc. IEEE, vol. 88, pp. 949–
970, 2000.

[14] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict
resolution maneuvers,” IEEE Trans. Intell. Transp. Syst, vol. 2, pp. 110–
120, 2001.

[15] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational
techniques for the verification of hybrid systems,” Proc. IEEE, vol. 91,
pp. 986–1001, 2003.

[16] F. Fadaie and M. E. Broucke, “On the least restrictive control for
collision avoidance of two unicycles,” Int. J. Robust Nonlinear Control,
vol. 16, pp. 553–574, 2006.

[17] A. Colombo and D. Del Vecchio, “Enforcing safety of cyberphysical
systems using flatness and abstraction,” in Proceedings of the Work-in-
Progress session of ICCPS, 2011.

[18] R. Verma and D. Del Vecchio, “Semiautonomous multivehicle safety: A
hybrid control approach,” IEEE Robot. Autom. Mag., vol. 18, pp. 44–54,
2011.

[19] E. Dallal, A. Colombo, D. Del Vecchio, and S. Lafortune, “Supervisory
control for collision avoidance in vehicular networks using discrete event
abstractions,” in American Control Conference, 2013.

[20] ——, “Supervisory control for collision avoidance in vehicular networks
with imperfect measurements,” in IEEE Conference on Decision and
Control, 2013.

[21] I. M. Mitchell and C. J. Tomlin, “Overapproximating reachable sets by
hamilton-jacobi projections,” Journal of Scientific Computing, vol. 19,
pp. 323–346, 2003.

[22] A. Girard, C. L. Guernic, and O. Maler, “Efficient computation of
reachable sets of linear time-invariant systems with inputs,” in Hybrid
Systems: Computation and Control, 2006.

[23] M. Althoff, C. Le Guernic, and B. H. Krogh, “Reachable set computation
for uncertain time-varying linear system,” in Hybrid systems: Computa-
tion and Control, 2011.

[24] O. Shakernia, G. J. Pappas, and S. Sastry, “Decidable controller synthesis
for classes of linear systems,” in Hybrid Systems: Computation and
Control, 2000.

[25] O. Shakernia, G. J. Pappas, and S. S. Sastry, “Semi-decidable synthesis
for triangular hybrid systems.” in Hybrid Systems: Computation and
Control, 2001.

[26] D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE Trans.
Autom. Control, vol. 48, pp. 1684–1698, 2003.

[27] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer,
2008.

[28] A. Bicchi and L. Pallottino, “On optimal cooperative conflict resolution
for air traffic management systems,” IEEE Trans. Intell. Transp. Syst,
vol. 1, pp. 221–232, 2000.

[29] L. Pallottino, E. M. Feron, and A. Bicchi, “Conflict resolution problems
for air traffic management systems solved with mixed integer program-
ming,” IEEE Trans. Intell. Transp. Syst, vol. 3, pp. 3–11, 2002.

[30] A. Richards, T. Schouwenaars, J. P. How, and E. Feron, “Spacecraft
trajectory planning with avoidance constraints using mixed-integer linear
programming,” J. Guid. Control Dynam., vol. 25, pp. 755–764, 2002.

[31] Z.-H. Mao, D. Dugail, and E. Feron, “Stability of intersecting aircraft
flows using heading-change maneuvers for conflict avoidance,” IEEE
Trans. Intell. Transp. Syst., vol. 6, pp. 357–369, 2005.

[32] M. A. Christodoulou and S. G. Kodaxakis, “Automatic commercial
aircraft-collision avoidance in free flight: the three-dimensional prob-
lem,” IEEE Trans. Intell. Transp. Syst., vol. 7, pp. 242–249, 2006.

[33] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,” IEEE
Trans. Robot., vol. 23, pp. 1170–1183, 2007.

[34] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide safety
in intelligent intersections,” IEEE Trans. Veh. Technol., vol. 60, pp. 804–
818, 2011.

[35] A. Vela, E. Salaun, E. Feron, W. Singhose, and J.-P. Clarke, “Bounds on
controller taskload rates at an intersection for dense traffic,” in American
Control conference, 2011.

[36] G. R. de Campos, P. Falcone, and J. Sjöberg, “Autonomous cooperative
driving: a velocity-based negotiation approach for intersections cross-
ing,” in IEEE Conference on Intelligent Transportation Systems, 2013.

[37] M. Prandini, J. Hu, J. Lygeros, and S. Sastry, “A probabilistic approach
to aircraft conflict detection,” IEEE Trans. Intell. Transp. Syst, vol. 1,
pp. 199–220, 2000.

[38] M. Prandini and J. Hu, “Application of reachability analysis for stochas-
tic hybrid systems to aircraft conflict prediction,” IEEE Trans. Autom.
Control, vol. 54, pp. 913–917, 2009.

[39] M. Prandini, V. Putta, and J. Hu, “Air traffic complexity in future air
traffic management systems,” Journal of Aerospace Operations, vol. 1,
pp. 281–299, 2012.

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2009.

[41] J. K. Lenstra, A. H. G. R. Kan, and P. Brucker, “Complexity of machine
scheduling problems,” Annals of discrete mathematics, vol. 1, pp. 343–
362, 1977.

[42] M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan, “Scheduling
unit-time tasks with arbitrary release times and deadlines,” SIAM J.
Comput., vol. 6, pp. 416–426, 1981.

[43] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order.
Cambridge University Press, 2002.

[44] R. Verma, D. D. Vecchio, and H. K. Fathy, “Development of a scaled
vehicle with longitudinal dynamics of an HMMWV for an ITS testbed,”
IEEE/ASME Transactions on Mechatronics, vol. 13, pp. 1–12, 2008.

[45] L. Bruni, A. Colombo, and D. Del Vecchio, “Robust multi-agent col-
lision avoidance through scheduling,” in IEEE Conference on Decision
and Control, 2013.

[46] H. Ahn, A. Colombo, and D. Del Vecchio, “Supervisory control for in-
tersection collision avoidance in the presence of uncontrolled vehicles,”
in American Control Conference, 2014.

[47] A. Colombo, “A mathematical framework for cooperative collision
avoidance of human-driven vehicles at intersections,” in International
Symposium on Wireless Communication Systems, 2014.

	Introduction
	System Definition and Problem Statement
	Preliminary Results
	Notions of Scheduling Theory
	Function Spaces

	Main Results
	Formal Statement of SP and Equivalence of VP and SP
	Exact Solution of VP
	Approximate Solution of VP

	Synthesis of a Safety-Enforcing Supervisor
	Example
	Conclusion
	Appendix A: Proofs of Section III
	Appendix B: Proofs of Section IV
	Appendix C: Proofs of Section V
	References
	Biographies
	Alessandro Colombo
	Domitilla Del Vecchio

