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1. Introduction

Discretisation of continuous-time linear systems is a well es-
tablished procedure, due to its key role in digital control en-
gineering [1] and sampled-data systems [2]. Nevertheless, the
requirement for novel discretisation methods is still emerging in
several areas. Examples of such areas include networked control
systems [3] and large scale collaborative optimisation problems
such as those found in intelligent transportation systems (ITS) ap-
plications [4]. The basic objective in these new application areas is
that one seeks preserve a certain property of interest. In this paper,
we will consider the problem of realising discretisation algorithms
that preserve sparsity constraints.

Large-scale dynamical systems usually present structural char-
acteristics, which are fundamental to describe their behaviour [5].
Indeed, these systems usually derive from the dynamical inter-
action of several interconnected subsystems, which can model
industrial settings [6], automated highway systems (AHS) [7],
structural dynamics [8] andnetwork flowproblems [9]. Thus, these
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structures arise not only due to physical properties of the system
being modelled, but also due to communication and costs limi-
tations. For instance, an AHS may only allow communication be-
tween neighbouring vehicles, which builds up a sparsity pattern in
its continuous-time state dynamics.

The sparsity patterns presented by large scale systems are
usually obtained for their continuous-time formulation. However,
the discrete-time versions of these models are the ones that will
be either implemented or simulated and, as it will be further
discussed in the sequel, the classical discretisationmethods usually
destroy this sparsity pattern. To avoid this, discretisation methods
based on Euler’s forward approximation to the exponential can be
adopted [10,11]. Unfortunately, these approximations are usually
good only for small values of the sampling period.

This paper provides novel discretisation techniques for sparse
linear systems. We break free from the classical approach of
approximating the matrix exponential and recast the problem
in the setting of convex optimisation, which can be solved
efficiently with the existing methods. Error bounds are provided
for special classes of sparse matrices that arise in several practical
applications.

The notation is standard. Capital letters denote matrices and
small letters denote vectors and scalars. For matrices and vectors,
(′) denotes transpose and, for a block-structured symmetricmatrix,
(⋆) denotes each of its symmetric blocks. The sets of real, nonnega-
tive real, positive real and natural numbers are indicated as R, R+,
R∗

+
andN. For symmetricmatrices, X ≻ 0 denotes that X is positive

definite. For square matrices, tr(·) denotes the trace function and
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σmax(·) represent its maximum singular value. Block diagonal ma-
trices are defined by its blocks using the notation diag(·), as usual.
For a real matrix A, its spectral and its Frobenius norms will be de-
noted by ∥A∥2 = σmax(A) and ∥A∥F =

√
tr(A′A). Finally, for a real

function f of one variable, f (n) denotes its n-th order derivative.

2. Discretisation of sparse linear systems

2.1. Problem statement

In this paper, we consider a continuous-time, linear, time-
invariant (LTI) autonomous system given by

ẋ(t) = Ax(t), x(0) = x0, (1)

in which x : R+ → Rn is its state. In the classical discretisation
problem, the discrete-time realisation

x[k + 1] = Mx[k], x[0] = x0, (2)

must be determined to ensure that x(kh) ≈ x[k] for all k ∈ N,
where h ∈ R∗

+
is the discretisation step or sampling period. It is a

well known fact [12] that, whenever M = ehA =


∞

k=0(hA)k/k!,
the discrete-time LTI system (2) is such that x(kh) = x[k] for all
k ∈ N. Hence, whenever this exact approach can be adopted, the
discretisation problem is readily solved from the computation of
the matrix exponential, [13]. However, in some applications, one
seeks to determine M that approximates ehA and preserves some
specific properties, such as sparsity.

In what follows, we assume that A = (aij) ∈ Rn×n is a
sparse matrix, whose specific sparsity pattern is defined by the set
S ⊂ Rn×n. Formally, one can consider the set IS ⊂ {1, . . . , n}2
composed of pairs (i, j) such that aij is allowed to be nonzero
and, therefore, define S as the set that contains all matrices S =

(sij) ∈ Rn×n such that sij = 0 whenever (i, j) ∉ IS . Due to
its definition, note that S is a subspace of Rn×n. However, it is of
interest to observe that A ∈ S does not ensure that ehA ∈ S
for some h > 0. In fact, the discretisation procedure A → ehA
generally destroys structural properties of the original continuous-
time system. This phenomenon, which ensures x(kh) = x[k], ∀k ∈

N, creates direct dependencies between state variables that do not
exist in the original continuous-time dynamics. Hence, considering
another subspace R ⊂ Rn×n that defines a sparsity pattern, our
main goal is to determineM ∈ R such thatM ≈ ehA for some h > 0
given. It is often desirable that R = S, but this may be relaxed in
some situations, where we will allow R ⊃ S. For example, in ITS
applications, local inter-vehicle communication may be possible.
Moreover, R also presents a set IR ⊂ {1, . . . , n}2 composed of
the nonzero positions allowed by its structure and, since R may
relax some constraints imposed by S, it follows that IR ⊃ IS .
This property can be exploited not only to improve the quality of
the approximation to the matrix exponential but also to make the
optimisation feasible in some situations.

2.2. Mathematical preliminaries

The following auxiliary results and definitions are extensively
used throughout. The matrix exponential can be computed via
numerical methods based on Padé approximants [13,14]. Two
particular cases of approximants to the matrix exponential are
Tustin’s formula

esA ≈ T (sA) ,

I −

s
2
A
−1 

I +
s
2
A


(3)

and Taylor’s polynomial of order λ, centred at the origin,

esA ≈ Rλ(sA) ,

λ
k=0

sk

k!
Ak. (4)
Padé approximants are widely adopted in discretisation meth-
ods [11,15]. It is also worth pointing out that Tustin’s approximant
plays a key role in control theory [12].

The following theorem [13] provides an error bound for the
approximation of a matrix function.

Theorem 1. If f (·) has the Taylor series representation f (z) =
∞

k=0 αkzk in an open disk containing the eigenvalues of A ∈ Cn×n,
thenf (A) −

λ
k=0

αkAk


2

≤
n∥A∥

λ+1
2

(λ + 1)!
max
0≤s≤1

f (λ+1)(sA)

2 . (5)

We are particularly interested in the case f (·) ≡ exp(·), which
implieseA −

λ
k=0

Ak

k!


2

≤
n∥A∥

λ+1
2

(λ + 1)!
e∥A∥2 . (6)

Additionally, it is also possible to obtain bounds for the Frobenius
norm and for any Padé approximant to the exponential; see
[13,14].

2.3. Discretisation as an optimisation problem

Now we focus on the main problem stated before, which can
be analysed, in a simple manner, as a projection problem. Indeed,
given a continuous-time systemwith realisation (1) and a step size
h ∈ R∗

+
, we wish to determineM⋆

∈ R ⊂ Rn×n such thatM⋆ is the
‘‘closest’’ element ofR to ehA, with respect to themetric δ. Thus, its
general formulation is

M⋆
= arg inf

M∈R
δ

M, ehA


, (7)

in which δ provides the notion of distance between the approxi-
mation M and the exact discrete-time matrix ehA, for any h ∈ R∗

+

given. Thus, from the computational viewpoint, it represents the
error yielded by the approximation. Note that, whenever δ is in-
duced by a matrix norm, the optimisation problem (7) is convex;
see [16].

In this paper, we are particularly interested in two widely
adopted norms in approximation problems (see [17]): the spectral
norm and the Frobenius norm. For the first case, it is possible to
show [18,19] that, for a given sampling period h ∈ R∗

+
, there exists

σ ∈ R∗
+
such that the error bound ∥M − ehA∥2 < σ holds if, and

only if, the linear matrix inequality (LMI)
σ 2I ⋆

M − ehA I


≻ 0 (8)

is satisfied. Accordingly, for the Frobenius norm case, the error
bound ∥M − ehA∥F < σ holds if, and only if, there exists W ≻ 0
such that the LMIs

tr(W ) < σ 2,


W ⋆

M − ehA I


≻ 0 (9)

hold. Hence,whenever δ is inducedby∥·∥2, the best approximation
in R to the matrix exponential can be obtained solving the convex
optimisation problem

(M⋆, σ ⋆) = arg inf
M∈R,σ

{σ : (8)}. (10)

Similarly, for the Frobenius norm, the best approximation in R to
the matrix exponential can be obtained solving

(M⋆, σ ⋆) = arg inf
M∈R,σ

{σ : (9)}. (11)

In both cases, σ ⋆
= δ(M⋆, ehA) is the optimal value for the error

yielded by the approximation. Additionally, both optimisation
problems are convex, as expected.



Remark 1. The element-wise characteristics of the Frobenius
norm allows us to obtain analytically the optimal solution of the
problem (11). Indeed, the solution M⋆

= (m⋆
ij) ∈ R to (11) is such

that

m⋆
ij =


φij, if (i, j) ∈ IR

0, if (i, j) ∉ IR
(12)

in which ehA = (φij) ∈ Rn×n. Note also that the optimal error is
given by

M⋆
− ehA

2
F =


(i,j)̸∈IR

φ2
ij .

Thus, the optimal approximation with respect to the Frobenius
induced metric is very simple to obtain; one just has got to neglect
the elements that are not allowed in the feasibility pattern. This
simple technique may not provide good approximations in some
cases, since it is completely element-wise and, hence, we will only
consider the 2-norm formulation in the sequel.

An important theoretical advantage in adopting the spectral
norm is based on the following result, which ensures consistency
and order of accuracy for the approximation yielded by the solution
to (10) (see [20] for details).

Theorem 2. Consider the continuous-time dynamical system (1) and
the optimisation problem (10). If the approximant Rλ(hA), λ ≥ 1, to
the matrix exponential ehA is feasible to (10), then the discrete-time
iteration x[k + 1] = M⋆x[k], with x[0] = x0, is consistent with the
differential equation (1) and it has order of accuracy of, at least, λ.

Proof. The proof follows from the concept of truncation error for
numerical methods for ODEs. At the time instant tk = kh ∈

[0, T ], k ∈ N, for some T > 0 fixed, the truncation error τk(h)
is defined as τk(h) = (1/h)(x(tk+1) − x[k+ 1]), that is, it is related
to the error caused by a single iteration, assuming that the true
solution at the point tk is known. Hence, for this case, we have that

∥τk(h)∥2 = (1/h)∥ehAx(tk) − M⋆x(tk)∥2

≤ (1/h)∥ehA − M⋆
∥2∥x(tk)∥2

≤ (1/h)∥ehA − Rλ(hA)∥2∥x(tk)∥2

≤ nhλ
∥A∥

λ+1
2 e∥hA∥2∥x(tk)∥2/(λ + 1)!, (13)

where we have used the results of Theorem 1 and the fact that
Rλ(hA) is feasible to (10). Since the solution of (1) is bounded for
any tk ∈ [0, T ], k ∈ N, there exists a constant K such that
∥τk(h)∥2 ≤ Khλ for h ∈ R∗

+
sufficiently small and, hence, the

method is consistent and has order of accuracy of at least λ. The
proof is complete. �

Some final remarks must be made in this section. First,
the results stated in Theorem 2 provide important theoretical
consequences for the discretisation method studied in this paper.
Since in almost all situations the matrix R1(hA) = I + hA, h ∈ R∗

+
,

is feasible to R, we guarantee that the discrete-time iteration (2),
with M = M⋆ obtained from (7), is consistent and has order of
accuracy of at least 1. As it will be discussed in the sequel, the
feasibility of Rλ for λ ≥ 2 is ensured for special cases of S and
R. Moreover, it is important to note that the main difficulty in this
problem is to adequately choose R in order to provide an optimal
solution M⋆ such that the optimal error σ ⋆ is sufficiently small.
This problem is not fully addressed here. For some special classes
of matrices, to be analysed in the sequel, some results provide a
basis for this choice. Furthermore, it is important to remember that,
in many applications, R is specified by, for instance, inter-agent
communication patterns.

Remark 2. In the literature, two other methods can also be
adopted in the discretisation problem with structural constraints.
These are Euler’s approximation, which uses M ≈ I + hA, and the
recently introducedMixed Euler-ZOH (mE-ZOH)method, discussed
in [10,11]. The latter is based on the approximationM ≈ I+D(h)A,
where

D(h) = diag
 h

0
ea11tdt, . . . ,

 h

0
eanntdt


. (14)

It is clear that both approximations are less expensive from a
computational viewpoint when compared to our approach, since
both do not require the explicit evaluation of ehA. However, the
approximations provided by these methods are usually most
effective for very small values of h ∈ R∗

+
. Based on these methods,

we can impose the structureM = I +DA in (10) or (11) and obtain
optimisation problems with the diagonal matrix D as a decision
variable.

3. Special sparsity patterns

In this section, we discuss some special sparsity patterns that
arise in many practical applications. These patterns are then
exploited to provide error bounds on the approximations yielded
by (10).Moreover,webriefly analyse the relaxation of the structure
of R to provide smaller values for the error.

3.1. Band matrix systems

First, we study band matrix systems, which present a peculiar
structure that is intrinsic to several applications. For instance,
tridiagonal systems are often used to model interaction between
species [21], binary distillation systems [22] and some queueing
systems [23]. Systems of this class present the following realisation

ẋ1 = f1(x1, x2),
ẋi = fi(xi−1, xi, xi+1), i = 2, . . . , n − 1 (15)
ẋn = fn(xn−1, xn)

evolving from the initial condition x(0) = x0 ∈ Rn. Moreover,
this structure implies the linearised model obtained near an
equilibrium point has a tridiagonal dynamic matrix, which is a
particular case of a band matrix.

Following [13], we say A = (aij) ∈ Rn×n is a (bu, bℓ)-band
matrix if all the nonzero elements of A have to satisfy the condition
−bu ≤ i − j ≤ bℓ. The constants bu and bℓ are usually called
upper bandwidth and lower bandwidth, respectively. Diagonal,
tridiagonal, pentadiagonal, Hessenberg and triangular matrices
can be seen as special cases of bandmatrices and, thus, this class of
matrices plays an important role in a wide range of applications.

Band matrices present several important properties, due to
their structure. For instance, if A = (aij) ∈ Rn×n is a (bu, bℓ)-band
matrix, it is easy to show (see [18]) that Ak is a (k · bu, k · bℓ)-band
matrix, for every k ∈ N. This fact implies the following properties
hold, for bu, bℓ > 0 and a given scalar h ∈ R∗

+
:

(i) The exponential ehA is, in general, a full matrix.
(ii) Taylor’s polynomial approximant of order λ, Rλ(hA), is a

(λbu, λbℓ)-band matrix.

Some comments concerning the previous results must be
made at this point. First, the ‘‘fill-up’’ effect caused by the
exponential is emphasised in (i), but the same occurs to general
Padé approximants to the exponential and, in particular, to Tustin’s
formula, whence we conclude these methods do not consider
adequately the sparsity pattern presented by such systems. Finally,
it is remarkable that the truncated Taylor series preserves a band
sparsity pattern, but with a larger bandwidth. Moreover, it is clear
that, as λ increases, the quality of the approximation improves, but
the yielded matrix will have a large number of nonzero entries.



Now we focus again on the discretisation problem. The
results developed in this section altogether allow us to state the
following theorem, which provides an important error bound to
the approximation yielded by (10).

Theorem 3. Assume A ∈ S ⊂ Rn×n, where S is the set composed of
all (bu, bℓ)-bandmatrices and let h ∈ R∗

+
be given. If R ⊂ Rn×n is the

set composed of all (λbu, λbℓ)-bandmatrices,λ ≥ 1, then the solution
(M⋆, σ ⋆) to the convex optimisation problem (10) is such that

σ ⋆
≤

n(h∥A∥2)
λ+1

(λ + 1)!
eh∥A∥2 . (16)

Furthermore, the iteration (2), with M = M⋆, is consistent with
(1) and has order of accuracy of at least λ.

Proof. First, note that the definition of R implies that Taylor’s
approximant Rλ(hA) satisfies the constraints of the optimisation
problem (10) for some σ ∈ R∗

+
. Therefore, it is clear that σ ⋆

=

∥M⋆
− ehA∥2 ≤ ∥Rλ(hA) − ehA∥2. Finally, considering the error

bound (6), we conclude that (16) holds. The rest of the statement
follows from Theorem 2. The proof is complete. �

It is worth noting that the special structure presented by band
matrices allows us to obtain error bounds for our approximation.
As it has been shown in the proof of Theorem 3, this result
is completely based on the feasibility of Rλ(hA) with respect
to the constraints of the optimisation problem (10). Thus, the
approximations yielded by the optimal solution of (10) are always
at least as good as the ones provided by Taylor’s polynomial
approximant of order λ.

3.2. Arrowhead matrix systems

Nowwe briefly discuss another special class of sparse matrices,
known as arrowhead matrices, which may arise in network flow
control and optimisation problems [9]. Indeed, in this reference,
the authors consider a continuous-time primal–dual update for
optimisation variables associated with a network flow control
problem. The decentralised structure of the algorithm must be
considered by the discretisation method applied to this problem.
In the special case of single link networks, the dynamic matrix
of the linearised model has only nonzero elements on its main
diagonal and on its last row and column, which is the structure of
an arrowhead matrix.

Formally, an arrowhead matrix A ∈ Rn×n can be written,
without any loss of generality, in the form

A = D + uv′
+ wu′, (17)

where D ∈ Rn×n is diagonal, v, w ∈ Rn are given vectors and
u = [0 · · · 0 1]′ ∈ Rn. As it happens with band matrices,
the matrix exponential of an arrowhead matrix is, in general, full.
Indeed, we have A2

= AD+DA−D2
+ (uv′

+wu′)2 and, due to the
last term, A2 is filled-up and sparsity is lost for eA. However, Euler’s
approximation

ehA ≈ I + hA = (I + hD) + h(uv′
+ wu′) (18)

also has the arrowhead structure and, thus, is feasible for the
optimisation problem (10), wheneverS andR are sets that contain
this class of matrices. Hence, wheneverM = M⋆ given by (10), we
can ensure (2) is consistent with (1) with order of accuracy of at
least 1. Thus, in this case, considering that (σ ⋆,M⋆) is the solution
to (10), we have

σ ⋆
= ∥M⋆

− ehA∥2 ≤ (1/2)nh2
∥A∥

2
2e

h∥A∥2 (19)

where we used the results of Theorem 1. As before, the structure
constraint imposed by R can be relaxed.
4. Stability and positivity preservation

In almost all situations, sparsity preservation is just one
constraint of many. For example, one is often interested in the
quality of the solution and other qualitative properties, such
as stability and positivity. In this section we show how these
properties can be incorporated in the discretisation procedure;
specifically, we consider preservation of asymptotical stability and
positivity in case of positive systems. Both properties have already
been addressed for special classes of systems in [10,11].

4.1. Preserving stability

It is widely known the mapping A → ehA preserves asymptotic
stability for any h ∈ R∗

+
, as a consequence of the dynamic be-

haviour of the considered system. Whenever approximations are
adopted, one has to be careful with the choice of the step h ∈ R∗

+
,

since only some methods can preserve stability for all h ∈ R∗
+
. We

now indicate how to preserve Lyapunov stability in our optimisa-
tion setting. We begin with the following theorem.

Theorem 4. Let the Hurwitz stable3 matrix A ∈ S ⊂ Rn×n and the
sampling period h ∈ R∗

+
be given. Let M be a matrix in R ⊂ Rn×n

and σ be a scalar in R∗
+
. The following statements are equivalent:

(i) M is Schur stable4 and the error bound ∥M − ehA∥2 < σ holds.
(ii) There exist matrices S = S ′

∈ Rn×n and G ∈ Rn×n such that
σ 2I ⋆

M − ehA I


≻ 0,


G + G′

− G′SG ⋆
M S


≻ 0. (20)

Proof. First, note that ∥M − ehA∥2 < σ is clearly equivalent to
the first inequality of (20). Thus, we first observe that the Schur
stability of M implies the second inequality of (20) holds for G =

S−1
≻ 0. Conversely, we also observe that Schur complement

applied to the second inequality of (20) yields S−1
≽ G + G′

−

G′SG ≻ M ′S−1M , which implies M is Schur stable, completing the
proof. �

Taking into account the statement of Theorem 4, the best
approximation in terms of themetric induced by the spectral norm
can be determined by solving

(M⋆, σ ⋆, S⋆,G⋆) = arg inf
M∈R,σ ,S>0,G

{σ : (20)}, (21)

which, albeit non-convex, possesses a remarkable property;
namely, whenever G ∈ Rn×n is fixed, the constraints become
LMIs with respect to the remaining variables and, consequently,
the problem becomes convex. This property can be exploited to
provide a sequential convex optimisation method that calculates
a suboptimal solution as a result of a convergent sequence of
intermediate solutions with decreasing costs

(Mℓ+1, σℓ+1, Sℓ+1) = arg inf
M∈R,σ ,S>0,Gℓ=S−1

ℓ

{σ : (20)}, (22)

where G is fixed as the previous value for S−1.

Proposition 5. Assume (20) is feasible for some G0 = S−1
0 ≻ 0 fixed.

The iterative method defined by (22) generates a convergent sequence
such that σℓ+1 ≤ σℓ, ∀ℓ ∈ N.

3 A matrix whose eigenvalues are in {s ∈ C : Re(s) < 0}.
4 A matrix whose eigenvalues are in {z ∈ C : |z| < 1}.



For the proof, the reader can refer to the similar result stated
in [24]. Note that the most challenging aspect of this algorithm is
the choice of G0 = S−1

0 . Indeed, suppose there is a feasible solution
M that is sufficiently close to ehA. We can adopt S0 = X−1, with X ≻

0 being a Lyapunovmatrix for ehA, that is, (ehA)′X(ehA)−X = −Q ≺

0, for a given Q ≻ 0. This method provides good results; in most
cases, no conservatism is added, since it finds an optimal solution.
Furthermore, the number of iterations, empirically speaking, is
usually found to be small.

4.2. Preserving positivity

Positivity of LTI systems is a very important property; see
[23,25]. Formally, the continuous-time LTI system (1) is said to be
positive if, for any given initial state x(0) = x0 ≥ 0, we have
x(t) ≥ 0, ∀t ∈ R+. Equivalently, the discrete-time, LTI system
(2) is positive if, for any initial state x[0] = x0 ≥ 0, we have
x[k] ≥ 0, ∀k ∈ N. Thus, it is unacceptable to provide a discrete-
time approximation to a continuous-positive system which does
not preserve this property, due to the physical meaning the state
variables may have in real world applications. Hence, we now
discuss on the preservation of positivity in our approach.

It is a well-known fact that (1) is positive if, and only if,
A is a Metzler matrix, that is, all of its off-diagonal elements
are nonnegative. Moreover, (2) is positive if, and only if, M is a
nonnegative matrix, that is, all of its elements are nonnegative. Let
us denote by M the set of all Metzler matrices and Md the set of all
the nonnegativematrices. It is clear that, if A ∈ M, thenM = ehA ∈

Md, ∀h ∈ R∗
+
. Therefore, we should seek M that approximates

the exponential ehA, satisfies some structure constraint imposed by
R and is a nonnegative matrix. Additionally, since Md is a convex
cone in Rn×n, the optimal approximation considering the metric
induced by the 2-norm can be obtained from

(M⋆, σ ⋆) = arg inf
M∈R∩Md,σ

{σ : (8)}, (23)

which is convex due to the convexity of the new feasible set forM
is R ∩Md. Clearly this formulation does not add any conservatism
to the previous conditions. Note that (23) can be combined with
the sequential procedure developed previously to ensure the Schur
stability ofM⋆.

Remark 3. Based on themE-ZOH structure, ifwe adoptM = I+DA
and ensure M ∈ Md, then M is Schur stable for every diagonal
matrix D ≻ 0 whenever A ∈ M is Hurwitz (see [11]). Therefore, in
this case, the optimisation problem (23) always provides a stable,
nonnegative approximation.

5. Related problems

5.1. Lyapunov function preservation

One of the many properties of Tustin’s approximation is the
preservation of Lyapunov functions: for any Hurwitz stable matrix
A and any h ∈ R∗

+
, if P ≻ 0 is such that A′P + PA ≺ 0 then

T (hA)′PT (hA) − P ≺ 0 holds (see [26]). Hence, if one needs to
preserve a Lyapunov matrix P ≻ 0 in our discretisation setting,
the problem to be solved can be formulated as

inf
M∈R, P≻0


δ

M, ehA


: A′P + PA ≺ 0, M ′PM − P ≺ 0


, (24)

which is convex whenever δ is induced by a norm and P ≻ 0 such
that A′P + PA ≺ 0 is fixed. Nevertheless, if P ≻ 0 is considered
as a variable, this problem can be solved by the sequential method
presented previously.
This problem can be generalised to the context of quadratic
stability of switched systems; see [27,28]. Given a set of N Hurwitz
matrices Ac , a matrix P ≻ 0 is a common Lyapunov matrix (CLM)
forAc ifA′P+PA ≺ 0 for allA ∈ Ac . Similarly, given a set ofN Schur
matricesAd, a matrix P ≻ 0 is a CLM forAd ifM ′PM−P ≺ 0 for all
M ∈ Ad. These concepts are essential to define quadratic stability
(QS) of switched systems (see [27]). As a clear consequence from
the LTI case, whenever we consider a set Ac of Hurwitz matrices
with an associated CLM P ≻ 0, the first order diagonal Padé
approximant yields a set Ad of Schur matrices with the same CLM.

In our optimisation approach, if one seeks to find the discrete-
time set of matrices Ad such that presents the same CLM P ≻ 0 as
Ac , the problem to be solved is

inf
Mi∈R,P≻0


N
i=1

δ

Mi, ehAi


: A′

iP + PAi ≺ 0,

M ′

iPMi − P ≺ 0


, (25)

for i = 1, . . . ,N , which is only convex if δ is induced by a norm and
theCLM P ≻ 0 forAc is fixed. In themore general casewhere P ≻ 0
is a variable, the problem is nonconvex and, thus, an adaptation of
the sequential procedure detailed before has to be adopted.

5.2. Robust discretisation

Another interesting problem that can be addressed is a ‘‘robust’’
discretisation problem. In some applications, one cannot assume
that the discretisation step h ∈ R∗

+
is constant, due to uneven

data rates present in real world scenarios. Therefore, one can
be interested in the determination of a ‘‘robust’’ discrete-time
matrix M that approximates adequately ehA for all h ∈ [h⋆, h⋆

], in
which this interval bounds the uncertainties on the step size. This
problem can be formulated as

inf
M∈R

sup
h∈[h⋆,h⋆]

δ

M, ehA


, (26)

in which the matrix to be found minimises the maximum error
with respect to all values of h ∈ [h⋆, h⋆

]. Considering δ is induced
by the 2-norm, this problem is equivalent to

inf
M∈R,σ


σ :

M − ehA

2 < σ, h ∈


h⋆, h⋆


(27)

which is similar to the basic problem presented in this paper.
It is clear that, due to the nonlinear dependence of ehA on the
discretisation step h ∈ [h⋆, h⋆

], this problem is difficult to solve
as is. However, the continuity of the constraints with respect to
h ∈ R∗

+
allows one to split the interval [h⋆, h⋆

] with a large enough
number N of evenly spaced points hi, with h1 = h⋆ and hN = h⋆,
and impose (10) to each of themsimultaneously. Hence, the convex
optimisation problem to be solved is

(M⋆, σ ⋆) = arg inf
M∈R,σ


σ :

M − ehiA

2 < σ,

i = 1, . . . ,N

. (28)

Note that the optimal cost provides the bound for the worst-
case error obtained by the robust approximation in the considered
interval. Moreover, since the problem can be stated in terms of
LMIs, it can be readily solved even for large values of N [19].

5.3. Stochastic matrices and Markov processes

The final application to be analysed considers the discretisation
ofMarkov processes. Large-scale, sparse, stochasticmodels arise in



queue theory and in its applications [29,23,25] and it is essential
that discretisation methods preserve the special characteristics
presented by these systems. A finite dimensional, continuous-time
Markov processes can be modelled as a linear autonomous system
with realisation (1), in which A is a Metzler matrix and is such that
π ′A = 0, where π = [1 · · · 1]′. Thus, A is the transpose of
the transition rate matrix associated with the process. Similarly,
in discrete-time, a finite dimensional Markov process (or chain)
can be modelled as a linear autonomous system with realisation
(2), where M is a nonnegative matrix and satisfies π ′M = π ′.
Therefore, in the discrete-time case, M is the transpose of the
stochastic matrix associated with the Markov chain.

Discretisation methods can be applied to continuous-time
Markov processes in order to obtain their corresponding discrete-
time chains. It can be shown that, if Q is a transition rate matrix,
then P = ehQ is a stochastic matrix for any h ∈ R∗

+
. Thus, in this

setting, the approximation to be obtained is the solution to

inf
M∈R∩Md


δ

M, ehA


: π ′M = π ′


, (29)

which is clearly convex whenever δ is induced by a norm. Thus,
the approximation yielded by (29), applied to a continuous-time
Markov process, always yields a well-posed Markov chain, in the
sense thatM is always the transpose of a stochastic matrix.

6. Numerical examples

Example 1 (Queueing System). In this example, we consider a
simple queueing system, described in [23]. Under Markovian
hypotheses, a system with 2 servers and a queue with capacity of
3 clients can be modelled as (1) with

A =


−λ µ
λ −λ − µ 2µ

λ −λ − 2µ 2µ
λ −λ − 2µ 2µ

λ −λ − 2µ 2µ
λ −2µ

 ,

where λ, µ ∈ R∗
+

are parameters related to the rate of arrivals
and the time needed to perform the service. At any given instant
t ∈ R+, xi(t) represents the probability of having i users in the
system. Thus, this system is a continuous-time Markovian process
and, in order to be discretised, its characteristics have to be taken
into account. For instance, for λ = µ = 1 and h = 0.25 s, we solve
(29) with the metric induced by the spectral norm and obtain

M⋆
=


0.8221 0.1833
0.1779 0.6622 0.3077

0.1545 0.5663 0.2834
0.1260 0.5498 0.2899

0.1668 0.5494 0.3215
0.1607 0.6785

 ,

which yields an error of σ ⋆
= 0.0895. In this case, Euler’s method

fails to ensure positivity for all h ∈ R∗
+

and its modified version,
although preserving distribution properties and always providing
a nonnegative approximation, does not ensureπ ′(I+D(h)A) = π ′,
where π = [1 · · · 1]′, for h ∈ R∗

+
. Thus, the approximation

obtained is adequate.

Example 2 (Reactor–Separator Process). This example considers
the linearised model for a reactors–separator process. It was
described in [30] and analysed from the discretisation viewpoint
in [10]. The dynamic matrix is Hurwitz and presents the block
structure

A =

A11 A13
A21 A22

A32 A33


,

in which each block is a 4 × 4 real matrix; all of the submatrices
are given in [10]. Note that such structure is rather usual in
distributed control applications. Hence, our main goal here is to
obtain a discrete-time approximant that preserves stability and
presents the same block pattern. To this end, our set R only
allows nonzero valuers for the entries that correspond to nonzero
blocks of A. Following [10], we analyse (see Fig. 1) the spectral
radius of the approximant yielded by the optimal solution to
(10) (dashed line) and compare it with the spectral radius of the
exact solution ehA (solid line) and with the spectral radius of the
approximant obtained by the mE-ZOH method (dot-dashed line),
for h ∈ (0, 0.5]. It is clear that, for small h ∈ (0, 0.5], both
approximations are good but the optimal solution to (10) is more
adequate when this is not the case.

Example 3 (Network Flow Control). We consider an example
related to the network flow control problem studied in [9]. The
resource allocation is done with a fair utility function Ui(xi) =

log(xi) in a single link (with cost λ and capacity c = 2) and four
sources network, with flows xi, i = 1, . . . , 4. In this case, the
routing matrix is R = [1 1 1 1]. For illustration, the feedback
gains K = 0.01 I andΓ = 10 are adopted. The linearisedmodel for
the dynamics of the variables xi and λ, around the optimal solution
to this problem (x⋆

i = 0.5, i = 1, . . . , 4, λ⋆
= 2), is given by

d
dt


x
λ


=


KU ′′(x⋆) −KR′

Γ R 0


x
λ


,

where U ′′(x⋆) = diag(U ′′

i (x⋆
i )). The dynamic matrix A of this

system has eigenvalues very close to the imaginary axis. We
consider R = S for this case. For instance, if we take h = 0.2 s,
the optimal solutionM⋆ of problem (10) is

M⋆
=


0.9881 −0.0020

0.9881 −0.0020
0.9881 −0.0020

0.9881 −0.0020
1.9867 1.9867 1.9867 1.9867 0.9920

 ,

with the associated error σ ⋆
= ∥M⋆

− ehA∥2 = 0.0040. Further-
more, we analyse the behaviour of some methods applied to this
example and plot the eigenvalues loci parameterised by h ∈ (0, 1].
Blue dots represent the eigenvalues of ehA, whilst the ones of the
approximations are denoted by green or red circles, the first being
usedwhen the approximation yielded is Schur stable and the latter
on the contrary. These curves are shown in Fig. 2, which is organ-
ised as follows. Subplot (a) shows the optimal solution obtained
by solving (10), which yields stable solutions for h ∈ (0, 0.41];
(b) illustrates the approximation given by the mE-ZOH method,
which provides stable solutions for h ∈ (0, 0.09] (if we impose
M = I + DA in (10) and optimise D, the results are only slightly
better); (c) considers the optimal solution obtained by solving (11),
which is stable for h ∈ (0, 0.27]; (d) shows the stable solution of
(21) obtained with the iterative procedure with Q = I . This exam-
ple shows the quality of the approximations obtained.

7. Conclusions

In this paper, we have addressed the discretisation problem for
sparse linear systems. Several practical dynamical systems, mainly
those that involve the interaction of a large number of independent
agents, present some sparsity pattern in their continuous-
time formulation that is lost whenever classical discretisation
procedures are adopted. Hence, the discretised models yielded by
such techniques are not viable for simulation or implementation
purposes, due to cost and communication constraints. To preserve
the sparsity pattern, we formulate a convex optimisation problem



Fig. 1. Spectral radius for h ∈ (0, 0.5].
(a) ehA ≈ M⋆
∈ R (Spectral). (b) ehA ≈ I + D(h)A ∈ R.

(c) ehA ≈ M⋆
∈ R (Frobenius). (d) ehA ≈ M⋆

∈ R (Stability).

Fig. 2. Eigenvalues loci plot for h ∈ (0, 1]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
that yields an approximation to the exact discrete-time dynamical
matrix that presents a desired structure. Error bounds were
provided for band matrix and arrowhead matrix linear systems,
which occur in several applications. We have also addressed
related problems that arise in different areas of control theory.
Academic examples illustrate the developed results. Future studies
should focus on extending and adapting the developed theory to
consider dynamical systems presenting inputs and outputs.
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