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1. Introduction

Optimal control under constraints can result in compensators
hard to implement especially in the presence of constraints [1].
The most popular approach to solve constrained control prob-
lems is the well known model predictive control [2, 3, 4], which
requires considerable computational effort even in its explicit
version [5].

An optimal control typically is designed to produce optimal
transients for any initial condition. On the other hand, there
are many examples of systems whose main goal is perform-
ing specific tasks or “nominal operations”. This is the case of
elevators, bascule bridges, automatic gates, cranes and robots.
In these cases the control system has to assure stability in any
condition, while optimality is important only for the nominal
operation.

This observation motivated the introduction of the concept of
relatively optimal control [6, 7]. Basically, the relatively opti-
mal control problem is to design a control which is optimal for
a specific initial condition and is stabilizing for all other initial
states. This problem has been solved in discrete-time [6, 7] and

∗Corresponding author (+39-0432-558466)

continuous-time [8] where state-feedback solutions have been
proposed. Actually in [7] it has been shown that an output feed-
back solution is possible provided that an observer is adopted
which has to be suitably initialized.

Observer initialization is significant in several situations in
which the system has a precise (and known) starting time. It is
not suitable in other circumstances. For instance, one could be
interested in optimizing a certain impulse response associated
with an input matrix E. This is obviously equivalent to the op-
timization of the transient with initial condition x(0) = E. But
the idea of observer initialization becomes questionable if one
wishes to optimize the impulse response.

The main idea of this work is to propose a control scheme
with two fundamental steps.

• Open-loop: A trajectory parameterization in terms of
modal function is introduced. The modes are assigned by
means of a stable matrix P whose eigenvalues are fixed.
An optimal open-loop trajectory with the assigned initial
condition is designed which is a linear combination of the
modes. No restrictions on the type of optimality criterion.
Any of such parameterized trajectories can be considered
as “optimal”.

• Closed-loop: An output feedback compensator is de-
signed which has to be stabilizing and it must produce the
“optimal trajectory” for the nominal initial condition with-
out observer initialization (i.e., the observer initial state is
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0). Such a compensator is “relatively optimal”.

The essential features of the proposed framework are that:

1. If the considered constraints and cost functional are con-
vex, the open-loop design requires convex optimization.

2. The existence of the relatively optimal output feedback
compensator can be checked by solving a set of linear al-
gebraic equations which, under some assumptions on the
number of measured outputs, are generically solvable.

The proposed solution is based on the Youla–Kučera [9, 10]
parameterization of all stabilizing compensators. The essential
difference with respect the standard convex-optimization-based
control synthesis [11, 12, 13] is that there is a full separation be-
tween the optimal trajectory design, which can be any open loop
trajectory computed regardless of the specific measured output
(i.e., the C matrix) and with no further constraint than being an
open-loop feasible system trajectory, function of the assigned
modes and the nominal initial condition. For instance it could
be the trajectory produced by the optimal state-feedback LQ
regulator. Then, if the equations are solvable, the provided out-
put feedback compensator produces exactly the optimal state
feedback trajectory for the nominal initial condition.

We stress that LQ is a possibility, but the optimization cri-
terion is extremely general. It is possible to consider differ-
ent types of constraints: pointwise-in-time output or input con-
straints, frequency domain constraints or integral constraints.
The objective function can be any convex linear or quadratic
cost. Specific problems such as minimal arrival time to an
assigned neighbourhood and model matching can also be ad-
dressed.

2. Problem Statement

Let us consider a continuous-time linear time-invariant plant
described by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) (1)

where x(t) ∈ Rn is the state of the plant, u(t) ∈ Rm is the control
input, y(t) ∈ Rp is the controlled output, and A, B, C are real
constant matrices of appropriate dimensions. We assume that
the initial state x0 is non-zero and given, and the system is in
minimal form (reachable and observable).

In order to handle the specification on the closed-loop poles
in a compact way, let us introduce a matrix P ∈ R(n+q)×(n+q)

whose eigenvalues are λi ∈ C, i = 1, 2, . . . , n + q. We assume
that matrix P is “cyclic”, i.e., the minimal and characteristic
polynomials coincide. It is well known that this choice of P
is always possible (for instance P can be chosen in companion
form), and implies that there always exists a vector ξ0 ∈ R(n+q)

such that the pair (P, ξ0) is reachable.
Then, we consider a behaviour generated by

ξ̇(t) = Pξ(t), ξ(0) = ξ0 (2)

where ξ(t) ∈ R(n+q). That is,

ξ(t) = ePtξ0. (3)

Since (P, ξ0) is reachable, ξ(t) contains all behaviours of the
modes specified. Therefore we can write an input-state trajec-
tory, say uo(t), x0(t), as

xo(t) = Xξ(t) (4)
uo(t) = Uξ(t) (5)

where X ∈ Rn×(n+q) and U ∈ Rm×(n+q) are appropriate real con-
stant matrices. Indeed, the representation (4) (5) can be charac-
terized by the coefficient matrices of the plant and P. From (1)
and (2), we have

ẋo(t) = AXξ(t) + BUξ(t),
ẋo(t) = Xξ̇(t) = XPξ(t),

and hence (AX + BU − XP)ePtξ0 = 0, ∀t ≥ 0. Since ξ(t) can
take all directions in R(n+q) we must impose

AX + BU = XP, x0 = Xξ0 (6)

The equations above is the starting point for the two problems
that we aim to tackle. The first one is the optimization problem
(high level control problem).

Problem 1. Optimization. Given a stable P with assigned
poles, find U, X, ξ0 satisfying (6), such that the pair (uo(t), xo(t))
with initial condition xo(0) = x0 given by equations (4) (5) is
optimal under some specified criterion.

The second problem is to find a compensator that realizes the
optimal pair, solution of the previous problem, from the knowl-
edge of U, X, ξ0 satisfying (6). In other word, considering
the closed-loop system in Fig. 1, we aim at finding a output
feedback compensator such that, assuming initial state of the
compensator equal to zero, it is able to impose the optimal pair
(uo(t), xo(t)) relative to x0.

Problem 2. Realization. Suppose that P is Hurwitz stable and
X, U, ξ0 have been chosen in accordance to any performance
index. Find a linear stabilizing compensator such that, for
x(0) = x0 and initial conditions of the compensator equal to
zero, produces the optimal transient pair (x(t), u(t)) satisfying
(4) and (5).

3. Realization of the relatively optimal control

In this section we do not care on how the trajectory has been
chosen. Out main goal is to give conditions such that the as-
signed trajectories

xo(t) = Xξ(t), uo(t) = Uξ(t), ξ(t) = ePtξ0

under conditions (6) can be achieved by an output feedback
compensator with zero compensator initial conditions, in par-
ticular without observer state initialization. We briefly remind
some results proposed in [7, 8] concerning state feedback, and
then we propose the main result of the paper concerning output
feedback.



˙̄z = F̄z̄ + Ḡy, z̄(0) = 0
u = H̄z + K̄y

ẋ = Ax + Bu, x(0) = x0
y = Cx
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Figure 1: Closed-loop system

3.1. Solution based on state feedback
For the sake of completeness we recall here the solution

based on state feedback proposed in [6, 7, 8].
Assume that the compensator which we want to design is a

dynamic state feedback (i.e., C = I in Fig. 1)

˙̄z(t) = F̄z̄(t) + Ḡx(t), z̄(0) = 0
u(t) = H̄z̄(t) + K̄x(t) (7)

where z̄(t) ∈ Rq is the state of the compensator, and F̄, Ḡ, H̄,
and K̄ are real constant matrices of appropriate dimensions.

Theorem 1. Suppose that matrices (X,U) are given and that X
has full row rank. Let Z be such that

det
[

X
Z

]
, 0, 0 = Zξ0 (8)

Then a compensator which solves Problem 2 is given by[
K̄ H̄
Ḡ F̄

]
=

[
U
V

] [
X
Z

]−1

where V = ZP. Moreover, the closed loop matrix is similar to
P, i.e., [

A + BK̄ BH̄
Ḡ F̄

] [
X
Z

]
=

[
X
Z

]
P.

Remark 1. It has been shown [7] that an output feedback so-
lution can be found by using an observer which can be exactly
initialized so that the initial estimation error is equal to zero.
Initializing an observer is not always possible. For instance in
the case of an impulsive disturbance it would require the a priori
knowledge of the time in which the impulse is going to occur.

3.2. A solution for the output feedback based on pole assign-
ment and Youla–Kučera parameterization

Let us consider the following observer-based Youla–Kučera
parameterization of all stabilizing compensator:

ẇ(t) = Qw(t) − Ly(t) + Bu(t) (9)
u(t) = Jw(t) + v(t) (10)

where w(t) ∈ Rn is the observer state,

Q = A + LC

is an arbitrary stable observer state matrix, J is a matrix such
that A + BJ is stable, and v(t) is the output of the Youla–Kučera
parameter (to be found) described by

ż(t) = F z(t) + Gσ(t) (11)
v(t) = Hz(t) +Kσ(t) (12)

with z(t) ∈ Rs, for some s ∈ N and

σ(t) = Cw(t) − y(t) = C (w(t) − x(t)) .

With these definitions, the compensator state is z̄(t) =[
z>(t) w>(t)

]>
and the compensator matrices (see Fig. 1)

are

F̄ =

[
F GC

BH Q + BJ + BKC

]
, Ḡ = −

[
G

L + BK

]
H̄ =

[
H J + KC

]
, K̄ = −K .

Define the state error variable

r(t) = w(t) − x(t) (13)

so that σ(t) = Cr(t). Therefore, the closed-loop system gen-
erating the state and input trajectories of the original system is
described by ẋ(t)

ż(t)
ṙ(t)

 =

 A + BJ BH B(J +KC)
0 F GC
0 0 Q


 x(t)

z(t)
r(t)

 , x(0)
z(0)
r(0)

 =

 x0
0
−x0

 (14)

u(t) =
[

J H J +KC
]  x(t)

z(t)
r(t)

 . (15)

Notice that Q is fixed so that r(t) = −eQt x0, t ≥ 0, is a fixed
trajectory of the estimation error.

Remark 2. As commented earlier, if one could choose the ini-
tial state of the filter, it would be sufficient to set w(0) = x0, so
that r(0) = 0 in equation (14). In this way the movement of the
state variable would be described by ẋ(t) = (A+ BJ)x(t) and the
“relatively optimal” property x(t) = Xξ(t), u(t) = Uξ(t) would
directly follow from (6).

Now we specify the rules of the game.

• The compensator must be stabilizing;

• For x(0) = x0 assigned and for w(0) = 0 and for z(0) = 0
the trajectory has to be (4) and (5) for the given X and U.

Notice that the first requirements, i.e., asymptotic stability of
the closed-loop system, is inherited by the choice of a stable
Youla–Kučera parameter. Indeed, as apparent from (14), stabil-
ity of F together with the choice of J and L such that A + BJ
and Q = A + LC are stable, entail stability of the closed-loop



system (and vice versa). As for the second point, it is clear that
the time evolution of x(t) and u(t) should depend only on ξ(t).
As such, take a new variable

z̃(t) = z(t) −Mξ(t) − Nr(t)

so that

ẋ(t) = (A + BJ)x(t) + BHMξ(t) + BH z̃(t)
+ B(J +KC +HN)r(t), x(0) = x0

˙̃z(t) = F z̃(t) + (FM−MP)ξ(t) + (FN + GC − NQ)r(t),
z̃(0) = N x0 −Mξ0

u(t) = Jx(t) +H z̃(t) +HMξ(t) + (HN + J +KC)r(t)

Therefore if F (Hurwitz matrix), G,H , K ,M, N satisfy

0 = FN + GC − NQ (16)
0 = FM−MP (17)
0 = J +KC +HN (18)
0 = U − JX −HM (19)
0 = N x0 −Mξ0 (20)

we have that xo(t), uo(t) are solutions of (4), (5). Indeed, thanks
to (6)

ẋo(t) = (AX + BU)ξ(t) = XPξ(t) = Xξ̇(t), Xξ0 = x0

so that xo(t) = Xξ(t) and

uo(t) = (JX + HM)ξ(t) = Uξ(t).

As apparent, equation (17) just says that in the case s ≥ n +

q matrix P is a restriction of F with respect to the subspace
given by the columns span ofM. We can impose thatM is full
column rank. Notice however that all equations above (except
(20)) are nonlinear in the 6 unknowns F , G,H , K ,M, and N .

3.3. The case s ≥ n + q
Notice that, if we fix F = F (Hurwitz stable) and M = M

(full column rank) satisfying (17), it is possible to write down a
solution forH as follows

H = H = (U − JX)(M>M)−1M> (21)

so that the equations to be satisfied becomes

0 = FN + GC − NQ (22)

0 = J +KC + (U − JX)(M>M)−1M>N (23)
0 = N x0 − Mξ0 (24)

These equations are linear in the unknowns N , G, K .

Remark 3. Setting M =

[
In+q

0

]
is not a restriction with re-

spect to considering a generic full rank matrix M =

[
M1
M2

]
with invertible M1 of dimensions n + q × n + q. It is a matter

of a state transformation of the Youla–Kučera parameter. In-
deed if the original equations have a solution with some full

rank M =

[
M1
M2

]
with certain matrices F, G, H K, N, then the

same equations have a solution with M̂ =

[
I
0

]
, F̂ = T−1FT ,

Ĝ = T−1G, Ĥ = HT , N̂ = T−1N, K̂ = K, with T =

[
M1 0
M2 I

]
.

Therefore we get a linear system with Ne equations and Nu

unknowns with

Ne = s × n + m × n + s, Nu = s × n + s × p + m × p.

Then the generic solvability is given by Nu ≥ Ne, i.e.,

s × (p − 1) ≥ m × (n − p) (25)

Note that for SISO systems, being p = m = 1, we would get n =

1. This means that for SISO systems is generically impossible
to match a generic trajectory of the state and the input. We
conclude the section by stating the main result.

Theorem 2. For a fixed choice of F = F stable and M = M
full rank satisfying (17) and s ≥ n + q, if equations (22)–(24)
have a solution N = N, G = G, K = K, then (F,G,H,K) is a
a stable Youla–Kučera parameter and the corresponding com-
pensator of order n + s satisfies Problem 2, i.e., it is relatively
optimal.

It is important to state that the closed-loop system obtained
by the realization design is always asymptotically stable, for all
possible data X, U and ξ0 satisfying (6), for which a solution of
the linear equations above (22)–(24) exist. Therefore there are
no problems of possible cancellations of unstable zeros. The
interpretation in terms of model matching is relatively simple.
Letting E = x0, the choice of P, X, U, ξ0 satisfying (6) corre-
sponds to finding a stabilizing output-feedback controller such
that the transfer function Rre f (s) = C̄X(sI − P)−1ξ0 from w to η
is matched, where

ẋ(t) = Ax(t) + Bu(t) + Ew(t)
η(t) = Dx(t).

This is possible if Rre f (s) shares the same structure of unstable
zeros of D(sI − A)−1E.

Remark 4. As it has already been pointed out, the quanti-
ties X, U, ξ0 in Problem 2 are considered fixed and given
by a high-level optimization problem, and the problem is the
determination of a realization of the optimal input-state pair
in closed-loop through an output-feedback dynamic compen-
sator. One can however, consider a global optimization prob-
lem where also X, U and ξ0 are variables to be optimized.
This amounts to add to (16)–(20) the congruence equations (6)
and solve the nonlinear equations. Notice however that, given
x0, if a solution (P, X,U, ξ0, F,G,H,K,M,N) exists to equa-
tions (16)–(20) and (6), then the same equations are satisfied



by (P̃, X̃, Ũ, ξ̃0, F̃, G̃, H̃, K̃, M̃, Ñ), with P̃ = T PT−1, X̃ = XT−1,
Ũ = UT−1, ξ̃0 = Tξ0, F̃ = T FT−1, G̃ = TG, H̃ = HT−1,
K̃ = K, M̃ = T M, Ñ = T N and T any invertible matrix.

A fundamental role of the optimization problem is played by
the initial condition ξ0 of the reference model ξ̇(t) = Pξ(t). In
this regard, one might be interested in a relaxed optimization
problem where one wants to parameterize all output-feedback
controllers giving rise to input and state trajectories x(t) =

Xξ(t), u(t) = Uξ(t) compatible with ξ̇(t) = Pξ(t). In such a case
ξ0 is a variable not fixed a-priori. In (22)–(24) one can then add
the condition Xξ0 = x0 and look for a solution of the associated
linear equation. The generic solvability condition turns out to
be s× (p− 1) ≥ m× (n− p)− q that can be satisfied even in the
SISO case if q ≥ n − 1. The following simple example shows
exactly this case.

Example 1. Consider a second order system with transfer
function G(s) = (1 − s)/s2, characterized by x0 =

[
1 −2

]>
and

A =

[
0 0
1 0

]
, B =

[
−1
1

]
, C =

[
0 1

]
.

Let q = 1 with

P =

 0 1 0
0 0 1
−1 −3 −3

 .
Finally consider X, U (satisfying AX + BU = XP) as follows:

X =

[
0.1744 −0.1555 0.0106
−0.8532 −0.3572 −0.1850

]
,

U =
[

0.0106 −0.1426 0.1872
]
.

Now, define the observer matrices as

L =

[
−5
−7

]
, J =

[
4 2

]
.

Once X, U and P are given, system (22)–(24), (6) is linear,
characterized by 13 unknowns and 13 equation. The following
solution exists:

M = I3, F = P,

N =

 2.3632 −3.9976
−3.9976 −3.1791
−3.1791 19.1666

 , G =

 19.1666
23.0745
−74.3057


H =

[
1.0192 1.1937 0.5149

]
, K = −4

ξ0 =
[

10.3583 2.3605 −41.5122
]>
.

The compensator order is 5, with eigenvalues −7, −6.1926,
−1± j, −0.8074. Its transfer function is C(s) = 4(s+55)/(s+7).
Fig. 2 gives the behaviors of the two state variables obtained
from the closed-loop system by taking zero initial state for the
compensator and x0 for the system’s state. As apparent, these
variables perfectly coincide with the components of Xξ(t) ob-
tained by taking the given ξ0.
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Figure 2: State variables xi(t) and (Xξ(t))i, i = 1, 2

Remark 5. Model matching.
Given a linear system with transfer function G(s) and state-

space description

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t),

the classical model matching problem [14] consists in finding a
state-space feedback

u(t) = Ξx(t) + Ψv(t)

such that the closed loop system transfer function from v to y
matches a given transfer function GM(s), i.e., GM(s) = (C +

DΞ)(sI − A − BΞ)−1BΨ + DΨ. A quick though shows that this
equation can be written as

GM(s) = G(s)(I − Ξ(sI − A)−1B)−1Ψ.

It is well known that Ξ and Ψ solving this problem exist and
A + BΞ is Hurwitz if and only if

(i)
[

G(s) GM(s)
]

and G(s) share the same infinite zero
structure,

(ii)
[

G(s) GM(s)
]

and GM(s) share the same infinite zero
structure,

(iii)
[

G(s) GM(s)
]

and GM(s) share the same finite zero
structure,

(iv)
[

G(s) GM(s)
]

and G(s) share the same unstable zero
structure.

The algorithm follows these steps. First find the square system
R(s) satisfying GM(s) = G(s)R(s). Moreover find a constant
matrix H such that R(s)−1−R(∞)−1 = H(sI−A)−1B. Finally set
Ψ = R(∞) and Ξ = −ΨH. In the relatively optimal approach
we have that one has to realize with output feedback the output
movement y(t) = Cx(x) with dynamics ẋ(t) = (A + BK)x(t) and
initial state x0 = BG. The model transfer function is Gm(s) =

CX(sI − P)−1ξ0, where X, P, ξ0 satisfy AX + BU = XP.

4. Open loop profile design via convex optimization

In this section we consider the first part of the problem,
namely the optimization of the open-loop trajectory by means
of convex optimization.



The constraints of our problems are

AX + BU = XP, x0 = Xξ0 (6)

with (P, ξ0) reachable. Note that this offers a complete parame-
terization in terms of modes.

Proposition 1. Let (P, ξ0) a reachable pair. Then any other
reachable pair (P̂, ξ̂0) with P and P̂ similar provide an equiva-
lent parameterization.

Proof. Since (P, ξ0) and (P̂, ξ̂0) are reachable pairs, there ex-
ist non-singular matrices T1 and T2 such that (T1PT−1

1 ,T1ξ0)
and (T2P̂T−1

2 ,T2ξ̂0) are the reachable canonical forms. That is,
T1ξ0 = T2ξ̂0. Since P and P̂ are similar, T1PT−1

1 = T2P̂T−1
2 .

That is, there always exists a non-singular matrix T = T−1
1 T2

such that P̂ = T−1PT and ξ̂0 = T−1ξ0. So we would have

AXT + BUT = XTT−1PT

namely we would have the equivalent constraints

AX̂ + BÛ = X̂P̂, ξ̂0 = T−1ξ0

and denoting by ξ̂(t) = T−1ξ(t), we get the equivalent parame-
terization

x(t) = X̂ξ̂(t), u(t) = Û ξ̂(t).

In simple words, only the eigenvalues of P have a role. In
practice we are choosing a set of modes eλit as basis for the so-
lution. Once this basis is fixed, it is possible to optimize the
transient from the initial condition x0. Here we have no restric-
tions in terms of objective functions and type of constraints.

We present next a summary of possible objective function
and constraints which can be dealt with. We are sure that the
reader can find a new one not included in this list.

1) Quadratic performance index. Given P and ξ0, find X, U
satisfying (6) and minimizing

J(ξ0) =

∫ ∞

0

(
x>(t)Q̄x(t) + u>(t)R̄u(t)

)
dt

= ξ>0

(∫ ∞

0
eP>t

(
X>Q̄X + U>R̄U

)
ePt dt

)
ξ0

with Q̄ ≥ 0 and R̄ > 0. It turns out that

J(ξ0) = ξ>0 Wξ0

where W ≥ 0 solves the Lyapunov equation

WP + P>W = −X>Q̄X − U>R̄

Note here that we can minimize α > 0 such that WP + P>W X> U>

X −Q̄ 0
U 0 −R̄

 < 0,
[
α ξ>0
ξ0 W

]
> 0, W ≥ 0

which describes a convex constraint in W, X, and U.

2) L1 norm. Assume that x0 = E where

ẋ(t) = Ax(t) + Bu(t) + Ew(t), η(t) = Dx(t)

and η scalar. If we wish to optimize the L1 of the impulse
response from w to η, then we can look for the minimum of

J(ξ0) =

∫ ∞

0
|DXePtξ0| dt.

Again, one can minimize α > 0 such that J(ξ0) < α that is a
convex function in X.

3) L2 norm. Assume again that x0 = E as above and that we
wish to optimize the L2 of the impulse response of the sys-
tem D(sI − A)−1E. Then

J(ξ0) = ξ>0

(∫ ∞

0
eP>tX>D>DXePt dt

)
ξ0.

This is a convex function in X. The rationale follows the
same lines as in point 1).

4) H∞ norm. Assume we wish to optimize (or attenuate) the
transfer H∞ norm of the transfer function from w to η. Then
we can define

J(ξ0) = sup
ω
|DX( jωI − P)−1ξ0|

and consider the convex problem of finding X such that
J(ξ0) < α.

5) Minimum time arrival. Assume that we wish to arrive in
minimum time to a (possibly controlled invariant) given el-
lipsoid x>Wx ≤ ε. This correspond to solving

min t f > 0 :
[

ε ξ>0 eP>t f X>

XePt f ξ0 W−1

]
> 0.

This is a convex constraint which typically requires to iterate
over t f .

6) Smallest ellipsoid at fixed time. Assume t f is given and we
wish to arrive to the smallest ellipsoid x>Wx ≤ ε. This
corresponds to solving

min ε > 0 :
[

ε ξ>0 eP>t f X>

XePt f ξ0 W−1

]
> 0.

A possible set of constraints can be also considered.

7) Control pointwise constraints. We want to impose hard
bounds on the input function, i.e., ‖u(t)‖ < γ, for each t ≥ 0.
This is cast by imposing

max
t≥0
‖UePtξ0‖ ≤ γ.

8) Control energy constraints. We want to impose a soft energy
constraint to the input, i.e.,

∫ ∞
0 ‖u(t)‖2 dt ≤ γ. This means∫ ∞

0
‖UePtξ0‖

2 dt ≤ γ.



9) Soft starting. We want to impose that the performance out-
put η(t) = Dx(t) has zero derivative at time zero. This can
be achieved by imposing the linear constraint

DXPξ0 = 0.

10) Output shaping. We may impose e−(t) ≤ e(t) = Dx(t) ≤
e+(t), for each t, that is

e−(t) ≤ DXePtξ0 ≤ e+(t), ∀t ≥ 0.

All above points 1)–10) represent convex problems and as such
can be solved by means of efficient algorithms.

Remark 6. Concerning the possibility of imposing input and
state l∞ constraints, let us consider a matrix P with an adequate
number of modes and such that ‖ePt‖1 ≤ 1. This is possible, for
instance by taking A = block diag{Ai} with Ai either negative

scalars or 2 × 2 matrices Ai =

[
−ξ ω
−ω −ξ

]
with 0 < ω ≤ ξ

[15]. Now, if ξ0 is chosen in such a way that (P, ξ0) is reachable,
‖ξ0‖1 ≤ 1, and the following convex constraints on the X and U
matrix are imposed

‖X‖1 ≤ xmax and ‖U‖1 ≤ umax

then, the optimal value of any of the convex minimization prob-
lems just enumerated will automatically result in

‖x(t)‖1 = ‖XePtξ0‖1 ≤ ‖X‖1‖ePt‖1‖ξ0‖1 ≤ xmax

‖u(t)‖1 = ‖UePtξ0‖1 ≤ ‖U‖1‖ePt‖1‖ξ0‖1 ≤ umax.

5. Output feedback realization of state-feedback con-
trollers

In some case we can exploit the previous results without im-
posing the poles. An idea is to solve a standard optimization
problem, and use the closed-loop matrix as P. To this aim we
have a surprising result. Let u = KLQx the optimal LQ con-
troller. Then we may set

P = A + BKLQ, X = I, U = KLQ.

Then assume that x0 = ξ0 is such that (P, x0) is reachable. Tak-
ing s = n.

Theorem 3. If the equations (22)–(24) are solvable, then
there exist an output feedback stabilizing compensator which
achieves optimality for x(0) = x0.

Note that in general we must assure that J , KLQ otherwise we
would have a singularity in view of the condition

H = U − JX = KLQ − J.

As already said, for the SISO case equations (22)–(24) can be
hardly solved, unless the initial state ξ0 is not fixed a priori. In

the present context this means not to fix the initial state x0 (re-
laxed optimal control). To investigates the solvability condition,
let, without any loss of generality,

A =



0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, C =

[
0 0 · · · 0 1

]

Then the only solutions of (22)–(24) are such that

G = NQen − Pn−1α,

N =
[
α Pα · · · Pn−2α Pn−1α

]
,

α =

 n∑
k=0

Pke>k x0

−1

x0.

Moreover, J and K can be easily found satisfying J +KC +(U−
J)N = 0. However it is likely that all possible congruent J are
not such that A + BJ is Hurwitz.

Example 2. As in the previous example consider a second or-
der system with transfer function G(s) = (1 − s)/s2, character-
ized by x0 =

[
−0.3568 −0.9342

]>
and

A =

[
0 0
1 0

]
, B =

[
−1
1

]
, C =

[
0 1

]
.

Consider the optimal control law u = KLQx that minimizes J =∫ ∞
0 x>(t)x(t) + u(t)2dt. It results in

KLQ =
[

3 1
]

so that the closed-loop matrix is

ALQ = A + BKLQ =

[
−3 −1
4 1

]
.

Define P = ALQ and take

L =

[
−5
−7

]
, J =

[
4 1

]
.

Moreover, let

M = I2, N =

[
4 −1.1459

−10.8541 5.1459

]
.

The Y-K matrices that satisfy (22)–(24) are

F = P, G =

[
−10.2705
17.6869

]
,

H =
[
−1 0

]
, K = −2.1459

The compensator transfer function is C(s) = (0.382 +

2.146s)/(s + 4.528). It can be easily checked that if the ini-
tial state x0 is the same as in Example 1, no solution exists. As
a matter of fact J should be such that J1 + J2 = −0.5 whereas
for stability of A + BJ we need J1 > J2 > 0.
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Figure 3: Scheme of the cart-pole system.

We can extend the results to a more general class of perfor-
mance indices:

µQ =

∫ ∞

0

(
x>(t)Qx(t) + u>(t)Ru(t) + u̇>(t)Ru̇(t)

)
dt.

This problem can be faced by considering an augmented system

Aaug =

[
A B
0 0

]
, Baug =

[
0
I

]
.

Then let [ K1 K2 ] be the optimal gain and take

P =

[
A B
K1 K2

]
, X =

[
I 0

]
, U =

[
0 I

]
.

The equation AX + BU = XP is trivially satisfied. Take ξ0 such
that x0 =

[
I 0

]
ξ0 Then, again, we can claim optimality for

the initial condition x0 of the YK based compensator.

Theorem 4. If the equations (22)–(24) are solvable, then
there exists an output feedback stabilizing compensator which
achieves optimality for x(0) = x0.

We ran numerical experiments on randomly generated matrices,
which have shown that the equations are generically satisfied.

6. Example

Consider the cart-pole system described in [16], whose
scheme is reported in Fig. 3. Let the continuous-time model,
linearized around a stable equilibrium point be:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

where x(t) =
[
ϑ(t) ϑ̇(t) s(t) ṡ(t)

]>
and

A =


0 1 0 0

−19.62 −0.125 0 −9.886
0 0 0 1
0 0 0 −4.943

 , B =


0

11.53
0

5.767

 ,
C =

[
1 0 0 0
0 0 1 0

]
.

Take the initial state as

x(0) = x0 =
[

0 0 −0.75 0
]>

and consider the problem of reaching the sphere x>x ≤ ε0 =

0.0049 in minimum time t f , subject to the input and state con-
straints:

|u(t)| ≤ umax = 1, ∀t ∈
[
0, t f

]
(26)

|x1(t)| ≤ ϑmax = 0.23, ∀t ∈ [0, t f ]. (27)

To find the optimal open-loop trajectory we take n + q = 8 and
the reachable pair (P, ξ0) as

P =



−2 1 0.4 0 0 0 0 0
−1 −2 0.2 0.1 0 0 0 0
0.1 0.3 −3 0 0 0 0 0
0.2 0.1 0 −5 0 0 0 0
0 0 0 0 −2.5 1 0.4 0
0 0 0 0 −1 −2.5 0.2 0.1
0 0 0 0 0.1 0.3 −3.5 0
0 0 0 0 0.2 0.1 0 −5.5


,

ξ0 =
[

45 −45 −45 0 45 45 0 0
]>
.

The choice of such a P amounts to imposing the (stable) closed-
loop poles

σ(P) =
{
−1.95 − 0.998 j, −1.95 + 0.998 j, −3.09, −5,

−2.45 − 0.998 j, −2.45 + 0.998 j, −3.59, −5.5
}
.

Needless to say, the optimality of the open-loop trajectory is
restricted to the behaviours achievable by those modes. The
minimum time trajectory may be found iteratively, by solving a
sequence of optimization problems with fixed t f :

min
X,U,ε

ε (28)

s.t. ε ≥ 0 (29)[
ε ξ>0 eP>t f X>

XePt f ξ0 I

]
> 0 (30)

AX + BU − XP = 0 (31)
Xξ0 − x0 = 0 (32)∣∣∣UePtξ0

∣∣∣ ≤ 1,

∀t =
k

100
t f , k = 0, 1, . . . , 100 (33)∣∣∣∣[ 1 0 0 0

]
XePtξ0

∣∣∣∣ ≤ 0.23,

∀t =
k

100
t f , k = 0, 1, . . . , 100. (34)

Notice that (33) and (34) represent a finite number of point-
wise constraints that are not equivalent to (26) and (27). This is
motivated by the need of avoiding the intrinsic conservativeness
of the approach of Remark 6. From a practical point of view, the
fulfillment of (26) and (27) by the whole optimal trajectory may
be checked after its computation; if needed, satisfaction of (26)
and (27) may be enforced by slightly tightening the constraints
(33) and (34).

As far as the iteration scheme is considered, the algorithm is
as follows (where λ is a tolerance):



1. Take t− sufficiently small and t+ sufficiently large1;
2. t f ← (t+ + t−) /2;
3. If (t+ − t−)/t+ < λ and ε ≤ ε0 then exit;
4. Solve (28)–(34);
5. If ε > ε0 then set t− ← t f and go to step 2;
6. Set t+ ← t f and go to step 2.

To solve problem (28)–(34) we used CVX, a package for
specifying and solving convex programs [17, 18]. By choos-
ing t− = 0.1, t+ = 4, λ = 0.01 we found, in 9 iterations, a
minimum time t f = 1.95, achieved by:

X =


28.7 6.175 −43.83 −297.6
−127.5 −26.56 144.2 1489
31.97 7.537 −62.74 −261.7
−130.1 −28.1 202.5 1309

−48.61 −17.74 178.4 129.1
182.9 62.17 −647.5 −712
−59.72 −27.48 218.6 104.5
219.5 85 −794.5 −577.3

 ,
U =

[
−12.6 −3.658 58.24 −13.43

44.46 22.74 −180.6 57.23
]
.

The optimal trajectories of the state and the input (along with
the state and input constraints) are reported, respectively in
Fig. 4 and Fig. 5. The phase portraits for the pairs (x1, x2) and
(x3, x4) are shown in Fig. 6 and Fig. 7.

Now it is necessary to assign stable eigenvalues to A + BJ
and A + LC by means of a choice of J and L. Such a
choice is arbitrary, provided that the stability is guaranteed.
By solving a standard LQR problem with performance index∫ ∞

0

(
10x2

1(t) + x2
3(t) + u2(t)

)
dt, we get a feedback matrix

J =
[
−2.902 −0.2297 −1 −0.4368

]
such that

σ(A + BJ) =
{
−3.128 − 4.635 j, −3.128 + 4.635 j,

−2.574, −1.406
}
.

Now, L is taken as:

L =


−31.1 −16.9
−481.3 −169.2

17.5 −15.01
61.05 3.255

 ,
in order to assign to the observer a dynamics that is five times
faster than that of the controller. Finally, we take the order of
the YK parameter s = n + q = 8 and impose M = I. Thus, from
(17) and (19) we get F = P and

H = U − JX

1Meaning that problem (28)–(34) has a solution ε > ε0 for t f = t− and
ε ≤ ε0 for t f = t+.
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Figure 4: State variables xi(t) and (Xξ(t))i, i = 1, 2, 3, 4 for the cart-pole system.
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=
[

16.56 3.429 −10.12 −225

−18.44 −4.815 60.09 120.8
]
.

Then, by solving the linear system:

0 = FN + GC − N(A + LC)
0 = J + HN + KC

0 = Nx0 − ξ0

in the unknowns N, G and K we get:

N =



7.333 −1.374 −60 −18.07
−2.464 2.63 60 5.162
−14.63 5.314 60 3.975
−1.523 0.3099 0 −0.5759
8.683 −4.357 −60 −0.001261
8.79 −1.825 −60 −17.27
−2.33 0.3992 0 0.8551
−2.138 0.2018 0 0.4809


,

G =



−1669 746.7
129.6 −1239
−958.2 −1372
−151.9 −22.58
876.2 1401
−1432 794.8
−86.94 −1.374
−19.59 21.56


, K =

[
−0.05003 0.8601

]
.

The output-feedback state and input trajectories from x0 and
zero initial state for the observer and the YK parameter are re-
ported in Figures 4, 5, 6, and 7. They are indistinguishable from
the open-loop optimal trajectories.

Finally, Figs. 8, 9, 10, and 11 show some perturbed trajec-
tories, i.e., trajectories obtained from some randomly chosen
x(0) : ||x(0) − x0|| ≤ 0.05. It is apparent that the control system
exhibits a small sensitivity to perturbations of the initial state.

7. Concluding Remarks

In this paper, the relatively optimal control for continuous-
time systems via output feedback has been investigated. The
key idea is to fix the closed loop system modes (once again,
the larger the number of chosen modes, the greater the flexi-
bility in the optimization stage) and parameterize all the pos-
sible trajectories of the closed-loop system by two matrices X
and U. This in turn enables to perform the nominal trajectory
optimization in a finite-dimensional space and derive a finite
dimensional compensator which achieves the resultant optimal
trajectory for given initial states x0 and 0 of the plant and the
compensator. The compensator matrices have been given by
explicit formulas.

Although in this paper the trajectory parameterization by
means X and U has been employed, it is definitely worth re-
calling that there exists a different approach to the constraint
optimization. One example is a transfer function approach [11]
based on Youla–Kučera parameterization [9, 10].
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Figure 8: State trajectories for some non-nominal initial conditions.
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An advantage of the present method over the transfer func-
tion approach is that the method is formulated in the state space
and thus enjoys several flexibilities regarding the representation
of control problems and allows to use well-established compu-
tational tools for the solution of convex minimization problems,
e.g., all those widely adopted in the linear matrix inequality
framework. For instance, it is possible to extend the presented
method to the case in which multiple initial states of the plant
are given, similarly to what has been proposed in [6].

A few related extensions are currently under investigation.
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